JPS60741A - Exposure by electron beam - Google Patents

Exposure by electron beam

Info

Publication number
JPS60741A
JPS60741A JP58108323A JP10832383A JPS60741A JP S60741 A JPS60741 A JP S60741A JP 58108323 A JP58108323 A JP 58108323A JP 10832383 A JP10832383 A JP 10832383A JP S60741 A JPS60741 A JP S60741A
Authority
JP
Japan
Prior art keywords
sample
electron beam
height
electron
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58108323A
Other languages
Japanese (ja)
Inventor
Mamoru Nakasuji
護 中筋
Kazuo Tsuji
和夫 辻
Izumi Kasahara
笠原 泉
Yoshio Suzuki
鈴木 美雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP58108323A priority Critical patent/JPS60741A/en
Publication of JPS60741A publication Critical patent/JPS60741A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To prevent the lowering of pattern precision by a method wherein an irregularity on a sample is scanned plural times while the intensity of the objective current of an electron optical system for exposure is changed, the height of the sample is measured on the basis of the contribution of the contrasts of reflected electronic signal waveforms and the measured height is added to the drawing conditions. CONSTITUTION:In case a smaple 1 having a protrusion 2 is scanned with an electron beam 3 and a pattern is drawn, a reflected electron detector is provided, the focal length of the electron beam 3 is made to change little by little according to changing the intensity of the objective current of an electron optical system for exposure and the sample 1 is scanned in such a way that the electron beam 3 transverses the protrusion 2. The distribution curve of contrast is obtained from the objective current and the contrast value at the sacnning time, thereby finding the objective current at the time when the contrast becomes maximum. By applying the relation between the objective current at the time of the previously found maximum contrast and the length of the sample 1, the height of the sample 1 is decided and the result is made to feedback to the drawing conditions such as the adjustment of deflecting voltage, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子線露光方法に係9、特に電子光学系に対
する試料の高さの変化によるパターン精度の低下を防止
するだめの方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electron beam exposure method, and particularly to a method for preventing a decrease in pattern accuracy due to a change in the height of a sample relative to an electron optical system. It is.

〔従来技術〕[Prior art]

電子光学系に対して試料の高さが変化すると5電子線を
所定角度偏向させたときの試料上における走査長さが変
化し、また焦点がずれるため、試料上に描画されるパタ
ーンの精度が低下する。このため、従来、露光用の電子
光学系とは別に、光を用いて試料の高さを検出する光学
系を設け、その検出値を電子光学系にフィードバックし
て試料の高さ変化を補償するようにしたものがある。し
かしながら、この光を用いて高さを検出する方法は、電
子光学系の近くに光の光学系に不可欠なガラス等の絶縁
物を設ける必要がちり、これが電子線によって帯電し、
電子線の位置ドリフトあるいは非点収差を生ずる原因と
なると共に、電子光学系のほかに光の光学系を必要とす
るため、装置が複雑、かつ高価になる欠点がある。まだ
、光の光学系を用いずに露光用の電子光学系により試料
上に設けられた2定点の間隔を電子線の偏向角から検出
して試料の高さをめるようにしたものもあるが、これは
高精度の高さ測定が困難でちる欠点を有している。
If the height of the sample changes with respect to the electron optical system, the scanning length on the sample when the electron beam is deflected by a predetermined angle will change, and the focus will shift, which will affect the precision of the pattern drawn on the sample. descend. For this reason, conventionally, an optical system that uses light to detect the height of the sample is provided separately from the electron optical system for exposure, and the detected value is fed back to the electron optical system to compensate for changes in the height of the sample. There is something like this. However, this method of detecting height using light requires the provision of an insulator such as glass, which is essential to the optical system, near the electron optical system, and this is charged by the electron beam.
This causes positional drift or astigmatism of the electron beam, and requires a light optical system in addition to the electron optical system, making the device complex and expensive. There are still some methods in which the height of the sample is determined by detecting the distance between two fixed points on the sample from the deflection angle of the electron beam using an electron optical system for exposure without using a light optical system. However, this method has the disadvantage that it is difficult to measure the height with high precision.

