JPS607133A - Plasma cvd device - Google Patents

Plasma cvd device

Info

Publication number
JPS607133A
JPS607133A JP11375083A JP11375083A JPS607133A JP S607133 A JPS607133 A JP S607133A JP 11375083 A JP11375083 A JP 11375083A JP 11375083 A JP11375083 A JP 11375083A JP S607133 A JPS607133 A JP S607133A
Authority
JP
Japan
Prior art keywords
semiconductor wafer
electrode
reaction vessel
mesh
mesh electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11375083A
Other languages
Japanese (ja)
Inventor
Keiichi Kawate
川手 啓一
Satoshi Yano
智 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11375083A priority Critical patent/JPS607133A/en
Publication of JPS607133A publication Critical patent/JPS607133A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To form a CVD film of a uniform film thickness by a method wherein a mesh electrode is provided so as to cover the surface of a semiconductor wafer. CONSTITUTION:A plurality of planar carbon susceptors 11 are arranged in parallel in a quartz reaction container not illustrated. The mesh electrode 12 is arranged so as to cover the surface of the semiconductor wafer 10 at a distance from the wafer placed in the spot facing of the surface of the susceptor 11. An electrode 12 opposed thereto is connected to a high frequency power source 13. The electrode 12 is formed much smaller in the width (a) of the air gap thereof than the diffusion length of an active reaction species generating by the reduction of reacted gas to plasma due to glow discharge. This manner enables to obtain the CVD film of a uniform film thickness.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置の製造に使用されるプラズマCVD
装置の改良に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to plasma CVD used for manufacturing semiconductor devices.
Concerning improvements to equipment.

〔発明の技術的背景〕[Technical background of the invention]

IC等の半導体装置の製造工程には、半導体ウェハー上
にシリコン酸化膜、シリコン窒化膜等の絶縁膜、あるい
は多結晶シリコン層等を気相成長させる工程が含まれて
いる。これは、一般にケミカル・ベイパー・ディポジシ
ョン(CVD法)と称され、CVD装置を用いて行なわ
れている。このCVD装置としては加熱反応型のCVD
装置の外、プラズマCVD装置も用いられている。
The manufacturing process of semiconductor devices such as ICs includes a process of growing an insulating film such as a silicon oxide film or a silicon nitride film, or a polycrystalline silicon layer on a semiconductor wafer in a vapor phase. This is generally called chemical vapor deposition (CVD method) and is performed using a CVD device. This CVD equipment is a thermal reaction type CVD.
In addition to the device, a plasma CVD device is also used.

第1図(4)は従来のプラズマCVD装fを示す上面図
Tある。同図において、1は石英製の円筒状反応容器で
ある。該反応容器1には反応ガスの導入管2および排出
管3が設けられている。
FIG. 1 (4) is a top view T showing a conventional plasma CVD equipment f. In the figure, 1 is a cylindrical reaction vessel made of quartz. The reaction vessel 1 is provided with an inlet pipe 2 and an outlet pipe 3 for a reaction gas.

また、反応容器1の内部にはカーボン電極板41〜45
が第1図(C)に示すようにして平行に設けられている
。これらのカーボン電極板4、−45は、隣接するカー
デン電極板41と42゜42と43+43と44.44
と45間に高周波電圧が印加されるように、夫々高周波
電源5に接続さtj、ている。そして、カー?ン篭極板
4、〜45の対向面には半導体ウェハーを設置するため
の四部(所N座ぐシ)が形成δれている。
Furthermore, carbon electrode plates 41 to 45 are provided inside the reaction vessel 1.
are provided in parallel as shown in FIG. 1(C). These carbon electrode plates 4, -45 are connected to the adjacent carbon electrode plates 41, 42 degrees, 42, 43+43, and 44.44.
and 45, respectively, are connected to the high frequency power source 5 so that a high frequency voltage is applied between them. And car? On the opposite surfaces of the cage electrode plates 4, to 45, there are formed four parts (numbered at N and 45) for mounting semiconductor wafers.

