JPS6076202A - Method for finish rolling steel shape - Google Patents

Method for finish rolling steel shape

Info

Publication number
JPS6076202A
JPS6076202A JP18250883A JP18250883A JPS6076202A JP S6076202 A JPS6076202 A JP S6076202A JP 18250883 A JP18250883 A JP 18250883A JP 18250883 A JP18250883 A JP 18250883A JP S6076202 A JPS6076202 A JP S6076202A
Authority
JP
Japan
Prior art keywords
rolls
roll
horizontal rolls
horizontal
web
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18250883A
Other languages
Japanese (ja)
Other versions
JPH0761485B2 (en
Inventor
Mutsuo Mizusawa
水沢 六男
Katashi Nakano
中野 確
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP58182508A priority Critical patent/JPH0761485B2/en
Publication of JPS6076202A publication Critical patent/JPS6076202A/en
Publication of JPH0761485B2 publication Critical patent/JPH0761485B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/088H- or I-sections
    • B21B1/0886H- or I-sections using variable-width rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/095U-or channel sections

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)

Abstract

PURPOSE:To roll channels having each different web height without rearranging rolls by bisecting upper and lower horizontal rolls freely movably in their axial directions respectively and adjusting the distances between respectively bisected horizontal rolls and between vertical rolls in accordance with the cross-sectional dimensions of a steel shape to be rolled. CONSTITUTION:A steel shape having a web and flanges is finish rolled by an universal mill having upper and lower horizontal rolls and a pair of vertical rolls 11, 12. The upper and lower horizontal rolls are divided respectively into two pairs of horizontal rolls 21, 22, 23, 24 freely movably in their axial directions, and the distances between respective divided horizontal rolls 21, 22, 23, 24 and between the vertical rolls 11, 12 are adjusted respectively in accordance with the cross-sectional dimensions of a steel shape to be rolled, to perfrom finish rolling. Accordingly, innumerable H-beams having each the same flange thickness fF and different web height WF can be manufactured without rearranging the rolls.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、各種断面寸法のウェブとフランジを有する形
鋼を高精度かつ経済的に製造する方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for manufacturing steel sections having webs and flanges of various cross-sectional dimensions with high precision and economically.

(従来技術) ウェブとフランジを有する形銅としてH形鋼を例にして
述べると、従来のH形鋼製造工程は、第1図に示す如く
に、鋼塊、連鋳スラグ、ブルーム、ビームブランク尋の
圧延素材を鋳造のまま、あるいは適当な温度に再加熱後
、連続式または往復動式の2重圧延機、鍛造機等の適当
な加工装置に組込まれた孔型ロール1,2によシ、粗形
鋼片3を製造する第1工程、ユニバーサル圧延機とエツ
ジング圧延機よ構成る連続式または往復動式のユニバー
サル圧延機に組込まれた水平ロール4,5、竪ロール6
.7によシ、当該部分の厚みを圧減しつつ、エツジング
圧延機においてはフランジ幅を調整して、中間素材8を
製造する第2工程、および、ユニバーサル圧延機に組込
まれた水平ロール9、lO1翌ロール11t12によシ
仕上製品13を製造する第3工程に大別される。第1工
程、から第3工程はそれぞれ単独または複数の圧延機で
構成される。
(Prior art) Taking H-beam steel as an example of a shaped copper having webs and flanges, the conventional H-beam manufacturing process consists of steel ingots, continuously cast slag, bloom, and beam blanks, as shown in Figure 1. The thick rolled material is cast as it is or after being reheated to an appropriate temperature, and is then processed by grooved rolls 1 and 2 installed in an appropriate processing device such as a continuous or reciprocating double rolling mill or a forging machine. B. The first step of manufacturing the rough shaped steel billet 3, horizontal rolls 4, 5 and vertical rolls 6 incorporated in a continuous or reciprocating universal rolling mill consisting of a universal rolling mill and an edging rolling mill.
.. 7, a second step of manufacturing an intermediate material 8 by reducing the thickness of the part and adjusting the flange width in the edging rolling mill, and a horizontal roll 9 incorporated in the universal rolling mill; The process is roughly divided into a third step in which the finished product 13 is produced by passing the next roll 11t12. The first step to the third step are each comprised of a single rolling mill or a plurality of rolling mills.