〔発明の目的〕[Purpose of the invention]

本発明は、光の光学系を用いることなく、露光用の電子
光学系を用いて試料の高さをより高精度に測定し、これ
により試料の高さ変化によるパターン精度の低下をより
小さく押えることを目的とするものでちる。
The present invention uses an electron optical system for exposure without using a light optical system to measure the height of a sample with higher precision, thereby minimizing the decrease in pattern accuracy due to changes in the height of the sample. It is something whose purpose is to do something.

〔発明の構成〕[Structure of the invention]

かかる目的を達成するだめの本発明は、露光用電子光学
系の対物レンズ電流を変えて試料上の凹凸を電子線で複
数回走査し、その時得られる反射電子信号波形のコント
ラストの分布から試料の高さを測定し、その測定結果を
偏向電圧調整などの描画条件にフィードバンクして描画
するようにした電子線露光方法にある。
To achieve this object, the present invention scans the irregularities on the sample with an electron beam multiple times by changing the objective lens current of the electron optical system for exposure, and determines the shape of the sample from the contrast distribution of the reflected electron signal waveform obtained at that time. The present invention is an electron beam exposure method in which the height is measured and the measurement results are fed to the drawing conditions such as deflection voltage adjustment for drawing.

〔実施例〕〔Example〕

以下本発明の実施例を第1図ないし第4図により説明す
る。第1図に示すように、試料1の表面に尾根状の突起
(凹溝でもよい)2を設け、この突起2に対応させて図
示しない反射電子検出器をA、Bで示すような反射電子
信号波形が得られる。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 4. As shown in FIG. 1, a ridge-shaped protrusion (or a groove may be used) 2 is provided on the surface of a sample 1, and a backscattered electron detector (not shown) is connected to the protrusion 2 to detect backscattered electrons as shown by A and B. A signal waveform is obtained.

これらの反射電子信号波形A、Hのそれぞれの最大値と
最小値との差をコントラストCa、Cbと呼ぶが、この
コントラストの値は突起2を通過する電子線3がより正
しく焦点合せされているQlど大きな値を示す。
The differences between the maximum and minimum values of these reflected electron signal waveforms A and H are called contrasts Ca and Cb, and this contrast value indicates that the electron beam 3 passing through the protrusion 2 is focused more accurately. Ql shows a large value.

そこで、図示しない露光用電子光学系の対物レンズ電流
を変えて電子線3の焦点距離をわずかずつ変化させ、そ
の都度、突起2を横切るように走査し、その時のコント
ラストの値と前記対物レンズ電流との関係を示すと、第
3図に符号C1で示すようなコントラストの分布曲線が
1与られる。このコントラストの分布曲線C1から突起
2に対して電子線3の焦点が最も正しく合うとき、すな
わちコントラストが最大値を示すときの対物レンズ電流
401が得られる。なお、このコントラストが最大値を
示すときの対物レンズ電流401をめるには、第3図に
符号Sで示すようなスレッシ」−ルドレベルを決め、こ
れとコントラストの分布曲線C1との交点における対物
レンズ電流AI、42をめ、下式から得るのがよい。
Therefore, the focal length of the electron beam 3 is changed little by little by changing the objective lens current of an exposure electron optical system (not shown), and each time the electron beam 3 is scanned across the protrusion 2, and the contrast value at that time and the objective lens current are 3, a contrast distribution curve as shown by C1 in FIG. 3 is given. From this contrast distribution curve C1, an objective lens current 401 is obtained when the electron beam 3 is most accurately focused on the protrusion 2, that is, when the contrast is at its maximum value. In order to calculate the objective lens current 401 when the contrast reaches its maximum value, determine the threshold level as shown by the symbol S in FIG. The lens current AI, 42, is preferably obtained from the following formula.

1晃 試料1゛が対物レンズに近付くに連れて第3舞に符号C
2で示すように第3図において右方へ移動し、前記のよ
うにコントラストが最大になるときの対物レンズ電流p
o1や((ozが試料1の高さに対応する。
1st night As the sample 1 approaches the objective lens, the code C appears in the third movement.
As indicated by 2, the objective lens current p moves to the right in FIG.
o1 and ((oz corresponds to the height of sample 1.

そこで、既知の試料を用いて予じめコントラストが最大
になるときの対物レンズ電流とそのときの試料の高さと
の関係を第4図に示すようにめておけば、前記対物レン
ズ電流4o1やlo2からそのときの試料1の高さを測
定することができる。
Therefore, if the relationship between the objective lens current when the contrast is maximum and the height of the sample at that time is established in advance using a known sample as shown in FIG. 4, the objective lens current 4o1 and The height of sample 1 at that time can be measured from lo2.

