JPS6074583A - Manufacture of solar cell - Google Patents

Manufacture of solar cell

Info

Publication number
JPS6074583A
JPS6074583A JP58180527A JP18052783A JPS6074583A JP S6074583 A JPS6074583 A JP S6074583A JP 58180527 A JP58180527 A JP 58180527A JP 18052783 A JP18052783 A JP 18052783A JP S6074583 A JPS6074583 A JP S6074583A
Authority
JP
Japan
Prior art keywords
plating
electroless
electrode
solar cell
executed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58180527A
Other languages
Japanese (ja)
Inventor
Taketoshi Kato
加藤 健敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58180527A priority Critical patent/JPS6074583A/en
Publication of JPS6074583A publication Critical patent/JPS6074583A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To eliminate defective assembly (the peeling of an electrode), to improve efficiency and to prevent malfunction during a life test by executing plating by one or more eight group precious metals before electroless Ni plating, baking the electrode at a fixed temperature and executing electroless Ni plating. CONSTITUTION:The plating of an eight group precious metal such as Pd is executed in 100-2,000Angstrom thickness (too thick plating is too expensive and too thin one is ineffective) before conventional electroless Ni plating through which a fine electrode 2 and a bus electrode 3 are formed, a plating resist is peeled, and the whole is baked in an inactive atmosphere at a temperature of 380- 420 deg.C. Conventional electroless Ni plating is executed in approximately 1mum thickness. That is, another one plating (such as Pd plating) is executed before electroless Ni plating so that a complex compound is not generated through a contact with Si during baking, through which adhesive strength is increased, of phosphorus in electroless Ni plating.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、太陽電池の製造方法に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a method for manufacturing a solar cell.

〔発明の技術的背景〕[Technical background of the invention]

一般に太陽電池は第1図に示すように構成され、直径約
100瓢のSiウェーハ1の表面に幅約100〜300
μm位の微細電極(グリッド)2が形成されており、こ
の微細電極2から更にバス電極3に電気が集められる構
造になっている。
Generally, a solar cell is constructed as shown in FIG.
A microelectrode (grid) 2 of about μm size is formed, and the structure is such that electricity is further collected from the microelectrode 2 to a bus electrode 3.

このような太陽電池を製造するには、従来、第2図に示
すように、厚さ200〜400細のP型Siウェーハ1
の表面に拡散等によって1細以下の薄いN+層4を形成
し、又、裏面にはU合金等によりP+BSF層5を形成
する0次に、上記N+層4上に、St、N4等から力る
厚さ700芙程度の反射防止膜6を形成する。次にこの
反射防止膜6上にメツキレシスト(図示せず)をスクリ
ーン印刷し、とれをマスクに反射防止膜6中の所望の電
極部分を化学腐蝕する。次に反射防止膜+メツキレシス
トをマスクとして表裏同時に無電解Niメッキを行なっ
て゛パス電極3、微細電極2、電極7を形成する。次に
メツキレシストを剥離した後、Niの焼成を行なう。最
後に半田に浸して、表裏に半田層8.9を形成する。
In order to manufacture such solar cells, conventionally, as shown in FIG.
A thin N+ layer 4 of less than 1 thickness is formed on the front surface by diffusion, etc., and a P+BSF layer 5 is formed on the back surface of U alloy, etc.Next, on the N+ layer 4, force is applied from St, N4, etc. An antireflection film 6 having a thickness of approximately 700 mm is formed. Next, a metal resist (not shown) is screen printed on this anti-reflection film 6, and desired electrode portions in the anti-reflection film 6 are chemically etched using the flakes as a mask. Next, electroless Ni plating is performed simultaneously on the front and back surfaces using the anti-reflection film + metal resist as a mask to form the pass electrode 3, the fine electrode 2, and the electrode 7. Next, after peeling off the metal resist, Ni is fired. Finally, it is dipped in solder to form a solder layer 8.9 on the front and back sides.

これでセルとしては完成であるが、ノやネルとして組立
てるには、セルに2wmX50μmのCuIJ pを2
本半田付けして他のセルと直列接続し、その後、ガラス
板に貼り付ける等の方法によって行なう。
The cell is now complete, but in order to assemble it as a flannel, add 2wm x 50μm CuIJp to the cell.
This is done by soldering to connect the cells in series with other cells, and then attaching them to a glass plate.