該工程においてそれぞれロール組替(孔型替も含む)な
しに圧延材の断面寸法を変更する従来方法について説明
すると、先ず第1の工程においては、第2図(&〕に示
す如くに、上下(または、左右)のロール間tilt 
C,、をCB□に(図示した寸法の大小を問題にする場
合には、cB2をcBlにする場合も含む。以下同じ〕
変えることにょ少、ウェブ厚をtB、よシtB2に、フ
ランジ幅をBBl よシBB2に変更する。この場合、
ロール組替(ロール孔型替を含む)をしない限シ、ウェ
ブ内幅WB%ウェブ高さW、の変更はできない(本図の
ロールで圧延後、図示の素材を90度転覆し、エツジン
グ圧延する場合を除く)。また、tBlと”B21 B
BjとB10の変更可能範囲は圧延素材断面の大きさ、
断面内の延伸バランス、孔型寸法等の制約にょ)自ら上
・下限が存在すると同時に、個々に自由には変更できな
い。
To explain the conventional method of changing the cross-sectional dimensions of the rolled material without changing the rolls (including changing the hole shape) in each of these steps, first, in the first step, as shown in FIG. (or tilt between left and right) rolls
C,, to CB□ (If the size of the dimensions shown in the diagram matters, this also includes changing cB2 to cBl. The same applies below)
Change the web thickness to tB, change the width to tB2, and change the flange width to BBl to BB2. in this case,
The web inner width WB% web height W cannot be changed unless the rolls are rearranged (including roll hole type changes). ). Also, tBl and “B21 B
The changeable range of Bj and B10 is the size of the cross section of the rolled material,
(Restrictions on stretching balance within the cross section, hole size, etc.) have their own upper and lower limits, and at the same time cannot be changed freely individually.

また第2工程においては、第2図(b) t (c)に
示す如くに、ユニバーサル圧延機においては、水平ロー
ル間隙を変えることにょシ、ウェブ厚をtul よjl
) tu2に、また、水平ロールと竪ロールの間隙を変
えることによシフランジ厚をfuj よj)fu2に変
えるとともに(この場合、フランジ厚fu1 r fu
2の変更に付随しウェブ高さ、wLll もwLI2に
自動的に変る)、エツジング圧延機においては、上下ロ
ール間隙tejをt。2に変えるととによシ、フランジ
幅をB。1よj5B。2に変える。この場合にも、ロー
ル組替をしない場合には、ウェブ内@町、W。
In addition, in the second step, as shown in Fig. 2(b) and (c), in a universal rolling mill, the horizontal roll gap is changed and the web thickness is changed from tul to jl.
) tu2, and by changing the gap between the horizontal roll and the vertical roll, the flange thickness is changed to fu2 (in this case, the flange thickness fu1 r fu
2), the web height, wLll, also changes automatically to wLI2), and in the edging mill, the upper and lower roll gap tej is set to t. If you change it to 2, the flange width will be B. 1yoj5B. Change to 2. In this case as well, if you do not perform role reshuffling, please refer to @Town, W on the web.

を変えることはできない。また、これらの諸寸法は、第
1工程で製造し得る各部の寸法範囲、第2工程における
断面内の圧下バランス等の制約によシ、その変更範囲に
は自づと制限がちシ、個々の寸法変更範囲も制限される
cannot be changed. In addition, the range of changes in these dimensions tends to be limited due to constraints such as the dimensional range of each part that can be manufactured in the first process and the reduction balance within the cross section in the second process. The range of dimensional changes is also limited.

さらに、第3工程においては、第2図(d)に示す如く
に、上下ロール間隙を変えることによシ、ウェブ厚をt
Fl よシtF2に、また、水平ロールと夷ロールの間
隙を変えることによシ、7ラー/ジ厚fF1をfF2に
(同時に、ウェブ高さw、はWF2に変る)変える。当
該工程においても、上記2工程の場合と同様、ロール組
替をしない限シ、ウェブ内幅wFの変更はできない。ま
た、これらの諸寸法は、第2工程で製造し得る当該寸法
範囲、第3工程における断面内圧下バランス等の制約に
よシ、その寸法変更範囲には自づと制限がオシ、個々の
寸法変更範囲も制限される。
Furthermore, in the third step, as shown in FIG. 2(d), by changing the gap between the upper and lower rolls, the web thickness is reduced to t.
Fl is changed to tF2, and by changing the gap between the horizontal roll and the horizontal roll, the 7-larger/ji thickness fF1 is changed to fF2 (at the same time, the web height w, changes to WF2). In this step, as in the case of the above two steps, the inner web width wF cannot be changed unless the rolls are rearranged. In addition, due to constraints such as the range of dimensions that can be manufactured in the second process and the balance of cross-sectional reduction in the third process, there is a natural limit to the range of changes in these dimensions. The range of changes is also limited.