この試料1の高さ測定は、該高さの変化に対する対物レ
ンズ電流の変化割合が該電流の制御単位に対して十分大
きく取れるので、高精度に行ない得る。
The height of the sample 1 can be measured with high accuracy because the rate of change in the objective lens current with respect to the change in height can be taken to be sufficiently large relative to the control unit of the current.

この測定結果を偏向電圧調整や対物レンズ電流などの描
画条件にフィードバンクして試料lの高さのずれを補償
して描画する。
This measurement result is fed back to the drawing conditions such as deflection voltage adjustment and objective lens current, thereby compensating for the height deviation of the sample l and drawing is performed.

〔発明の効果〕 ゛ 以上述べたように本発明によれば、光の光学系を用いる
ことなく、露光用の電子光学系を用いて試料の高さをよ
り高精度に測定でき、このため試料の高さ変化によるパ
ターン精度の低下をより小さく押えることができ、装置
を複雑、かつ高価にすることもない。
[Effects of the Invention] As described above, according to the present invention, the height of the sample can be measured with higher precision using an electron optical system for exposure without using a light optical system. The deterioration in pattern accuracy due to height changes can be suppressed to a smaller extent, and the apparatus does not become complicated or expensive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するための試料の表面に設ける凹
凸の一例と電子線との関係を示す部分破断拡大図、第2
図は突起を電子線で走査したときの反射電子信号波形を
示す図、第3図は対物レンズ電流の変化に伴なう反射電
子信号波形のコントラストの分布を示す図、第4図はコ
ントラストが最大のときの対物レンズ電流と試料高さの
関係を示す図である。 、、1・・・試料、2・・・突起、3・電子線、A、B
・・・反射電子信号波形。 Ca、Cb・・・コントラスト、 C1、C2・・・コント−・ラストの分布曲線、S・ス
レツンヨールドレベル。 出願人 東芝機機株式会社
FIG. 1 is a partially cutaway enlarged view showing an example of the relationship between an electron beam and an example of unevenness provided on the surface of a sample for carrying out the present invention, and FIG.
The figure shows the reflected electron signal waveform when the protrusion is scanned with an electron beam, Figure 3 shows the contrast distribution of the reflected electron signal waveform as the objective lens current changes, and Figure 4 shows the contrast distribution of the reflected electron signal waveform as the objective lens current changes. FIG. 6 is a diagram showing the relationship between the objective lens current and the sample height at the maximum. , 1... Sample, 2... Protrusion, 3... Electron beam, A, B
...Reflected electron signal waveform. Ca, Cb...Contrast, C1, C2...Contrast distribution curve, S. Sletsonjord level. Applicant: Toshiba Machinery Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 露光用電子光学系の対物レンズ電流を変えて試料上の凹
凸を電子線で複数回走査し、その時得られる反射電子信
号波形のコントラストの分布から試料の高さを測定し、
その測定結果を偏向電圧調整などの描画条件にフィード
バックして描画することを特徴とする電子線露出方法。
The height of the sample is measured by changing the objective lens current of the electron optical system for exposure and scanning the unevenness on the sample with an electron beam multiple times, from the contrast distribution of the reflected electron signal waveform obtained at that time.
An electron beam exposure method characterized by feeding back the measurement results to writing conditions such as deflection voltage adjustment.
JP58108323A 1983-06-16 1983-06-16 Exposure by electron beam Pending JPS60741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58108323A JPS60741A (en) 1983-06-16 1983-06-16 Exposure by electron beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58108323A JPS60741A (en) 1983-06-16 1983-06-16 Exposure by electron beam

Publications (1)

Publication Number Publication Date
JPS60741A true JPS60741A (en) 1985-01-05

Family

ID=14481789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58108323A Pending JPS60741A (en) 1983-06-16 1983-06-16 Exposure by electron beam

Country Status (1)

