JPS6071947A - Probe for eddy current flaw detection - Google Patents

Probe for eddy current flaw detection

Info

Publication number
JPS6071947A
JPS6071947A JP58181439A JP18143983A JPS6071947A JP S6071947 A JPS6071947 A JP S6071947A JP 58181439 A JP58181439 A JP 58181439A JP 18143983 A JP18143983 A JP 18143983A JP S6071947 A JPS6071947 A JP S6071947A
Authority
JP
Japan
Prior art keywords
probe
flaw detection
flaw
elements
inspected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58181439A
Other languages
Japanese (ja)
Inventor
Masashi Mizuno
正志 水野
Katsuhiro Kojima
小嶋 勝洋
Fumitaka Yoshimura
文孝 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP58181439A priority Critical patent/JPS6071947A/en
Publication of JPS6071947A publication Critical patent/JPS6071947A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/904Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents with two or more sensors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To perform flaw detection over a wide range in a moving direction and to increase S/N ratio by moving plural parallel connected probe elements relatively with a material to be inspected. CONSTITUTION:A probe 6 consists of probe elements 7a-7d which are arrayed in the direction intersecting with the relative moving direction of a material 1 to be inspected and the outputs thereof are connected in parallel. The material 1 is transferred by a transfer device in an arrow direction and when the probe 6 makes flaw detecting operation by turning around the material 1, an excitation signal is inputted from a flaw detection circuit 17 to the elements 7a-7d, from which magnetic fluxes are generated toward the material 1. When the flaw existing in the material 1 arrives at the position facing any among the elements 7a-7d, that probe element detects the fluctuation in the magnetic flux and feeds the flaw detection to the circuit 17. The circuit 17 discriminates the signal and feeds a signal to a marker control circuit 18 if necessary. A mark is then put on the position where the flaw exists by a marker 19.

Description

【発明の詳細な説明】 この発明は種々の金属材料の表面に存在する傷を検出す
る為の探傷用10−プに関するものである。更に詳しく
は被検査材に対し相対移動させてその被検査材を渦流探
傷し、そこに存在する傷を検出するようにしているプロ
ーブに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flaw detection device for detecting flaws existing on the surfaces of various metal materials. More specifically, the present invention relates to a probe that is moved relative to a material to be inspected to perform eddy current flaw detection on the material to be inspected to detect flaws existing there.

従来の渦流探傷用プローブには探傷幅が比較的狭い欠点
がおる。そこで被検査材における広幅な領域を一度に探
傷する方法として、複数の10−プを並設し、各々の1
0−プからの信号を大々個別の探傷回路に入力させて処
理を行なうことが試みられたが、上記探傷回路は極めて
高価な為それを複数台備えると設備費が極めて高くなっ
てしまう欠点があうた。またプローブを広幅に形成する
ことによって広幅な領域を探傷することも試みられたが
、そのようKすると通常の大きさの傷を検知した場合に
おいてもそのときのW、信号のレベルが低くなってしま
い、8N比が低下して傷の検出性能が低くなってしまう
欠点があった。
Conventional eddy current flaw detection probes have the disadvantage that the flaw detection width is relatively narrow. Therefore, as a method for detecting flaws in a wide area of the material to be inspected at once, multiple 10-poles are installed in parallel, and each
Attempts have been made to input the signals from the 0-p into individual flaw detection circuits for processing, but the flaw detection circuits described above are extremely expensive, and having multiple units of them would result in extremely high equipment costs. It struck me. Attempts have also been made to detect flaws in a wide area by making the probe wide, but this method results in low W and signal levels even when normal-sized flaws are detected. However, there was a drawback that the 8N ratio was lowered and the flaw detection performance was lowered.

そこで本発明は、上述の欠点を除くようにしたもので、
被検査材における広幅な範囲を8N比高くしか4安価な
設備費で探傷できるようKした渦流探傷用10−グを提
供しようとするものである。
Therefore, the present invention aims to eliminate the above-mentioned drawbacks.
It is an object of the present invention to provide a 10-g for eddy current flaw detection which is capable of detecting flaws in a wide range of materials to be inspected at a cost higher than that of 8N and at a lower equipment cost.