上述した各工程における従来の圧延材の断面寸法の変更
方法に関して、特に第3工程に着目すると、第2図(d
)で明かな如く、この方法においては、ロール組替をし
ない限シ、ウェブ内幅W、は変えられないため水平ロー
ルと盛ロールの間隙を調整することによシフランジ厚を
’F1 よl:rt、に変えるとウェブ高さは自動的に
WFl よ、!1)WF2に変更される。このためH形
鋼を経済的に製造する1つの便法として第1表に例示す
る如くにH形鋼の1つのシリーズは幾つかのウェブ高さ
の異なるサイズによって構成されていることは衆知の事
実である。
Regarding the conventional method of changing the cross-sectional dimension of a rolled material in each of the above-mentioned steps, focusing on the third step in particular, Fig. 2 (d
), in this method, the inner web width W cannot be changed unless the rolls are rearranged, so the sifting flange thickness can be adjusted to F1 by adjusting the gap between the horizontal roll and the filling roll: If you change it to rt, the web height will automatically change to WFl! 1) Changed to WF2. For this reason, it is well known that one series of H-section steel is composed of several sizes with different web heights, as exemplified in Table 1, as an expedient method for manufacturing H-section steel economically. It is a fact.

第 l 表 それにも拘わらず第2図(d)に示す従来の第3工程の
圧延方法においては、ウェブ内幅w2の異なるシリーズ
毎にロール幅の異なる1組の水平ロール常備数が必要な
ため斯様なH形鋼の全シリーズを生産するためには、非
常に沢山の水平ロール組を常備する必要があった。さら
にシリーズ数を拡大するとその分だけ必要な水平ロール
組数が増加し、たとえば1つのシリーズをウェブ高さの
等しいサイズで構成する場合にはこれに倍する水平ロー
ル組数が必要となるため、ロール常備数、ロール旋削、
ロール組替等を考慮すると斯様にほとんど無数と言える
ウェブ内@w、の異なるH形鋼を経済的に生産する方法
がなく、これがH形鋼のシリーズ、サイズ数を制約する
1つの原因になっていた。
Table l Despite this, in the conventional rolling method of the third step shown in Fig. 2(d), one set of horizontal rolls with different roll widths is required for each series with different inner web widths w2. In order to produce all series of such H-beams, it was necessary to keep a large number of horizontal roll sets on hand. Furthermore, if the number of series is expanded, the number of horizontal roll sets required will increase accordingly. For example, if one series is configured with webs of the same size, twice the number of horizontal roll sets will be required. Number of rolls in stock, roll turning,
Considering roll changes, etc., there is no way to economically produce H-beams with different web widths, which can be said to be almost infinite, and this is one of the reasons for restricting the number of H-beam series and sizes. It had become.

さらに、第3図に示す如く、H形鋼の仕上圧延用水平ロ
ールの側壁(a部分)はほぼ垂直に構成されているので
、圧延によシ当核部が摩耗した場合、ウェブ内幅W、1
を全く変えずにロールを修復すると莫大なロール直径の
損失となシ、とうてい経済的な生産は望めなくなるので
、a部分の摩耗痕を削除する上で必要な最小量だけ、w
Flが小さくなるように修復する方法が用いられている
。この場合、尚然、ロール径の損失が伴う。したがって
、ウェブ内幅はロールの使用初期のwFlから修復を繰
シ返したロール使用末期の”F2まで次第に小さくなる
〇 この場合、圧延製品の寸法に着目すると、ウェブ内幅が
wFlからWF2に変化した場合、ウェブ高さWF、を
一定に保とうとするとフランジ厚はfFlからfF2に
厚くする必要があシ、逆にフランジ厚fF、を一定に保
とうとすると、ウェブ高さをWFlからWF2に減少さ
せざるを得ないことがわかる。
Furthermore, as shown in Fig. 3, since the side wall (portion a) of the horizontal roll for finish rolling of H-beam steel is configured almost vertically, if the core part is worn out during rolling, the web inner width W ,1
If the roll is repaired without changing it at all, there will be a huge loss in roll diameter, and economical production cannot be expected at all.
A repair method is used to reduce Fl. In this case, of course, there is a loss in roll diameter. Therefore, the web inner width gradually decreases from wFl at the beginning of roll use to "F2" at the end of roll use after repeated repairs. In this case, if we focus on the dimensions of the rolled product, the web inner width changes from wFl to WF2. In this case, if you try to keep the web height WF constant, the flange thickness needs to increase from fFl to fF2, and conversely, if you try to keep the flange thickness fF constant, the web height decreases from WFl to WF2. I understand that I have no choice but to do so.