〔背景技術の問題点〕[Problems with background technology]

上記従来の製造方法では、既述のように無電解N1メッ
キにより電極2,3.7を形成していた。しかし、この
メッキ法によると、製造条件によってNl中に燐が1〜
10eI6含まれる。そして無電解N1メッキを焼成す
ると、325℃以上では燐、 St 、 Ni間の錯化
合物を生じ、もろくなる(また400℃以上になるとN
1がN”P接合を突き抜けVOCが低下する)。この状
態では引張強度テストにおいても比較的低い引張力(例
えばZttrm幅のCu IJ−ドを上記パス電極3に
半田付けし、450の角度に引張って2009r以下)
で電極がStごと剥れ、組立中に剥れたり、又、疲労ラ
イフテストで電極が81ごと剥れるという事故が生じた
。この対策として焼成温度を315℃以下に下げると、
密着強度は300 itに向上するが、サンプル毎にバ
ラツキが多く、引張強度テストにおける剥れモードはS
tとNiの界面からとなυ、量産したり、成るいはライ
フを保障できる状態ではなかった。
In the conventional manufacturing method described above, the electrodes 2, 3.7 were formed by electroless N1 plating as described above. However, according to this plating method, depending on the manufacturing conditions, phosphorus may be present in Nl from 1 to 1.
10eI6 included. When electroless N1 plating is fired, a complex compound between phosphorus, St, and Ni is formed at temperatures above 325°C, making it brittle (and at temperatures above 400°C, N1
1 penetrates the N''P junction and the VOC decreases). In this state, even in a tensile strength test, the tensile force is relatively low (for example, a Cu IJ-de with a width of Zttrm is soldered to the pass electrode 3 and 2009 r or less under tension)
Accidents occurred in which the electrode peeled off along with St, during assembly, and during a fatigue life test, the electrode peeled off along with St. As a countermeasure to this, lowering the firing temperature to 315℃ or less will result in
The adhesion strength improved to 300 it, but there was a lot of variation from sample to sample, and the peeling mode in the tensile strength test was S.
From the interface between T and Ni, it was not possible to mass produce it, or to guarantee its life.

一方、無電解メッキを電気メッキに変えるという手段も
あったが、■量産メッキ装置が高価になる、■太陽電池
はウェーハ全面を使用するが表面の電極クリ、ゾ部分に
メッキが着かない、■加湿サイクルテストで電極腐蝕が
生じ、直列抵抗が上昇する、等の不都合があるため、切
替できなかりた。
On the other hand, there was a way to change electroless plating to electroplating, but the following problems arose: ■ Mass-production plating equipment would be expensive; ■ Solar cells use the entire wafer surface, but the plating would not adhere to the electrode holes and holes on the surface; ■ Switching could not be performed due to problems such as electrode corrosion and increased series resistance during the humidification cycle test.

〔発明の目的〕[Purpose of the invention]

この発明の目的は、組立不良(電極剥れ)が無く、効率
が向上し、且つライフテスト中の不良を防止した太陽電
池の製造方法を提供することである。
An object of the present invention is to provide a method for manufacturing a solar cell that is free from assembly defects (electrode peeling), improves efficiency, and prevents defects during life tests.

〔発明の概要〕[Summary of the invention]

この発明は、従来の無電解Niメッキの前に、8族貴金
属の1つ以上によるメッキを行なって、所定温度で焼成
し、その後、無電解Niメッキを行なうようにした太陽
電池の製造方法である。
The present invention is a method for manufacturing a solar cell, in which plating with one or more Group 8 noble metals is performed before conventional electroless Ni plating, baking is performed at a predetermined temperature, and then electroless Ni plating is performed. be.

〔発明の実施例〕[Embodiments of the invention]

この発明による太陽電池の製造方法は、上記従来の欠点
を除去するために、微細電極2やパス電極3を形成する
従来の無電解Niメッキの前に、8族貴金属例えばPd
のメッキを厚さ100〜2000X(余り厚いと高価過
ぎ、薄いと効果なし)行ない、メツキレシストを剥離し
てから、温度380〜420℃の不活性雰囲気で焼成す
る。次に従来の無電解N1メッキを厚さlllfn前後
行なう。
In order to eliminate the above-mentioned conventional drawbacks, the solar cell manufacturing method according to the present invention uses a group 8 noble metal, such as Pd, before the conventional electroless Ni plating for forming the fine electrodes 2 and the pass electrodes 3.
Plating is performed to a thickness of 100 to 2000X (too thick is too expensive; too thin is ineffective), the plating resist is peeled off, and then fired in an inert atmosphere at a temperature of 380 to 420°C. Next, conventional electroless N1 plating is performed to a thickness of approximately lllfn.