上記のプラズマCVD装置によシ、半導体ウェハーの表
面に例えばシリコン窒化膜を気相成長する際には、まず
処理すべき半導体ウェノ・−ヲカーがンー極板41〜4
5の座ぐりに1史置する。
When using the plasma CVD apparatus described above, for example, to vapor-phase grow a silicon nitride film on the surface of a semiconductor wafer, first the semiconductor wafer to be processed, the electrode plates 41 to 4, are processed.
Place 1 history in the 5th counter.

第1図(B)はこの状態を示す部分拡大上向図であり、
第1図(C)はiF視図である。なお、10は設置され
た半導体ウェハーで、該半纏体ウェノ・−10は更に図
示しない固定ツメにより固定されている。続いて、例え
ば〜350℃の肌熱下状態を維持しつつ真空引きにより
反応容器1内部全減圧しく例えば2 Torr )、ガ
ス導入管2から反応ガスとしてアンモニア(NH5)お
よびシラン(5iH4) f 4人する。反応ガスの導
入条件は、例えばNl(、、全1200 SCCM 、
S l l(4を1508CCMとする。続いて、隣接
するカーボン′屯憔板間に高周波電圧を印加しく例えば
450kHz、250鮎、デーーティー汐の間欠印加)
、対向゛電極板間でグロー放電を行なう。この放電によ
シ、対向電極板間の反応ガス(NH3,5iHa )は
プラズマ化され、励起された活性な反応種が形成される
。そして、この活性化した反応種(大部分はラノカルで
あシ、一部イオンを含む)間の反応によ!ll窒化シリ
コン(813N4 )が生成し、該Si、N4は半導体
ウェハー10に被着してシリコン窒化膜に成長する。
FIG. 1(B) is a partially enlarged upward view showing this state,
FIG. 1(C) is an iF view. Note that 10 is a semiconductor wafer installed, and the semi-wrapped wafer 10 is further fixed by a fixing claw (not shown). Next, while maintaining a skin-heat condition of, for example, ~350°C, the internal pressure of the reaction vessel 1 is completely reduced by evacuation (e.g., 2 Torr), and ammonia (NH5) and silane (5iH4) are introduced as reaction gases from the gas introduction pipe 2. people The reaction gas introduction conditions are, for example, Nl (,, total 1200 SCCM,
S l l (Set 4 as 1508 CCM. Then, apply a high frequency voltage between adjacent carbon plates. For example, apply intermittent application of 450 kHz, 250 Ayu, and Daty Shio)
, a glow discharge is generated between the opposing electrode plates. Due to this discharge, the reactive gas (NH3,5iHa) between the opposing electrode plates is turned into plasma, and excited active reactive species are formed. And, due to the reaction between these activated reactive species (mostly Lanocal, some containing ions)! 11 Silicon nitride (813N4) is produced, and the Si and N4 are deposited on the semiconductor wafer 10 and grown into a silicon nitride film.

〔背景技術の問題点〕[Problems with background technology]

ところで、 CVD法による絶縁膜はパッシベーション
膜や層間絶縁膜として形成ちれるのが大部分で、またC
VD法による多結晶シリコン層もこれをパターニングし
て配線とするために形成されるのが大部分である。従っ
て、プラズマCVD装置で処理される半導体ウェハー1
0の頂面には即にS h O2膜等の絶縁膜が数層形成
されており、絶縁性が高い。このため、従来のプラズマ
CVD装置による気相成長に際しては、半導体ウェハー
10の設置部分ではグロー放電が抑制されるから、ウェ
ハー10の周辺で放声が開始される。そして、一旦放電
が開始されると、放電領域では自由電子やイオンが生成
するため導電性が増大し、瑠々放電が行い易くなる。こ
の結果、半導体ウェハー10の設置領域では増々放電が
抑制されるから、放電電流はウニ/% −I Qの周辺
部に集中する。従って、グロー放電によるプラズマ発生
領域は、第2図で斜線を付して示すように半導体ウェノ
・−10の周辺に局在することになる。図示のように半
導体ウェノ蔦−10を対向して配置する場合、この現象
は特に顕著5− となる。
By the way, insulating films produced by CVD are mostly formed as passivation films or interlayer insulating films, and are
Most polycrystalline silicon layers are also formed using the VD method in order to pattern them into wiring. Therefore, the semiconductor wafer 1 processed by the plasma CVD apparatus
Several layers of insulating films such as S h O2 films are immediately formed on the top surface of 0, and the insulating properties are high. For this reason, during vapor phase growth using a conventional plasma CVD apparatus, glow discharge is suppressed in the area where the semiconductor wafer 10 is installed, so that glow discharge starts around the wafer 10. Once the discharge is started, free electrons and ions are generated in the discharge region, which increases the conductivity and facilitates the discharge. As a result, discharge is increasingly suppressed in the area where the semiconductor wafer 10 is installed, so that the discharge current is concentrated in the periphery of the area where the semiconductor wafer 10 is installed. Therefore, the plasma generation region due to the glow discharge is localized around the semiconductor Weno-10, as indicated by diagonal lines in FIG. This phenomenon is particularly noticeable when the semiconductor pipes 10 are disposed facing each other as shown in the figure.