ウェブ高さ、7ジンジ厚にはそれぞれ使用上支障ない範
囲で寸法公差が定められておシ、奥際にはフランジ厚、
ウェブ高さ等に許容される寸法変動は微小力ものに限定
されるが、ロールチャンス毎にこれらの寸法の平均値が
若干異なることは避けられず、特殊な用途に対しては、
同一ロールチャンスの製品を用いる等、煩雑な製品管理
を行なう必要がある他、圧延歩留変動の1つの要因にな
っていた。
Dimensional tolerances are determined for the web height and 7-zinge thickness within a range that does not interfere with use, and the flange thickness and
The permissible dimensional variations in web height etc. are limited to minute forces, but it is unavoidable that the average value of these dimensions differs slightly depending on the roll chance, so for special applications,
In addition to requiring complicated product management such as using products with the same roll chance, this was also a factor in rolling yield fluctuations.

(発明の構成) 本発明者らは、斯かる圧延形態、圧延材の挙動および圧
延機構に関して、詳細な検討、実験・観察を重ねた結果
、これらの問題点を一挙に解決する画期的な形鋼の圧延
方法を発明するに至ったものであシ、その要旨とすると
ころは、上下水平ロールと左右一対の翌+=−ルを有す
るユニバーサル式圧延機によシラニブとフランジを有す
る形鋼を仕上圧延するに際し、上記上下水平ロールを同
軸線上で移動自在に2分割し、被圧延形鋼の断面寸法に
応じて上記2分割水平ロールの間隔を調整して仕上圧延
を行なうことを特徴とするものである。
(Structure of the Invention) As a result of repeated detailed studies, experiments, and observations regarding the rolling form, behavior of rolled material, and rolling mechanism, the present inventors have developed an innovative method that solves these problems all at once. This led to the invention of a method for rolling section steel, the gist of which is to produce section steel with sill nibs and flanges using a universal rolling mill with upper and lower horizontal rolls and a pair of left and right rolls. When finishing rolling, the upper and lower horizontal rolls are movably divided into two on a coaxial line, and the finish rolling is performed by adjusting the interval between the two divided horizontal rolls according to the cross-sectional dimensions of the steel section to be rolled. It is something to do.

(実施例及び発明の作用効果) 以下本発明について図面によって詳細に説明する。(Examples and effects of the invention) The present invention will be explained in detail below with reference to the drawings.

第4図、第5図は本発明による第3工程におけるロール
の組合せ状態を示すものであるが、第4図は同軸線上で
移動自在に2分割された水平ロール21,22,23.
24および翌ロール11゜12は被圧延材のウェブ高さ
方向に水平ロール21と22.23と24が相接近する
如く、翌ロール11t12はそれぞれ水平ロール21と
23および22と24と同じ向きに同じ距離移動した場
合である。この場合には水平ロール21と竪ロール11
(および22と12.23と11 z 24と12)の
間隔は一定に保たれるのでフランジ厚f2は一定値に保
たれる。ただし、翌ロール11゜12が移動するのでウ
ェブ高さはたとえばWF、からW、に変えられる。即ち
、同軸線上で移動自在に分割された水平ロール21,2
2,23,24および翌ロール11.12の単一のロー
ル組にょシ、そのロール位置を加減することにょシ、フ
ランジ厚が同じでウェブ高さの異なる無数のH形鋼の圧
延がロール組替無しに製造可能である。従来の仕上圧延
法では斯様な圧延は全く不可能であシ、若しも実現しよ
うとすると無数の水平ロール組が必要となシ、斯様な方
法は工業的には全く不可能と言わざるを得なかった。
4 and 5 show the combination of rolls in the third step according to the present invention, and FIG. 4 shows the horizontal rolls 21, 22, 23, .
24 and the next rolls 11 and 12 are rolled in the same direction as the horizontal rolls 21 and 22, and 23 and 24 are close to each other in the web height direction of the rolled material, and the next roll 11t12 is in the same direction as the horizontal rolls 21 and 23 and 22 and 24, respectively. This is when they move the same distance. In this case, the horizontal roll 21 and the vertical roll 11
(and 22 and 12.23 and 11 z 24 and 12) are kept constant, so the flange thickness f2 is kept constant. However, since the next roll 11°12 moves, the web height can be changed from WF to W, for example. That is, the horizontal rolls 21 and 2 are movably divided on a coaxial line.
2, 23, 24 and the following rolls 11 and 12 are rolled in a single roll set, and it is necessary to adjust the roll position. It can be manufactured without any replacement. Such rolling is completely impossible with conventional finish rolling methods, and if it were to be realized, countless sets of horizontal rolls would be required, making such a method completely impossible industrially. I had no choice.