即ち、無電解Niメッキ中の燐が付着強度を上げるため
に行なう焼成中に、Stと接触して錯化5− 金物が生じないように、無電解N1メッキの前にもう1
つのメッキ(例えばPdメッキ)を行なうものであるが
、従来、無電解N1メッキの前に表面置換剤として使用
されているpact2溶液に浸すだけでは数十芙のPd
メッキしかできず、燐とNiを隔てるには不充分であり
、ロット毎の再現性が無かった。又、Pd−Niの連続
メッキは、無電解N1メッキ後、焼成が行なわれるため
、焼成炉内の雰囲気ガス中の微量酸素等のためにNi表
面が酸化される等の変化が生じ、無電解Nlメッキ上へ
の半田の乗りが悪く、直列抵抗が高目に出た。従って、
S1ウエーハに対しPdメッキ→焼成→無電解N1メッ
キという例を見ない工程の採用によって、初めて再現性
のよい密着強度(上記測定条件で50011r )と特
性の両立した太陽電池を得たのである。
That is, in order to prevent the phosphorus in the electroless Ni plating from coming into contact with St during firing to increase the adhesion strength and forming a complexed 5-metallic material, another layer of phosphorus was added before the electroless Ni plating.
However, conventionally, just soaking in PACT2 solution, which is used as a surface replacement agent before electroless N1 plating, removes several dozen Pd platings.
Only plating was possible, which was insufficient to separate phosphorus and Ni, and there was no reproducibility from lot to lot. In addition, in continuous Pd-Ni plating, firing is performed after electroless N1 plating, so changes such as oxidation of the Ni surface occur due to trace amounts of oxygen in the atmospheric gas in the firing furnace. Solder did not adhere well to the Nl plating, resulting in high series resistance. Therefore,
By adopting an unprecedented process of Pd plating → firing → electroless N1 plating on the S1 wafer, we were able to obtain, for the first time, a solar cell with both good reproducible adhesion strength (50011r under the above measurement conditions) and characteristics.

尚、この発明の製造方法は、上記以外は従来例と同様ゆ
え、詳細な説明を省略する。
Incidentally, the manufacturing method of the present invention is the same as the conventional example except for the above, so detailed explanation will be omitted.

〔発明の効果〕〔Effect of the invention〕

との発明によれば、密着強度が増したため、=6− 組立不良(電極剥れ)が無くなった。又、接触抵抗が減
ったため、効率が従来の13.6q6平均値から14.
5%に向上した。更にライフテスト中に生じた従来の不
良(疲労テストでのリードのStごとの剥れや、加温サ
イクルにおける接触抵抗の増加による効率低下)が解消
した。
According to the invention, as the adhesion strength was increased, =6- assembly defects (electrode peeling) were eliminated. Also, because the contact resistance has decreased, the efficiency has increased from the conventional 13.6q6 average value to 14.
This has improved to 5%. Furthermore, the conventional defects that occurred during the life test (lead peeling at each St in the fatigue test and a decrease in efficiency due to an increase in contact resistance during the heating cycle) were eliminated.

〔変形例〕[Modified example]

上記実施例において、無電解Niメッキの前にPdの酸
化物を熱塩酸で除去したところ、一層密着強度が向上し
く700〜800gr)、又、・ぐラツキも少なくなっ
た。
In the above example, when the Pd oxide was removed with hot hydrochloric acid before electroless Ni plating, the adhesion strength was further improved (700 to 800 gr), and the wobble was also reduced.

更に上記実施例では、8族貴金属としてPdを例にあげ
たが、Pd以外にpt + Bh e Ir 、 Os
 。
Furthermore, in the above embodiment, Pd was used as an example of the Group 8 noble metal, but in addition to Pd, pt + Bh e Ir, Os
.

Ru等を使用してもよい。Ru or the like may also be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は太陽電池を示す平面図、第2図は従来及びこの
発明の製造方法を説明するために用いる太陽電池を示す
断面図である。 1・・・Siウェーハ、2・・・微細電極、3・・・パ
ス電極、4・・・N+層、5・・・P”BSF層、6・
・・反射防止膜、7・・・電極、8,9・・・半田層。
FIG. 1 is a plan view showing a solar cell, and FIG. 2 is a sectional view showing a solar cell used to explain the conventional manufacturing method and the manufacturing method of the present invention. DESCRIPTION OF SYMBOLS 1... Si wafer, 2... Fine electrode, 3... Pass electrode, 4... N+ layer, 5... P''BSF layer, 6...
...Anti-reflection film, 7... Electrode, 8, 9... Solder layer.