以下本願の実施例を示す図面について説明する。The drawings showing the embodiments of the present application will be described below.

第1図乃至第7図において、1は被検査材で、丸棒状の
鋼材その他種々の金属材料があシ、また図において右方
(左方でも可)へ向けて移送されるものである。2は探
傷装置を示す。この装置において、3は回動装置、4は
回動枠で、回動装置3によって上記被検査材1の周囲を
回動し得る様になっている。5は枠4に取付けられたシ
リンダで、その進退杆5aKは10−プ6が取付けられ
ておシ、進退杆5&の進退によって10−プ6を被検葺
材IK近づけたシ遠ざけたシできる様になっている。上
記プローブ6において、7 ’ + 7 b−7o、7
dは大々10−プ要素を示し、上記被検査材1の移送方
向に並べられている。即ち、回動枠4の回動によって1
0−プ6が被検査材1の回シを回動する時の被検査材1
と10−プ6との相対移動の方向(被検査材10局面に
沿った螺旋方向)と交差する方向に並べられている。8
はプローブ6における励振信号の入力端(独立端子の形
に構成される場合も、或いは単なるリード線の形で構成
される場合もある)で、前記各プローブ要素7a〜7d
Kおける励振信号の入力点98〜9dが直列に接続しで
ある。10はプローブ6における傷信号の出力端で、前
記入力端8と同様に構成されておシ、前記多数の10−
プ要素7a〜7dにおける傷信号の出力点11B −1
1dが並列接続しである。次に上記プローブ要素7a〜
7dは特に第4図に明示される様に構成されている。尚
各10−プ要素I/′i総て均等の構成である為第4図
においては英文字の添字a −、−dを省略して説明す
る。12゜肋は磁極、14 、15はそれらに大々巻か
れた検出コイルで、相互に差動接続されておシ、それら
のコイルの一端及び他端が前記出力点■となっている。
In FIGS. 1 to 7, reference numeral 1 denotes a material to be inspected, which is a round bar-shaped steel material and other various metal materials, and is transported toward the right (or left) in the drawings. 2 shows a flaw detection device. In this apparatus, 3 is a rotating device, and 4 is a rotating frame, which can be rotated around the object 1 to be inspected by the rotating device 3. Reference numeral 5 denotes a cylinder attached to the frame 4, and its advancing/retracting rod 5aK is attached with a 10-pipe 6, so that the 10-p.6 can be moved closer to or away from the roofing material to be inspected by moving the retractable rod 5& back. It has become. In the above probe 6, 7' + 7 b-7o, 7
d indicates roughly 10-p elements, which are arranged in the transport direction of the material 1 to be inspected. That is, by rotating the rotating frame 4, 1
Inspected material 1 when the 0-pu 6 rotates the rotating shaft of the inspected material 1
and 10-p 6 (the helical direction along the surface of the inspected material 10). 8
is the input end of the excitation signal in the probe 6 (which may be configured in the form of an independent terminal or in the form of a simple lead wire), and is connected to each of the probe elements 7a to 7d.
Input points 98 to 9d of excitation signals at K are connected in series. Reference numeral 10 denotes an output terminal for the flaw signal in the probe 6, which is constructed in the same manner as the input terminal 8.
Output point 11B-1 of flaw signal in pull elements 7a to 7d
1d is connected in parallel. Next, the probe elements 7a~
7d is particularly constructed as shown in FIG. Since all of the 10-p elements I/'i have the same structure, the alphabetical subscripts a- and -d will be omitted from the explanation in FIG. The 12° ribs are magnetic poles, and 14 and 15 are detection coils wound around them, which are differentially connected to each other, and one end and the other end of these coils serve as the output point (2).