本発明の方法を可能にしたものは、水平ロールを同軸線
上で移動自在に2分割しウェブ高さ方向に移動させるこ
とによシウェプ内幅WFを自由に選択できるようにした
ことである。これは、H形鋼の仕上圧延状況を詳細に観
察・分析した結果、従来の方法の如く、ウェブ厚t、を
予定の値に仕上げ、圧延機出側での揺動を防止するため
には、ウェブ全域に互って水平ロールによシ軽度の圧下
を加えなければならず、このためには、水平ロールのウ
ェブ接触面は1体に構成されていなければならないとい
う固定観念に拘われず、ウェブ厚tFの寸法精度は第2
工程で十分保証されるので、仕上圧延はフランジの成形
と圧延機出側での揺動を防止すれば良く、ウェブの全域
を水平ロールで軽圧下する必要がないという全く新しい
知見に基づいている。
What makes the method of the present invention possible is that the horizontal roll is movably divided into two on a coaxial line and moved in the web height direction, thereby making it possible to freely select the web inner width WF. As a result of detailed observation and analysis of the finishing rolling situation of H-section steel, we found that in order to finish the web thickness t to the expected value and prevent shaking on the exit side of the rolling mill, as with the conventional method, , a slight reduction must be applied to the entire web by the horizontal rolls, and for this purpose, despite the stereotype that the web contact surface of the horizontal rolls must be constructed in one piece. , the dimensional accuracy of the web thickness tF is the second
This is based on the completely new knowledge that finishing rolling only requires forming the flange and preventing shaking on the exit side of the rolling mill, and there is no need to lightly roll down the entire web with horizontal rolls, as it is fully guaranteed during the process. .

第5図は、本発明のもう1つの適用例であシ、翌ロール
11.12は移動させずに、同軸線上で移動自在に2分
割された水平ロール21,22゜23.24のみを移動
させた場合である。この場合には、翌ロール11.12
は移動しないので、ウェブ高さWFは一定であるが、同
軸線上で移動自在に2分割した水平ロール21,22,
23p24の間隔を調整するのでフランジ厚は、たとえ
ば、fFlからf1□に変る。即ち、同軸線上で移動自
在に2分割した水平ロール21.22,23゜24及び
竪ロール11.12の単一のロール組によシ、ウェブ高
さが等しくフランジ厚の異なる無数のH形鋼の製造が可
能でおる。なお、水平ロール2t、23の組と22.2
4の組の移動量を不同にすることによシ、左右のフラン
ジ厚の異なるH形鋼の生産も可能であることが容易にわ
かる。
FIG. 5 shows another application example of the present invention, in which only the horizontal rolls 21, 22, 23, and 24, which are movably divided into two on the same axis, are moved without moving the next roll 11, 12. This is the case when In this case, next roll 11.12
does not move, so the web height WF is constant, but the horizontal rolls 21, 22, which are movably divided into two on the same axis,
Since the spacing between 23 and 24 is adjusted, the flange thickness changes from fFl to f1□, for example. In other words, a single roll set consisting of horizontal rolls 21, 22, 23° 24 and vertical rolls 11, 12, which are movably divided into two parts on a coaxial line, can be used to create countless H-beams with the same web height and different flange thicknesses. It is possible to manufacture In addition, horizontal rolls 2t, 23 sets and 22.2
It is easy to see that by making the moving distances of the four sets unequal, it is possible to produce H-beams with different left and right flange thicknesses.

上記2例で詳述した如く、本発明によれば、同軸線上で
移動自在に2分割した水平ロール21゜22.23.2
4および竪ロール11.12の単一のロール組の間隔を
調整することによ)無数の断面寸法のH形鋼の圧延が可
能であシ、従来法の如くに、ウェブ内幅の異なるH形鋼
のシリーズ毎に水平ロールを準備する必要は全くなく、
かつ、ロール組替の必要も全くないので、計シ知れない
経済効果が得られる。
As described in detail in the above two examples, according to the present invention, the horizontal roll 21°22.23.2 is movably divided into two parts on the same axis.
By adjusting the spacing between a single set of vertical rolls 11 and 12, it is possible to roll H-beams with an infinite number of cross-sectional dimensions. There is no need to prepare horizontal rolls for each series of section steel.
Moreover, since there is no need for roll reshuffling, immeasurable economic effects can be obtained.

さらに、本発明によれば、たとえば、水平ロールの側壁
が摩耗し、旋削によシ修復した分だけ 。
Furthermore, according to the invention, for example, the side wall of the horizontal roll may be worn and repaired by turning.