而して、従来のプラズマCVD装置におけるシリコン窒
化膜の成長は、半導体ウェハー10の周辺で発生したプ
ラズマ領域からN1(3およびS r H4の活性化し
た反応種が図中矢印で示すように半導体ウェハー10上
に拡散し、反応して生じたS i3N4がデイポジツト
して行なわれるものである。
In the growth of a silicon nitride film in a conventional plasma CVD apparatus, the activated reactive species of N1 (3 and S r H4) are transferred from the plasma region generated around the semiconductor wafer 10 to the semiconductor wafer 10 as shown by arrows in the figure. This is done by depositing Si3N4 which has diffused onto the wafer 10 and has reacted.

ところが、反応容器1内部の圧力が2 Torr程度の
場合、反応種の拡散距離は半導体ウェノ・−10の径に
比べて充分に大きくはないから、 CVD成長膜の膜厚
は反応種の供給が盛んなウェハー100周縁部で厚く、
中央部では薄くなる。こうして、半導体ウェハー10の
表面に形成されるCVD成長膜には膜厚のばらつきが生
じることになり、例えば膜厚1μmのCVD膜を成長さ
せる場合、その膜厚のばらつきは±2020上にも達す
るという問題があった。
However, when the pressure inside the reaction vessel 1 is about 2 Torr, the diffusion distance of the reactive species is not sufficiently large compared to the diameter of the semiconductor Weno-10, so the thickness of the CVD-grown film depends on the supply of the reactive species. Thick at the periphery of the wafer 100,
It becomes thinner in the center. In this way, variations in film thickness occur in the CVD grown film formed on the surface of the semiconductor wafer 10. For example, when growing a CVD film with a thickness of 1 μm, the variation in film thickness reaches ±2020 or more. There was a problem.

上記問題全解消する一つの方法として、反応容器1の内
部を高真空とすることによシ、反応6一 種の拡散距離を大きくすることが考えられる。
One possible way to solve all of the above problems is to increase the diffusion distance of reaction 6 by creating a high vacuum inside the reaction vessel 1.

しかし々がら、この場合には成長するCVD膜の膜質が
変化し、特に膜の応力が大きくなる/ヒめ半導体素子の
特性、あるいは信頼性上好壕しくない影響を与えるとい
った別の問題が発生する。
However, in this case, the quality of the CVD film that is grown changes, and other problems arise, such as the stress on the film becomes particularly large, which adversely affects the characteristics or reliability of the semiconductor device. do.

〔発明の目的〕[Purpose of the invention]

本発明は上記小情に鑑みてなされたもので、半導体ウェ
ハーの表面に均一な膜厚のCVD膜を形成でき、かつ従
来のCVD装置と略1同し・へ長条件で膜質の良好なC
VD膜を形成できるプラズマCVD #c置全全提供る
ものである。
The present invention has been made in view of the above circumstances, and it is possible to form a CVD film with a uniform thickness on the surface of a semiconductor wafer, and to produce a CVD film with good film quality under approximately the same length and length conditions as conventional CVD equipment.
The present invention provides a plasma CVD system capable of forming a VD film.