論は励振コイpで、その一端及び他端が前記入力点9と
なっている。尚上記検出コイル14 、15の差動接続
は、励振コイル16から発せられる磁束によって各検出
コイ/L’14.15が大々検出する信号が相互に打消
される様周知の如く行なわれている吃のである。次に1
7は周知の探傷回路で、前記10−プ6の入力端8及び
出力端10に大々接続されている。尚プローブ6は被検
査材1の周囲を回動し、(B1 又探傷回路17はその近傍に固定的に設けられるもので
ある為、上記接続は例えば回転トランスの様な回転部分
と固定部分との間で信号の伝達を行ない得る信号伝達手
段を用いて行なわれる。18 、19は大々周知のマー
カー制御回路及びマーカーを示す。
The mechanism is an excited coil p, one end and the other end of which serve as the input point 9. The differential connection of the detection coils 14 and 15 is carried out in a well-known manner so that the signals detected by each detection coil/L'14.15 are largely canceled by the magnetic flux emitted from the excitation coil 16. I stutter. Next 1
Reference numeral 7 designates a well-known flaw detection circuit, which is connected to the input terminal 8 and output terminal 10 of the 10-p. Note that the probe 6 rotates around the inspected material 1 (B1). Also, since the flaw detection circuit 17 is fixedly installed in the vicinity, the above connection is made between a rotating part such as a rotating transformer and a fixed part. This is carried out using a signal transmission means capable of transmitting signals between the two.18 and 19 indicate a well-known marker control circuit and a marker.

次に上記構成のものの動作を説明する。まず被検査材1
は図示外の周知の移送装置によって矢印方向に移送され
ると共に1回動枠4がその回シを回動しプローブ6が被
検査材1の周囲を回動する。
Next, the operation of the above configuration will be explained. First, inspected material 1
is transferred in the direction of the arrow by a well-known transfer device (not shown), and the rotating frame 4 rotates the rotation frame so that the probe 6 rotates around the material 1 to be inspected.

この過程において、探傷回路17からは周知の如く励振
信号が入力端8に向けて出力され各10−プ要素7a〜
7dの励振コイVが作動して被検査材1に向けて磁束が
発せられる。そして各プローブ要素7a〜7dの何れか
と対向する位置に被検査材lに存在する傷が到来すると
、その傷と対向した10−プ要素から発せられる磁束が
影響を受ける。するとその10−プ要素の検出コイA/
14 、 Mlによ如、上紀傷の存在による上記磁束の
変動が検出され、その検出信号が傷信号として出力点U
か(4) ら出力端lOに向けて送られる。その信号は出力端10
から探傷回路17に伝わり、回路17においてはその信
号の判別が行なわれる。そして上記検出された傷が補修
(例えば研削)を要する傷である場合にはマーカー制御
回路18に″信号が送られ、マーカー19が作動して上
記検出された傷の存在する位置において被検葺材IKマ
ークが付される。
In this process, the flaw detection circuit 17 outputs an excitation signal to the input terminal 8 as is well known, and each of the 10-p elements 7a to
The excitation coil V 7d is activated and a magnetic flux is emitted toward the material 1 to be inspected. When a flaw existing in the inspected material 1 arrives at a position facing any of the probe elements 7a to 7d, the magnetic flux emitted from the 10-p element facing the flaw is affected. Then, the detection coil A/ of the 10-p element
14. According to Ml, the fluctuation in the magnetic flux due to the presence of a flaw is detected, and the detection signal is sent to the output point U as a flaw signal.
(4) and is sent toward the output terminal lO. The signal is at output terminal 10
The signal is then transmitted to the flaw detection circuit 17, where the signal is discriminated. If the detected flaw requires repair (for example, grinding), a signal is sent to the marker control circuit 18, and the marker 19 is activated to locate the detected flaw on the roofing material at the location where the detected flaw exists. IK mark will be attached.