(圧延中においても、平均的な滑かな摩耗の場合にはそ
の分だけ)水平ロールを移動するだけで同じフランジ厚
とウェブ高さが得られるため、とれらの寸法は、従来法
の如くロールチャンス毎に若干変動することは全くなく
、寸法精度が格段に向上し、使用に便なる他、圧延歩留
が安定化する。
Since the same flange thickness and web height can be obtained by simply moving the horizontal rolls (even during rolling, in the case of average smooth wear), these dimensions can be changed as required by the roll rolls as in the conventional method. There is no slight variation from chance to chance, dimensional accuracy is greatly improved, it is convenient to use, and the rolling yield is stabilized.

なお、その他の断面寸法に関しては、ウェブ厚は同軸線
上で移動自在に2分割した水平ロールの上下の組21と
23.22と24の間隙の調整、フランジ幅に関しては
、翌ロール11,12の胴長および水平ロール21.2
2.23224の直径を生産計画に合せて選択すること
で対応可能であるが、これらの値は第2工程で精密に決
定され第3工程における変更の余地は少ない。
Regarding other cross-sectional dimensions, the web thickness is adjusted by adjusting the gap between the upper and lower sets of horizontal rolls 21 and 23, 22 and 24, which are movably divided into two parts on the coaxial line, and the flange width is determined by adjusting the gap between the upper and lower sets of horizontal rolls 21 and 23, 22 and 24. Body length and horizontal roll 21.2
This can be achieved by selecting a diameter of 2.23224 according to the production plan, but these values are precisely determined in the second process and there is little room for change in the third process.

本発明に関して以上はウェブとフランジを有する形鋼の
例としてH形鋼について詳説したが、第6図、第7図に
例示する溝形鋼の如くウェブとフランジを有する他の形
鋼にも適用可能である。第6図は同軸線上で移動自在に
2分割した水平ロール21.22,23,24および翌
ロール11゜12は、被圧延材のウェブ高さ方向に水平
ロール21と22.23と24が相近接する如く竪ロー
ル11.12はそれぞれ水平ロール21と23゜22と
24と同じ向きに同じ距離移動した場合である。この場
合には水平ロール21と翌ロール11(および22と1
2.23と11 、24と12)の間隔は一定に保たれ
るのでフランジ厚f、は一定値に保たれる。ただし、翌
ロール11゜12が移動するのでウェブ高さはたとえば
WFlからWF2に変えられる。即ち同軸線上で移動自
在に分割された水平ロール21,22.[3,24およ
び翌ロール11.12の単一のロール組によシそのロー
ル位置を調整することによ′りフランジ厚が同じでウェ
ブ高さの異方る溝形鋼の圧延がロール組替無しに可能で
ある。
The present invention has been described above in detail with respect to H-section steel as an example of a section steel having a web and a flange, but it is also applicable to other section steels having a web and a flange, such as the channel steel illustrated in FIGS. 6 and 7. It is possible. FIG. 6 shows horizontal rolls 21, 22, 23, and 24 that are movably divided into two parts on a coaxial line, and the next roll 11° 12. This is the case when the vertical rolls 11 and 12 are moved in the same direction and the same distance as the horizontal rolls 21 and 23 and 22 and 24, respectively. In this case, the horizontal roll 21 and the next roll 11 (and 22 and 1
2. Since the intervals between 23 and 11 and 24 and 12) are kept constant, the flange thickness f is kept constant. However, since the next rolls 11 and 12 move, the web height can be changed from WFl to WF2, for example. That is, horizontal rolls 21, 22, which are movably divided on a coaxial line. [By adjusting the roll position of a single set of rolls 3, 24 and the following rolls 11 and 12, rolling of channel steel with the same flange thickness and different web heights can be performed using a single set of rolls. It is possible without any change.

第7図は同軸線上で移動自在に2分割された水平ロール
21,22,23,24の中から下ロール23.24の
みをウェブ高さ方向に移動させ上ロール21,22およ
び翌ロール11,12は移動させない場合であるが、こ
の場合には翌ロール′11.12は移動しないのでウェ
ブ高さWFは一定であるが、同軸線上で移動自在に2分
割した水平ロール21.22,23,24の中から下ロ
ール23.24の間隔を調整するのでフランジ厚はたと
えば’F1から’F2に変えられる。即ち同軸線上で移
動自在に二2分割した水平ロール21,22゜23.2
4および竪ロール11.12の単一のロール組を用いそ
のロール間隔を適尚に調整することによシウェプ高さが
等しくフランジ厚の異なる無数の溝形鋼が圧延可能であ
る。なお、水平ロール23.24の移動量を異にするこ
とによシ左右のフランジ厚の異なる溝形鋼の圧延が可能
なことはH形鋼の場合と同様である。
FIG. 7 shows that among the horizontal rolls 21, 22, 23, 24 which are movably divided into two on the same axis, only the lower roll 23, 24 is moved in the web height direction, and the upper rolls 21, 22 and the next roll 11, 12 is the case where it is not moved. In this case, the next roll '11.12 is not moved, so the web height WF is constant, but the horizontal rolls 21, 22, 23, Since the interval between the lower rolls 23 and 24 is adjusted from inside 24, the flange thickness can be changed from 'F1 to 'F2, for example. In other words, the horizontal rolls 21, 22°23.2 are movably divided into two parts on a coaxial line.
By using a single roll set of 4 and vertical rolls 11 and 12 and appropriately adjusting the roll spacing, it is possible to roll an infinite number of channel steels with the same sheave height and different flange thicknesses. Note that, as in the case of H-section steel, it is possible to roll channel steel having different left and right flange thicknesses by varying the amount of movement of the horizontal rolls 23 and 24.