Country Link
JP (1) JPS60741A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4733074A (en) * 1985-04-17 1988-03-22 Hitachi, Ltd. Sample surface structure measuring method
US4841242A (en) * 1987-04-10 1989-06-20 Siemens Aktiengesellschaft Method for testing conductor networks
US5036024A (en) * 1987-07-22 1991-07-30 Toray Silicone Company, Inc. Method of treating a hardened semiconductor resin encapsulated layer with ultraviolet radiation
US7109484B2 (en) 2000-07-27 2006-09-19 Ebara Corporation Sheet beam-type inspection apparatus
US7135676B2 (en) 2000-06-27 2006-11-14 Ebara Corporation Inspection system by charged particle beam and method of manufacturing devices using the system
US7241993B2 (en) 2000-06-27 2007-07-10 Ebara Corporation Inspection system by charged particle beam and method of manufacturing devices using the system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56153732A (en) * 1980-04-28 1981-11-27 Jeol Ltd Method for exposure of electronic beam
JPS5787131A (en) * 1980-11-20 1982-05-31 Jeol Ltd Exposing method of electron beam

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56153732A (en) * 1980-04-28 1981-11-27 Jeol Ltd Method for exposure of electronic beam
JPS5787131A (en) * 1980-11-20 1982-05-31 Jeol Ltd Exposing method of electron beam

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4733074A (en) * 1985-04-17 1988-03-22 Hitachi, Ltd. Sample surface structure measuring method
US4841242A (en) * 1987-04-10 1989-06-20 Siemens Aktiengesellschaft Method for testing conductor networks
US5036024A (en) * 1987-07-22 1991-07-30 Toray Silicone Company, Inc. Method of treating a hardened semiconductor resin encapsulated layer with ultraviolet radiation
US7601972B2 (en) 2000-06-27 2009-10-13 Ebara Corporation Inspection system by charged particle beam and method of manufacturing devices using the system
US7135676B2 (en) 2000-06-27 2006-11-14 Ebara Corporation Inspection system by charged particle beam and method of manufacturing devices using the system
US7241993B2 (en) 2000-06-27 2007-07-10 Ebara Corporation Inspection system by charged particle beam and method of manufacturing devices using the system
US7297949B2 (en) 2000-06-27 2007-11-20 Ebara Corporation Inspection system by charged particle beam and method of manufacturing devices using the system
US7411191B2 (en) 2000-06-27 2008-08-12 Ebara Corporation Inspection system by charged particle beam and method of manufacturing devices using the system
US8053726B2 (en) 2000-06-27 2011-11-08 Ebara Corporation Inspection system by charged particle beam and method of manufacturing devices using the system
US8803103B2 (en) 2000-06-27 2014-08-12 Ebara Corporation Inspection system by charged particle beam and method of manufacturing devices using the system
US7417236B2 (en) 2000-07-27 2008-08-26 Ebara Corporation Sheet beam-type testing apparatus
US7109484B2 (en) 2000-07-27 2006-09-19 Ebara Corporation Sheet beam-type inspection apparatus
US7829871B2 (en) 2000-07-27 2010-11-09 Ebara Corporation Sheet beam-type testing apparatus

Similar Documents

Publication Publication Date Title
US4600839A (en) Small-dimension measurement system by scanning electron beam
US5006795A (en) Charged beam radiation apparatus
US7714289B2 (en) Charged particle beam apparatus
JPS60741A (en) Exposure by electron beam
US5182454A (en) Scanning electron microscope
KR0185238B1 (en) Cathode ray tube control apparatus
US5117111A (en) Electron beam measuring apparatus
JPH08273575A (en) Scanning electron microscope
JPH0353439A (en) Electron optical lens barrel
JPS6231931A (en) Electron beam radiation device and test and measurement by said device
JPH0652650B2 (en) Alignment method of charged beam
JPH09293477A (en) Charged beam adjusting method
JP3351671B2 (en) Measurement method of charged particle beam
JPH07245075A (en) Automatic focusing device
JPH11271459A (en) Method for measuring beam
JPH11271499A (en) Measuring method for beam in variable area electron beam plotting device
JP3243784B2 (en) Work table positioning device
JP2520431B2 (en) Minute dimension measurement method using laser light
JPH1050244A (en) Beam detection signal processing circuit
Tollkamp-Schierjott The influence of different SEM parameters on CD measurement results
JPS62133655A (en) Probe diameter measuring device for charged corpuscular beam
JPH0691001B2 (en) Charge beam control method
JPWO2004085959A1 (en) Sample observation apparatus, edge position calculation apparatus, and program
JPH09186062A (en) Position detection by means of charged particle beam
JPH10321173A (en) Beam position correction device