〔発明の概侠〕[Overview of the invention]

本発明によるプラズマCVD装置は、反応ガス導入管お
よび排出管を具備した石英製の反応容器と、該反応容器
内に半導体ウェノ・−を設置するためにこの反応容器内
に設けられた支持体と、該支持体に設置された半導体ウ
ェノ1−表面から離間し、かつこの半導体ウェノ・−表
面上を覆うように設けられた網目状電極と、該網目状電
極に対向して設けられた放電電極と、該放電電極および
前記網目状電極間に高周波電圧を供給してグロー放電を
起こさせ、前記反応ガス導入管から反応容器内に導入さ
れた反応ガスを前記両′電極間でプラズマ化するための
高周波電源とを具備し、前記網目状電極と前記半導体ウ
ェハーとの間の距離、および前記網目状電極の網目幅全
前記反応ガスのプラズマ化により形成された活性反応種
の拡散距離よりも充分に小さくしたことを特徴とするも
のである。
The plasma CVD apparatus according to the present invention includes a quartz reaction vessel equipped with a reaction gas inlet pipe and an exhaust pipe, and a support provided in the reaction vessel for installing a semiconductor wax in the reaction vessel. , a mesh electrode that is spaced from the surface of the semiconductor weno 1 installed on the support and provided so as to cover the surface of the semiconductor weno, and a discharge electrode that is provided opposite to the mesh electrode. and supplying a high frequency voltage between the discharge electrode and the mesh electrode to cause glow discharge, and converting the reaction gas introduced into the reaction vessel from the reaction gas introduction tube into plasma between the two electrodes. a high frequency power source, the distance between the mesh electrode and the semiconductor wafer, and the mesh width of the mesh electrode are sufficiently larger than the diffusion distance of active reactive species formed by plasmaization of the reaction gas. It is characterized by being made smaller.

本発明によるプラズマCVD装置は、第1図体)([3
)で説明した従来例のように、半導体ウェハーを対向さ
せた状態で配置するように実施することもできる。この
場合、前記放電電極にも同様の網目状電極を用いる。
The plasma CVD apparatus according to the present invention is shown in Fig. 1) ([3
), it is also possible to arrange the semiconductor wafers facing each other, as in the conventional example described in . In this case, a similar mesh electrode is used for the discharge electrode.

上記本発明のプラズマCVD装置によれば、プラズマ化
によ膜形成された反応ガスの活性種が均一に半導体ウェ
ハー上に拡散するから、従来と同じ反応条件で均一な)
膜厚のCVD11gを形成することができる。
According to the above-mentioned plasma CVD apparatus of the present invention, active species of the reaction gas formed into a film by plasmaization are uniformly diffused onto the semiconductor wafer, so that uniform reaction can be achieved under the same reaction conditions as before.
A CVD film 11g having a film thickness can be formed.

〔発明の実施例〕[Embodiments of the invention]

以下、第3図を参照して本発明の一実施例を説明する。 An embodiment of the present invention will be described below with reference to FIG.

第3図は、第1図(A) (B)の従来例に本発明を適
用して改良を加えた、本発明の一実施例になるプラズマ
CVD装置の要部を示す上面図である〇同図において、
11は板状のカーボンサセプタで、複数のカーボンサセ
プタ11が図示しない石英製の反応容器内で第1図(C
)に図示したようにして平行に配設されている。これら
のカーボンサセプタ1ノ衆面には半導体ウェハー10全
対向して配設するための座ぐりが設けられている。そし
て、カーボンサセプタ11に設置された半導体ウェハー
10から離間してその表面上を覆うように、網目状電極
12が配設されている。この対向する網目状電極12.
12は夫々高周波電源13に接続され、両″電極間に高
周波電源が供給されるようになっている。即ち、この実
施例においては網目状電極12.12がグロー放電用の
電極として機能し、カーボンサセプタ11゜9− ノ1は単に半導体ウェハーの支持体として機能するにす
き゛ない。゛また、前百己網目七じ電極12はその空隙
部分(網目)の幅aが前記グロー放電による反応ガスの
プラズマ化で生じた活性反応種の拡散長よりも充分に小
さく形成されている。
FIG. 3 is a top view showing the main parts of a plasma CVD apparatus which is an embodiment of the present invention, which is an improvement of the conventional example shown in FIGS. 1(A) and 1(B) by applying the present invention. In the same figure,
Reference numeral 11 denotes a plate-shaped carbon susceptor, and a plurality of carbon susceptors 11 are placed in a quartz reaction vessel (not shown) in Fig. 1 (C
) are arranged in parallel as shown in the figure. A counterbore is provided on the entire surface of these carbon susceptors 1 for arranging the semiconductor wafers 10 to face each other. A mesh electrode 12 is arranged so as to be spaced apart from the semiconductor wafer 10 placed on the carbon susceptor 11 and cover the surface thereof. These opposing mesh electrodes 12.
12 are connected to a high frequency power source 13, respectively, so that high frequency power is supplied between both electrodes. That is, in this embodiment, the mesh electrodes 12 and 12 function as electrodes for glow discharge. The carbon susceptor 11゜9-no.1 merely functions as a support for the semiconductor wafer. Also, the width a of the gap portion (mesh) of the front 100-mesh electrode 12 is such that the width a of the gap portion (mesh) is large enough to absorb the reactive gas generated by the glow discharge. It is formed to be sufficiently smaller than the diffusion length of the active reactive species generated by plasma formation.