なお、第6図、第7図に例示した如く必要な製品の断面
形状によシ使用するロール形状は異なシ、第7図に例示
した如くに必要な製品の断面形状によシ移動または固定
すべきロールの組合せは異匁るが、これらの場合にも本
発明は適用可能て必る。
Note that the shape of the roll to be used differs depending on the cross-sectional shape of the required product, as illustrated in FIGS. Although the combination of rolls to be used may vary, the present invention is necessarily applicable to these cases as well.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b) 、 (e)、第2図(a)
 p (b) 、 Ca) p (d)、第3図(a)
 l (b)はそれぞれ従来の形銅製造工程図、該工程
における断面寸法変更要領図および仕上ロール説明図、
第、4図、第5図、詑6図、第7図は本発明の詳細な説
明図である。 1.2・・・孔型ロール 3・・・粗鋼片4.5・・・
水平ロール 6,7・・・竪ロール8・・・中間素材 
9,10・・・水平ロール11.12・・・翌ロール 
13・・・仕上製品21.22,23,24・・・水平
ロール第5図 g、) P 第6図 第7図
Figure 1 (a), (b), (e), Figure 2 (a)
p (b), Ca) p (d), Figure 3 (a)
l(b) is a diagram of a conventional shaped copper manufacturing process, a diagram of how to change cross-sectional dimensions in the process, and an explanatory diagram of a finishing roll, respectively;
4, 5, 6 and 7 are detailed explanatory diagrams of the present invention. 1.2... Groove roll 3... Crude steel piece 4.5...
Horizontal rolls 6, 7...Vertical rolls 8...Intermediate material
9,10...Horizontal roll 11.12...Next roll
13... Finished products 21. 22, 23, 24... Horizontal rolls Fig. 5 g,) P Fig. 6 Fig. 7

Claims (1)

【特許請求の範囲】[Claims] 上下水平ロールと左右一対の翌ロールを有するユニバー
サル式圧延機にょシラエラとフランジを有する形鋼を仕
上圧延するに際し、上記上下水平ロールを同軸線上で移
動自在に2分割し、被圧延形鋼の断面寸法に応じて上記
2分割水平ロールおよび廉ロールの間隔を調整して仕上
圧延を行なうことを特徴とする形銅の仕上圧延方法。
When finish rolling a section steel having a shirella and a flange in a universal rolling mill having upper and lower horizontal rolls and a pair of left and right subsequent rolls, the above-mentioned upper and lower horizontal rolls are movably divided into two on a coaxial line, and the cross section of the section steel to be rolled is A method for finish rolling copper shaped copper, characterized in that finish rolling is carried out by adjusting the interval between the two divided horizontal rolls and the low roll according to the dimensions.
JP58182508A 1983-09-30 1983-09-30 Finish rolling method for shaped steel Expired - Lifetime JPH0761485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58182508A JPH0761485B2 (en) 1983-09-30 1983-09-30 Finish rolling method for shaped steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58182508A JPH0761485B2 (en) 1983-09-30 1983-09-30 Finish rolling method for shaped steel

Publications (2)

Publication Number Publication Date
JPS6076202A true JPS6076202A (en) 1985-04-30
JPH0761485B2 JPH0761485B2 (en) 1995-07-05

Family

ID=16119521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58182508A Expired - Lifetime JPH0761485B2 (en) 1983-09-30 1983-09-30 Finish rolling method for shaped steel

Country Status (1)

Country Link
JP (1) JPH0761485B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61262404A (en) * 1985-05-17 1986-11-20 Kawasaki Steel Corp Hot rolling method for wide flange beam
US4958509A (en) * 1988-09-20 1990-09-25 Sumitomo Metal Industries, Ltd. Rolling method for parallel-flange steel shapes
JPH0318401A (en) * 1989-06-13 1991-01-28 Sumitomo Metal Ind Ltd Hot rolling method for flanged shape material
CN112893455A (en) * 2021-01-25 2021-06-04 新疆八一钢铁股份有限公司 Low-cost production method for channel steel and I-steel sharing hole pattern