次に上記の様に10−プ要素7a〜7dKよシ傷が検出
される場合の様子を第5図乃至第7図を用いて更に説明
する。尚第5図においてWけ前記四つの10−プ要素7
a〜7dKよって探傷が行なわれる幅(被検査材10局
面の一部)を示し、第5図においてはプローブ要素7a
〜7dの回動によって、それらの10−プ要素に対し被
検査材1の周面が矢印X方向に相対移動するものとする
、この状態において被検査材lの表面に存在する傷りが
例えば10−プ要素7bと対向する位置に来たものとす
る。するとそのプローブ要素7bは傷ツの到来を検出し
て第6図に示す如く傷信号加を出力する。一方傷2の到
来しなかった他のブローブ要素7&e7(3@7dは第
6図に示す如く大々僅かなノイズ刀を出力しているのみ
である。各10−プ要素7&〜7dが上記のような信号
を出力すると、それらの出力点11 B −11dは出
力端1oに対して相互に並列接続しである為、出力端1
oからは第7図に示される如き信号が出方される。即ち
、傷信号加はプローブ要素7bから到来した高レベルの
ままで出力され、又ノイズ〃はそのレベルが増大するこ
となく出力される。即ちSN比の良好な信号が探傷回路
17に向けて出力される。
Next, the situation in which scratches are detected in the 10-p elements 7a to 7dK as described above will be further explained with reference to FIGS. 5 to 7. In FIG. 5, the four 10-p elements 7 are
a to 7dK indicates the width (a part of the surface of the inspected material 10) where flaw detection is performed, and in FIG. 5, the probe element 7a
It is assumed that by rotation of ~7d, the circumferential surface of the inspected material 1 moves relative to these 10-p elements in the direction of the arrow X. In this state, the damage existing on the surface of the inspected material 1 is 10- It is assumed that the object has come to a position facing the element 7b. Then, the probe element 7b detects the arrival of a flaw and outputs a flaw signal as shown in FIG. On the other hand, the other probe elements 7&e7 (3@7d) to which the scratch 2 did not occur output only a very small amount of noise as shown in FIG. When such a signal is output, since those output points 11B-11d are connected in parallel with the output terminal 1o, the output terminal 1
A signal as shown in FIG. 7 is output from o. That is, the flaw signal is outputted as it is at the high level coming from the probe element 7b, and the noise is outputted without its level increasing. That is, a signal with a good signal to noise ratio is output to the flaw detection circuit 17.

尚上記実施例においては各10−プ要素の励振コイル1
6が入力端8に対して直列接続しである為、各10−プ
要素7a〜7dの各々の特性に製作上のばらつきがあっ
ても、それらの10−プ要素における各励振コイル16
には総て同位相の励振信号が与えられる。従って、各1
0−プ要素7a〜7dの各々の出力点11 B −11
dから出力された信号は一つの探傷回路17でもって同
一の処理を行なうととができる。尚上記各10−プ要素
7a〜7dの特性が総て同一の場合にはそれらの入方点
は上記入力端8に並列接続してもよい。
In the above embodiment, the excitation coil 1 of each 10-p element is
6 is connected in series to the input end 8, even if there are manufacturing variations in the characteristics of each of the 10-p elements 7a to 7d, each excitation coil 16 in those 10-p elements
are all given excitation signals of the same phase. Therefore, each 1
Output point 11B-11 of each of the 0-p elements 7a to 7d
The signal output from d can be subjected to the same processing by one flaw detection circuit 17. Incidentally, if the characteristics of each of the 10-p elements 7a to 7d are the same, their input points may be connected in parallel to the input terminal 8.

次に第8図は本願の異なる実施例を示すもので、複数の
10−プ要索7 ae 、 7 be 、 7 asを
相互間に間隔をおいて配設した例を示すものである。
Next, FIG. 8 shows a different embodiment of the present application, and shows an example in which a plurality of 10-pipelines 7 ae , 7 be , and 7 as are arranged at intervals.

尚それらの10−プ要素の配設間隔は、検出を必要とす
る程度の大きさの傷が到来した場合にその傷が何れかの
10−プ要素によって検出され得る様に定めるとよい。
The spacing between the 10-p elements is preferably determined so that when a flaw large enough to require detection arrives, the flaw can be detected by any of the 10-p elements.