更に、網目状電極12は半導体ウェハー10との距離す
が前記活性反応種の拡散長よりも充分に小いくなるよう
に配設されている。その他の構成は第1図匹)■)の従
来のプラズマCVD装置と同様である。
Further, the mesh electrode 12 is arranged such that the distance from the semiconductor wafer 10 is sufficiently smaller than the diffusion length of the active reactive species. The rest of the structure is the same as the conventional plasma CVD apparatus shown in Fig. 1).

上記実施例のプラズマCVD装置では、反応容器内にC
VD膜形成用の反応ガスを導入し、網目状電極12.1
2間に高周波電圧を印加すると、両%gl 2 、12
間でグロー放電が生じる。この場合、半導体ウェハー1
0の絶縁性は放電に全く影響しないから、半導体ウェハ
ー10の設置領域および非設置領域で一様にグロー放電
が起こる。そして、反応ガスはこのグロー放電によりプ
ラズマ化されて活性反応種を生じ、該活性反応種は網目
状電極12の網目空隙から外方10− に拡散する。そして、網目状電極12と半4体ウェハー
10との距離すが活性反応種の拡散長より充分に小σい
から、これらの拡散した反応種はCVD成長物質となっ
て半畳体ウェハー10の表面に堆積し、CVD膜に成長
する。その際、網目状電&12における網目幅aが前記
活性反応種の拡散長よシも充分に小さいから、これら反
応種は半導体ウェハー10の全面に一様に拡散し、膜厚
の均一なCVD膜が形成される。グロー放心は電極線部
分で発生し、網目部分では起らないから、もし網目幅a
が反応種の拡散長よシ大きい場合には当該網目部分への
反応種の拡散量が不均一となシ、CVD膜の膜厚にばら
つきを生じることになる。
In the plasma CVD apparatus of the above embodiment, carbon is contained in the reaction vessel.
A reactive gas for VD film formation is introduced, and the mesh electrode 12.1
When a high frequency voltage is applied between 2, both %gl 2, 12
A glow discharge occurs between the two. In this case, semiconductor wafer 1
Since the insulation of 0 does not affect the discharge at all, glow discharge occurs uniformly in the area where the semiconductor wafer 10 is installed and the area where it is not installed. The reactive gas is turned into plasma by this glow discharge to generate active reactive species, which diffuse outward from the mesh voids of the mesh electrode 12. Since the distance between the mesh electrode 12 and the half-quad wafer 10 is sufficiently smaller σ than the diffusion length of the active reactive species, these diffused reactive species become CVD-grown substances and spread to the surface of the half-quad wafer 10. and grows into a CVD film. At this time, since the mesh width a in the mesh electrode 12 is sufficiently smaller than the diffusion length of the active reactive species, these reactive species are uniformly diffused over the entire surface of the semiconductor wafer 10, resulting in a uniform CVD film thickness. is formed. Glow eccentricity occurs in the electrode wire part and not in the mesh part, so if the mesh width a
If the diffusion length of the reactive species is larger than the diffusion length of the reactive species, the amount of diffusion of the reactive species to the mesh portion will be non-uniform, resulting in variations in the thickness of the CVD film.