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS521881U (en) * 1975-06-23 1977-01-07
JPS5340949A (en) * 1977-09-28 1978-04-13 Hitachi Ltd Device for clamping elevator cage rails and buffer
JPS5413384U (en) * 1977-06-29 1979-01-27
JPS571501A (en) * 1980-06-05 1982-01-06 Nippon Kokan Kk <Nkk> Manufacture of h-beam by regulating outside dimension of web
JPS57130702A (en) * 1981-02-02 1982-08-13 Kawasaki Steel Corp Rolling method for bar steel
JPS58135705A (en) * 1982-02-06 1983-08-12 Sumitomo Metal Ind Ltd Rolling method of h-shaped steel
JPS59133902A (en) * 1983-01-20 1984-08-01 Kawasaki Steel Corp Hot rolling method of h-beam
JPS59137101A (en) * 1983-01-25 1984-08-07 Sumitomo Metal Ind Ltd Rolling method of h-beam

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS521881U (en) * 1975-06-23 1977-01-07
JPS5413384U (en) * 1977-06-29 1979-01-27
JPS5340949A (en) * 1977-09-28 1978-04-13 Hitachi Ltd Device for clamping elevator cage rails and buffer
JPS571501A (en) * 1980-06-05 1982-01-06 Nippon Kokan Kk <Nkk> Manufacture of h-beam by regulating outside dimension of web
JPS57130702A (en) * 1981-02-02 1982-08-13 Kawasaki Steel Corp Rolling method for bar steel
JPS58135705A (en) * 1982-02-06 1983-08-12 Sumitomo Metal Ind Ltd Rolling method of h-shaped steel
JPS59133902A (en) * 1983-01-20 1984-08-01 Kawasaki Steel Corp Hot rolling method of h-beam
JPS59137101A (en) * 1983-01-25 1984-08-07 Sumitomo Metal Ind Ltd Rolling method of h-beam

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61262404A (en) * 1985-05-17 1986-11-20 Kawasaki Steel Corp Hot rolling method for wide flange beam
US4958509A (en) * 1988-09-20 1990-09-25 Sumitomo Metal Industries, Ltd. Rolling method for parallel-flange steel shapes
JPH0318401A (en) * 1989-06-13 1991-01-28 Sumitomo Metal Ind Ltd Hot rolling method for flanged shape material
CN112893455A (en) * 2021-01-25 2021-06-04 新疆八一钢铁股份有限公司 Low-cost production method for channel steel and I-steel sharing hole pattern

Also Published As

Publication number Publication date
JPH0761485B2 (en) 1995-07-05

Similar Documents

Publication Publication Date Title
JP2712846B2 (en) Rolling method and rolling device for section steel
JPS6076202A (en) Method for finish rolling steel shape
JPS59133902A (en) Hot rolling method of h-beam
JP7280503B2 (en) Method for manufacturing asymmetric H-beam steel with different left and right flange thicknesses
JP3267198B2 (en) Method and apparatus for manufacturing metal material having circular cross section
JPH0364201B2 (en)
JP3211331B2 (en) Hot rolling method for H-section steel
US1584399A (en) Continuous mill for rolling angle bars
JPH09174118A (en) Tube rolling mill and method for setting roll position
JPH0761483B2 (en) Shaped steel rolling method
JP7280504B2 (en) Method for manufacturing asymmetric H-beam steel with different left and right flange thicknesses
JPS61119302A (en) Hot rough rolling method of billet for h-beam
JPS6293008A (en) Rolling method for h shape with adjustable web height
US758529A (en) Manufacture of flanged metal bars or beams and structural work.
JPS60250801A (en) Rolling method of rough shape billet for h-beam
SU1488043A1 (en) Pass for longitudinal tube rolling
JPS6330101A (en) Production of channel steel with projection
JPS5893501A (en) Rolling method for approximately h-shaped steel ingot
JPH03268803A (en) Rolling method of h-shape steel
JP3302783B2 (en) Rolling method and rolling device for section steel
JPH0824928B2 (en) Universal rolling method for asymmetric shaped steel
JPH02169103A (en) Method for flange width changeable rolling rough rolled stock for h-shaped steel
JP2851512B2 (en) Rolling device row and rolling method for profiled material having flange
JP2004098146A (en) Grooved roll for rough rolling of shaped steel, and method for manufacturing rough shape steel billet
JP2004181470A (en) Method of manufacturing wide flange shape with rounded tip of flange and its hot-rolling apparatus train