なお、機能上前図のものと同−又は均等構成と考えられ
る部分には、前回と同一の符号にアルファベットのeを
付して重複する説明を省略した。(また次回以降のもの
においても順次同様の考えでアVファベットのf、g、
hを順に付して重複する説明を省略する。) 次に第9図は本願の更に異なる実施例を示すもので、複
数の10−プ要素7af〜7efを千鳥状に配設した例
を示すものである。尚この第9図においてプローブと被
検査材との相対移動の方向は矢印Xfで示す方向である
It should be noted that parts that are considered to have the same or equivalent structure as those in the previous figure in terms of function are given the same reference numerals as in the previous figure with the letter e, and redundant explanations are omitted. (Also, in the next time and subsequent ones, using the same idea, the alphabet f, g,
h are attached in order and redundant explanation will be omitted. ) Next, FIG. 9 shows a further different embodiment of the present application, and shows an example in which a plurality of 10-p elements 7af to 7ef are arranged in a staggered manner. In this FIG. 9, the direction of relative movement between the probe and the material to be inspected is the direction indicated by arrow Xf.

この構成の場合、複数の10−プ要素の縁部が符(l) 号幻で示す様に上記相対移動の方向Xfに対して重合す
る様に配列するととkよシ、その重合部分においては二
つの10−プ要素によって被検査材の探傷が行なわれる
。その為、各プローブ要素がその縁部においては傷の検
出感度が低下する性質があって本、傷を見落すことなく
検出することが可能となる。
In this configuration, if the edges of the plurality of 10-p elements are arranged so as to overlap with each other in the direction of relative movement Flaw detection of the inspected material is carried out by two 10-p elements. Therefore, each probe element has a property that the detection sensitivity for scratches decreases at the edges thereof, so that it is possible to detect a book without overlooking any scratches.

次に第10図及び第11図は本願の更に異なる実施例を
示すもので、複数の10−プロg、ahを被検査材の周
囲を取如囲むよう大々固定的に設け、それらの10−プ
に対して被検査材1g、lhを夫々の軸線方向(図にお
いて紙面と垂直な方向)K移動させることによって、そ
れらの被検査材の局面全域での傷の検出を行ない得る様
にした例を示すものである。尚ツは通常の単独構成のプ
ローブを示す。
Next, FIG. 10 and FIG. 11 show still another embodiment of the present application, in which a plurality of 10-pro g, ah are fixedly provided in a large scale so as to surround the inspected material. - By moving the inspected materials 1g and lh in their respective axial directions (in the direction perpendicular to the plane of the paper in the figure) K relative to the surface, it was possible to detect flaws over the entire surface area of the inspected materials. This is an example. The figure shows a normal single-configuration probe.

以上のようにこの発明にあっては、 U)被検査材1を探傷する場合、被検査材1に対し相対
移動してその表面を渦流探傷し、傷の有無を10−プ6
で検知して傷のあったときには傷信号(8) を出力できる特長がある。
As described above, in this invention, U) When inspecting the material 1 to be inspected, the surface is subjected to eddy current flaw detection by moving relative to the material 1 to be inspected, and the presence or absence of flaws is detected by 10-p6.
It has the feature that it can output a flaw signal (8) when it detects a flaw.

(ロ)しかも上記10−プ6は上記相対移動の方向と交
差する方向に並設された複数の10−プ要素78〜7d
を有するから、上記探傷の場合、一度の相対移動でその
移動方向に対して広幅な範囲を探傷でき、能率良く探傷
作業を行ない得る効果がある。
(B) Moreover, the 10-p 6 has a plurality of 10-p elements 78 to 7d arranged in parallel in a direction intersecting the direction of relative movement.
Therefore, in the case of the flaw detection described above, a wide range can be detected in the direction of movement by one relative movement, and the flaw detection work can be carried out efficiently.