Claims (3)

【特許請求の範囲】[Claims] (1) Stウェーハの一面にN+層を他面にP+層を
それぞれ形成し、該両層の上にそれぞれ無電解Niメッ
キによシミ極を設ける太陽電池の製造方法において、 上記無電解N1メッキの前に、8族貴金属の1つ以上に
よるメッキを厚さ100X以上行なって、所定温度で焼
成し、その後、上記無電解N1メッキを行なうことを特
徴とする太陽電池の製造方法。
(1) In a method for manufacturing a solar cell, in which an N+ layer is formed on one side of a St wafer and a P+ layer is formed on the other side, and a stain electrode is provided on each of the two layers by electroless Ni plating, the above electroless N1 plating is performed. 1. A method for manufacturing a solar cell, which comprises plating with one or more Group 8 noble metals to a thickness of 100X or more before firing at a predetermined temperature, and then performing the electroless N1 plating.
(2)上記無電解N1メッキの前に上記8族貴金属の酸
化物を熱塩酸で除去する特許請求の範囲第1項記載の太
陽電池の製造方法。
(2) The method for manufacturing a solar cell according to claim 1, wherein the oxide of the Group 8 noble metal is removed with hot hydrochloric acid before the electroless N1 plating.
(3)上記8族貴金属は、Pd 、 Pt 、Bh 、
 rr 。 Os 、 Ru等である特許請求の範囲第1項及び第2
項記載の太陽電池の製造方法。
(3) The Group 8 noble metals include Pd, Pt, Bh,
rr. Claims 1 and 2 which are Os, Ru, etc.
2. Method for manufacturing a solar cell as described in Section 1.
JP58180527A 1983-09-30 1983-09-30 Manufacture of solar cell Pending JPS6074583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58180527A JPS6074583A (en) 1983-09-30 1983-09-30 Manufacture of solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58180527A JPS6074583A (en) 1983-09-30 1983-09-30 Manufacture of solar cell

Publications (1)

Publication Number Publication Date
JPS6074583A true JPS6074583A (en) 1985-04-26

Family

ID=16084819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58180527A Pending JPS6074583A (en) 1983-09-30 1983-09-30 Manufacture of solar cell

Country Status (1)

Country Link
JP (1) JPS6074583A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529639A (en) * 1991-07-25 1993-02-05 Sharp Corp Solar cell
WO2002061850A1 (en) * 2001-01-31 2002-08-08 Shin-Etsu Handotai Co.,Ltd. Method for producing solar cell and solar cell
KR100766943B1 (en) * 2001-08-17 2007-10-16 삼성에스디아이 주식회사 Device for forming electrode of solar cell and method of forming electrode using the device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529639A (en) * 1991-07-25 1993-02-05 Sharp Corp Solar cell
WO2002061850A1 (en) * 2001-01-31 2002-08-08 Shin-Etsu Handotai Co.,Ltd. Method for producing solar cell and solar cell
KR100766943B1 (en) * 2001-08-17 2007-10-16 삼성에스디아이 주식회사 Device for forming electrode of solar cell and method of forming electrode using the device

Similar Documents

Publication Publication Date Title
JP2002217434A (en) Solar cell, interconnector and string for the solar cell
JP5353282B2 (en) Solar cell
JP2009052076A (en) Conductive material for connecting component, and method for manufacturing the same
Antler The application of palladium in electronic connectors
JP5590008B2 (en) Current collecting plate for fuel cell and manufacturing method thereof
JP2004146464A (en) Solar cell, its manufacturing method, inter-connector therefor, string, and module
JPH04329891A (en) Tin plated copper alloy material and its production
JP2007146250A (en) Titanium or titanium alloy material plated with noble metal
JPS54157296A (en) Electrode structure and the manufacturing method
JPS6074583A (en) Manufacture of solar cell
CN110447109A (en) The method of metal electrode is formed simultaneously on the silicon area of opposite polarity
US9534307B2 (en) Silver-plated product and method for producing same
CN102263161B (en) Method for manufacturing electrodes of crystalline silicon solar cell
JPS5933665B2 (en) How to provide a stress-free nickel layer
JP4040008B2 (en) Metal separator for fuel cell and manufacturing method thereof
US5841071A (en) Electrical conductor for a spacecraft solar generator
JPS5929474A (en) Solar battery
JP2006038641A (en) Contact probe
US20240128391A1 (en) Solar battery module and method for manufacturing same
US3992152A (en) Gold plating test procedure
JP5541395B2 (en) Manufacturing method of solar cell
JPS5885574A (en) Solar battery and manufacture thereof
JP2002164106A (en) Electric connector
JPS61199673A (en) Amorphous solar cell
JPH05295559A (en) Galvanic corrosion-resistant surface-treated film