上記実施例のプラズマCVD装置により、v/uえば膜
厚1μのシリコン窒化膜全従来と同じ条件で形成した場
合、同一ウニバー内での膜厚のばらつきは±5俤以内に
抑えることが予測できる。
When using the plasma CVD apparatus of the above example to form a silicon nitride film with a v/u thickness of 1μ under the same conditions as conventional methods, it can be predicted that the variation in film thickness within the same uniform bar can be suppressed to within ±5. .

第1図(5))(B)の従来の装置による場合の膜厚の
ばらつきが±20係以上であったことと比較すれば、極
めて顕著な改善効果を得られることがわかる。
When compared with the film thickness variation of ±20 factors or more when using the conventional apparatus shown in FIG. 1(5) and (B), it can be seen that a very remarkable improvement effect can be obtained.

なお、上記実施例におけるカーボンザセゾタ1ノは電極
の機能を必要とせず、単に半導体ウェハー10全支持す
るためにのみ設けられているものであるから、例えば石
英板等の導電性をもたない支持体で代用してもよい。
In addition, since the carbon support 1 in the above embodiment does not require the function of an electrode and is provided merely to support the entire semiconductor wafer 10, it may be a non-conductive support such as a quartz plate. You can also use it instead.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明のプラズマCVD装置によ
れば、膜質を維持しつつ膜厚の均一なCVD膜を形成で
きる等、顕著な効果が得られるものである。
As detailed above, according to the plasma CVD apparatus of the present invention, remarkable effects such as being able to form a CVD film with a uniform thickness while maintaining film quality can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

おける問題点を示す説明図、第3図は本発明の一芙施例
になるプラズマCVD装置の要部を示す平面図である。 10・・・半導体ウェハー、11・・・カーパーンサセ
プタ、12・・・網目状電極、13・・・高周波電源。 =13− 第1図
FIG. 3 is a plan view showing a main part of a plasma CVD apparatus according to one embodiment of the present invention. DESCRIPTION OF SYMBOLS 10...Semiconductor wafer, 11...Carpan susceptor, 12...Mesh electrode, 13...High frequency power supply. =13- Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1) 反応ガス導入管および排出管を具備した石英製
の反応容器と、該反応容器内に半導体ウェハーを設置す
るためにこの反応容器内に設けられた支持体と、該支持
体に設置された半導体ウェハー表面から離間し、かつこ
の半導体ウェハー表面上を覆うように設けられた網目状
電極と、該網目状電極に対向して設けられた放電電極と
、該放電電極および前記網目状電極間に高周波電圧を供
給してグロー放電を起こさせ、前記反応ガス導入管から
反応容器内に導入された反応ガスを前記両軍極間でプラ
ズマ化するための高周波電源とを具備し、前記網目状電
極と前記半導体ウェハーとの間の距離、および前記網目
状電極の網目幅を前記反応ガスのプラズマ化により形成
された活性反応種の拡散距離よりも充分に小さクシタこ
とを特徴とするプラズマCVD装置。
(1) A reaction vessel made of quartz equipped with a reaction gas inlet pipe and an exhaust pipe, a support provided within the reaction vessel for placing a semiconductor wafer in the reaction vessel, and a support provided within the reaction vessel for placing a semiconductor wafer within the reaction vessel; a mesh electrode provided so as to be spaced apart from and cover the semiconductor wafer surface; a discharge electrode provided opposite to the mesh electrode; and a gap between the discharge electrode and the mesh electrode. and a high frequency power supply for causing a glow discharge by supplying a high frequency voltage to the reactor, and converting the reactant gas introduced into the reaction vessel from the reactant gas introduction tube into plasma between the two poles, A plasma CVD apparatus characterized in that the distance between the electrode and the semiconductor wafer and the mesh width of the mesh electrode are sufficiently smaller than the diffusion distance of the active reactive species formed by turning the reaction gas into plasma. .
(2)前記放電電極も網目状電極であp、この網目状電
極は別の支持体上に設置された半導体ウェハーから離間
し、かつその表面上を覆って設けられていることを特徴
とする特許請求の範囲第(1)項記載のプラズマCVD
装置。
(2) The discharge electrode is also a mesh electrode, and the mesh electrode is spaced apart from a semiconductor wafer placed on another support and is provided to cover the surface of the semiconductor wafer. Plasma CVD according to claim (1)
Device.
JP11375083A 1983-06-24 1983-06-24 Plasma cvd device Pending JPS607133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11375083A JPS607133A (en) 1983-06-24 1983-06-24 Plasma cvd device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11375083A JPS607133A (en) 1983-06-24 1983-06-24 Plasma cvd device