(ハ)その上上記複数のプローブ要素7a〜7dによっ
て広幅な範囲を探傷できるようにしたものであっても、
それらの10−プ要素の各出力点は並列接続しているか
ら、それらのうちのいずわが1または複数の10−プ要
紫が傷を検出した場合、それらが夫々傷を検出して得た
傷信号は単一の10−プ要素の場合と同等の高レベルで
取シ出すことができる一方、各10−プ要素7a〜7d
がら生ずるノイズ4単−の10−プ要素の場合と同程度
の低いレベルで取郵出すことのできる特長がある。
(c) Furthermore, even if a wide range can be detected by the plurality of probe elements 7a to 7d,
Since the respective output points of these 10-p elements are connected in parallel, if one or more of them detects a flaw, each of them detects a flaw and obtains a result. While the flaw signal can be extracted at a level as high as with a single 10-p element, each 10-p element 7a-7d
It has the advantage of being able to produce noise at a level as low as that of a 4-channel or 10-channel element.

とのことは、広幅な範囲を8N比高く探傷できる効果が
あるその上に、複数の10−プ要素を備えていても、極
めて高価な探傷回路は単一10−プの場合と同じ1台で
良く、設備費用を安価なものにし得る効果もある。
This means that it is effective in detecting flaws over a wide range at a higher rate than 8N.Furthermore, even if it is equipped with multiple 10-pole elements, the extremely expensive flaw detection circuit is the same as in the case of a single 10-pole. This has the effect of reducing equipment costs.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本願の実施例を示すもので、第1図は探傷装置の
側面図、第2図は探傷装置のブロック回路図、第8図は
グローブ要素と探傷回路との接続関係を示す回路図(プ
ローブ要素に関しては第2図と同方向から見た状態を示
した)、第4図は10−プ要素の正面図(被検査材と対
向する面の側から見た状態を示す図)、第5図は複数の
10−プ要素による被検査材の傷の検出状態を説明する
為の平面図、第6図はプローブ要素の出力信号波形図、
第7図はプローブの出力端における出力信号波形図、第
8図はプローブ要素の配列状態の異なる例を示す図(第
8図と同方向から見た図)、第9図はプローブ要素の配
列状態の更に異なる例を示す図(第5図と同方向から見
た状態を示す図)、第10図及び第11図は10−プ要
素の配列状態の更に異なる例を示す図。 1・・・被検査材、6°°°プローブ・7a・7b、7
0 @7d−−・70−7”要素、10−−−出力端、
ua、llb、111.11a、 ・−出力点。 (11)
The drawings show an embodiment of the present application, and FIG. 1 is a side view of the flaw detection device, FIG. 2 is a block circuit diagram of the flaw detection device, and FIG. 8 is a circuit diagram showing the connection relationship between the glove element and the flaw detection circuit ( The probe element is shown as seen from the same direction as in Fig. 2), Fig. 4 is a front view of the 10-probe element (as seen from the side facing the surface to be inspected), FIG. 5 is a plan view for explaining the state of detection of flaws on the inspected material by a plurality of 10-probe elements, and FIG. 6 is an output signal waveform diagram of the probe elements.
Figure 7 is a diagram of the output signal waveform at the output end of the probe, Figure 8 is a diagram showing different examples of the arrangement of probe elements (viewed from the same direction as Figure 8), and Figure 9 is the arrangement of probe elements. FIGS. 10 and 11 are diagrams showing further different examples of the state (viewed from the same direction as FIG. 5), and FIGS. 10 and 11 are diagrams showing still different examples of the arrangement of the 10-p elements. 1... Material to be inspected, 6°°° probe 7a, 7b, 7
0 @7d---・70-7" element, 10---output end,
ua, llb, 111.11a, - Output point. (11)

Claims (1)

【特許請求の範囲】[Claims] 被検査材に対し相対移動して被検査材の表面に存在する
傷を渦流探傷すると共に、探傷して得た傷信号を出力端
から探傷回路に向は出方するようにしている渦流探傷用
プローブにおいて、上記渦流探傷用10−プは、大々被
検査材を個々に渦流探傷すると共和その探傷によル得た
傷信号を各々の出力点から出力するようKした複数の1
0−プ要素を有し、しかもそれらの10−プ要素は上記
相対移動の方向と交差する方向に並設しであると共k、
各々の10−プ要素の出力点は上記出方端に並列接続し
であることを特徴とする渦流探傷用プローブ。
For eddy current flaw detection, the flaws on the surface of the inspected material are detected by moving relative to the inspected material, and the flaw signal obtained from the flaw detection is output from the output end to the flaw detection circuit. In the probe, the above-mentioned eddy current flaw detection device 10 has a plurality of probes configured to perform eddy current flaw detection on the inspected material individually and output flaw signals obtained by the flaw detection from respective output points.
0-p elements, and these 10-p elements are arranged in parallel in a direction intersecting the direction of the relative movement, and
An eddy current flaw detection probe characterized in that an output point of each 10-p element is connected in parallel to the output end.
JP58181439A 1983-09-29 1983-09-29 Probe for eddy current flaw detection Pending JPS6071947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58181439A JPS6071947A (en) 1983-09-29 1983-09-29 Probe for eddy current flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58181439A JPS6071947A (en) 1983-09-29 1983-09-29 Probe for eddy current flaw detection

Publications (1)

Publication Number Publication Date
JPS6071947A true JPS6071947A (en) 1985-04-23

Family

ID=16100786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58181439A Pending JPS6071947A (en) 1983-09-29 1983-09-29 Probe for eddy current flaw detection

Country Status (1)

Country Link
JP (1) JPS6071947A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2681430A1 (en) * 1991-09-12 1993-03-19 Valtubes NON - DESTRUCTIVE CONTROL DEVICE FOR LONG - TERM REVOLUTION METAL PRODUCTS AND METHOD FOR ITS IMPLEMENTATION.
JPH05232087A (en) * 1992-02-21 1993-09-07 Nkk Corp Magnetic damage detecting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2681430A1 (en) * 1991-09-12 1993-03-19 Valtubes NON - DESTRUCTIVE CONTROL DEVICE FOR LONG - TERM REVOLUTION METAL PRODUCTS AND METHOD FOR ITS IMPLEMENTATION.
JPH05232087A (en) * 1992-02-21 1993-09-07 Nkk Corp Magnetic damage detecting device

Similar Documents

Publication Publication Date Title
US5237271A (en) Apparatus and method for non-destructive testing using multi-frequency eddy currents
EP1153289B1 (en) Eddy current testing with compact configuration
US3670239A (en) Method and apparatus for magnetic flaw detection by using magneto-sensitive diodes
US4727321A (en) Method and device for magnetic and ultrasonic testing of ferro-magnetic objects
JP2007263946A (en) Sensor and method for eddy current flaw detection
US3247453A (en) Magnetic flaw detector with exciting and sensing coils axially aligned on opposite sides of the material
US8884614B2 (en) Eddy current array probe
GB2129140A (en) An eddy current probe with defect-noise discrimination
EP0071147B1 (en) Non-destructive testing of ferromagnetic materials
US2746012A (en) Inductive electromagnetic inspection
EP0356496B1 (en) Shifting wire sequence digitizer system
JPS6071947A (en) Probe for eddy current flaw detection
JP7027927B2 (en) Magnetic material inspection equipment
US3940690A (en) Multi-probe flux leakage testing apparatus using skewed probes
US5679898A (en) Process and device for detecting flaws on stretched workpieces, especially tubes and bars
US3967193A (en) Apparatus for electroinductively detecting discontinuities below the surface of a metal object
JPS6128860A (en) Rotary type flaw detector
US4138277A (en) Method and apparatus for producing metal blanks, in particular steel slabs, which at least in a predetermined surface area have substantially no defects
US4835470A (en) Magnetizer having a main electromagnet and leakage flux reducing auxiliary electromagnets for magnetographic inspection
JP3719421B2 (en) Eddy current testing method for long knotted materials
WO2000047987A1 (en) Multi-element probe with multiplexed elements for non-destructive testing
JPH1114600A (en) Eddy current flaw-detecting device
JPS586458A (en) Hot eddy current flaw detecting method of steel material
JPH06347448A (en) Eddy current flaw detection probe
JPH0228551A (en) Eddy current flaw detector and detection coil for same