Publications (1)

Publication Number Publication Date
JPS607133A true JPS607133A (en) 1985-01-14

Family

ID=14620170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11375083A Pending JPS607133A (en) 1983-06-24 1983-06-24 Plasma cvd device

Country Status (1)

Country Link
JP (1) JPS607133A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143809A (en) * 1986-12-08 1988-06-16 Mitsui Toatsu Chem Inc Equipment for forming thin film
JPS63143807A (en) * 1986-12-08 1988-06-16 Mitsui Toatsu Chem Inc Film forming equipment
JPS63143808A (en) * 1986-12-08 1988-06-16 Mitsui Toatsu Chem Inc Thin film forming equipment
JPS63227783A (en) * 1987-03-13 1988-09-22 Toyo Tanso Kk Tray for vapor growth and vapor growth method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5745339A (en) * 1980-09-01 1982-03-15 Canon Inc Production of deposited film
JPS5789217A (en) * 1980-11-26 1982-06-03 Seiko Epson Corp Manufacturing device of semiconductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5745339A (en) * 1980-09-01 1982-03-15 Canon Inc Production of deposited film
JPS5789217A (en) * 1980-11-26 1982-06-03 Seiko Epson Corp Manufacturing device of semiconductor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143809A (en) * 1986-12-08 1988-06-16 Mitsui Toatsu Chem Inc Equipment for forming thin film
JPS63143807A (en) * 1986-12-08 1988-06-16 Mitsui Toatsu Chem Inc Film forming equipment
JPS63143808A (en) * 1986-12-08 1988-06-16 Mitsui Toatsu Chem Inc Thin film forming equipment
JPS63227783A (en) * 1987-03-13 1988-09-22 Toyo Tanso Kk Tray for vapor growth and vapor growth method

Similar Documents

Publication Publication Date Title
US20200109484A1 (en) Susceptor and susceptor coating method
JP3265042B2 (en) Film formation method
US7392759B2 (en) Remote plasma apparatus for processing substrate with two types of gases
JP2009004755A (en) Plasma immersion ion implantation in highly uniform chamber seasoning process for toroidal source reactor
KR20030042614A (en) Multi-sectored flat board type showerhead used in cvd apparatus
JPH0211012B2 (en)
JPS63187619A (en) Plasma cvd system
JPS607133A (en) Plasma cvd device
JP3631903B2 (en) Plasma chemical vapor deposition equipment
JP2001313272A (en) Plasma cvd method and apparatus used therefor
JPH04277627A (en) Leaf type plasma chemical vapor growth apparatus
JP3259453B2 (en) Electrode used for plasma CVD apparatus and plasma CVD apparatus
JP3259452B2 (en) Electrode used for plasma CVD apparatus and plasma CVD apparatus
JP2848755B2 (en) Plasma CVD equipment
JPH01253229A (en) Vapor growth device
JPS6039822A (en) Thin film forming device
JPH1088353A (en) Formation of zrn coating using cvd system
JPS5941773B2 (en) Vapor phase growth method and apparatus
JP3261795B2 (en) Plasma processing equipment
JPS607134A (en) Plasma cvd device
JP2000332012A (en) Method of forming silicon nitride film
JP3282326B2 (en) Plasma processing equipment
JPS62235471A (en) Deposited film forming device by plasma cvd method
JP3112796B2 (en) Chemical vapor deposition method
JP2002093792A (en) Apparatus and method for manufacturing semiconductor device