JPS607001B2 - Manufacturing method for high-silicon spring steel with excellent fatigue resistance - Google Patents

Manufacturing method for high-silicon spring steel with excellent fatigue resistance

Info

Publication number
JPS607001B2
JPS607001B2 JP54056049A JP5604979A JPS607001B2 JP S607001 B2 JPS607001 B2 JP S607001B2 JP 54056049 A JP54056049 A JP 54056049A JP 5604979 A JP5604979 A JP 5604979A JP S607001 B2 JPS607001 B2 JP S607001B2
Authority
JP
Japan
Prior art keywords
steel
molten steel
fatigue resistance
deoxidation
spring steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54056049A
Other languages
Japanese (ja)
Other versions
JPS55148713A (en
Inventor
潔 塩飽
宏文 菅原
治朗 小新井
国男 石光
松秀 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP54056049A priority Critical patent/JPS607001B2/en
Publication of JPS55148713A publication Critical patent/JPS55148713A/en
Publication of JPS607001B2 publication Critical patent/JPS607001B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、耐疲労性にすぐれた高シリコンバネ鋼の製造
法に関する。 バネ鋼の主要特性の1つである耐疲労性は、鋼中に存在
する非金属介在物によって悪影響を受けることが知られ
ている。 とりわけ、大型の非金属酸化物の存在は有害である。バ
ネ鋼、特にSUP6等のごとき高シリコン(Si)バネ
鋼では、Si濃度が高いため、溶鋼の段階で大型の複合
酸化物が生成し易く、これが浮上分離されないま)鋼中
に残留し、巨大介在物となって耐疲労性を著しく損なつ
o本発明者等は、高Siバネ鋼の大型介在物による上記
弊害を防止すべく、漆鋼処理技術を含め、脱酸および脱
酸生成物浮上分離の促進について種々検討を重ねた結果
、一定の条件下で敬鍋内の溶鋼を燈梓処理することによ
り、大型介在物量を効果的に低減し得ることを見出し、
本発明を完成するに到つた。 ,以下、本発明方法について詳しく説明する。 本発明は、大型非金属介在物の生成し易い高Siバネ鋼
を対象とし、その一般的組成としてC約0.4〜1.0
%、Si約0.8〜2.2%を含む鋼に適用される。こ
の鋼の熔製は、転炉(LD転炉など)において通常の条
件に従って行なえばよい。本発明によれば、所定の製錬
過程を経て溶製された炉中の溶鋼は、敬鍋に受鋼され、
該取鍋中でSi脱酸処理が施こされる。 本発明での脱酸処理には、通常使用されるカルシウム(
Ca)やアルミニウム(AI)などのごとき強脱酸剤は
用いられず、鋼中の酸素
The present invention relates to a method for producing high-silicon spring steel with excellent fatigue resistance. It is known that fatigue resistance, one of the main properties of spring steel, is adversely affected by non-metallic inclusions present in the steel. In particular, the presence of large non-metal oxides is harmful. Spring steel, especially high-silicon (Si) spring steel such as SUP6, has a high Si concentration, so large complex oxides are likely to form during the molten steel stage, and until they are floated and separated, they remain in the steel and become huge. In order to prevent the above-mentioned adverse effects caused by large inclusions in high-Si spring steel, the present inventors have developed methods for deoxidizing and flotation of deoxidized products, including lacquer steel treatment technology. As a result of various studies on promoting separation, we discovered that the amount of large inclusions can be effectively reduced by subjecting the molten steel in the ladle to the Touzasa treatment under certain conditions.
The present invention has now been completed. , Hereinafter, the method of the present invention will be explained in detail. The present invention targets high-Si spring steel that is prone to the formation of large nonmetallic inclusions, and its general composition is approximately C 0.4 to 1.0.
%, applied to steels containing approximately 0.8-2.2% Si. This steel may be melted in a converter (such as an LD converter) under normal conditions. According to the present invention, molten steel in a furnace that has been smelted through a predetermined smelting process is received in a ladle,
Si deoxidation treatment is performed in the ladle. In the deoxidizing treatment in the present invention, calcium (
Strong deoxidizers such as Ca) and aluminum (AI) are not used, and oxygen in the steel is

〔0〕の脱酸反応は、専らSi
脱酸反応に依存する。これは、カルシア(Ca○)系化
合物、アルミナ(AI203)系化合物、およびチタン
化合物(TINO)などの非延性非金属介在物の生成を
防ぐことにより、耐疲労性を悪くする大型0介在物、特
に有害な球形状(もしくはそれに近い)大型介在物の発
生防止を狙ったものである。上記鍋中での脱酸処理は、
出鋼中に行なうと、溶鋼燈梓効果を伴ない有利である。
このため、本発明では、AI脱酸やCa脱酸は行なわず
、またSi脱酸反応に用いられる脱酸剤も、AI、Ca
およびTi含有量の少ないもの、好ましくはCa約0.
10%以下、N約0.05%以下、Ti約0.04%以
下のものが適用される。かかるSi脱酸剤として、例え
ば低山・低Tiのフェロシリコン(FeSi)合金鉄で
ある「FeSiLAILTi」等が挙げられる。なお、
このSi脱酸には、高炭素フェロマンガン合金鉄「Fe
MmHC」を併用することを妨げない。同合金鉄に含ま
れるMnは脱酸元素として寄与する以外に、生成したM
n酸化物が、前記Si税酸反応で生成したSi酸化物と
複合酸化物を形成し、溶鋼からの浮上分離を容易にする
働きを有するので、鋼中のトータル酸素量の低減を強化
するうえで有効である。取鍋の内張耐火物は塩基性、中
性、酸性のいずれを使用することも可能であるが、特に
塩基性のものが好ましい。 受鋼後、取鋼内の溶鋼に不活性ガスの吹込みが行なわれ
る。 同処理は、大気との接触による溶鋼の再酸化を防ぐ必要
上、アルゴン(Ar)ガスまたは窒素(N2)ガス等の
如き不活性ガス雰囲気、好ましくは〜ガス雰囲気で行な
われる。また、不活性ガス吹込みによる溶鋼燈拝は、前
記Si脱酸の反応生成物の浮上およびスラグへの吸着分
離を促進し、同反応の平衡状態到達を早期に2達成せし
めんとするものである。 従って、蝿梓処理の際における漆鋼表面上のスラグはト
塩基性を有し、Si脱酸反応で生成したSi02等の酸
性酸化物に対する強い吸着能を備えることが必要である
。スラグの塩基度は好ましくは、約2.0以上に調整3
される。上記塩基度調整剤の添加量は「取鍋内転炉スラ
グ組成に応じて適宜調整されるが、通常、Ca○約0.
2〜6k9/トン(溶鋼、以下同じ)、CaF2約0〜
2k9/トン、N203約0〜2k9/トン程度添加さ
れる。添加は、スラグ上に直接散布す3る方法によって
もよいが、縄梓用不活性ガスをキャリャガスとして港鋼
中に吹込む方法が、Si脱酸速度を遠くし、また若干量
存在するカルシア系やアルミナ系の大型介在物(厚さ約
15〃以上)を減少させる等の点で有利である。
4不活性ガスとしては、心ガスが好ましく用
いられる。同ガスによる溶鋼の麓粋処理は、第1図に示
されるように、取鍋1にカバー2を軟直し、取鋼1内の
溶鋼3上面空間部を〜ガス雰囲気にするとともに、該カ
バ−2を通して港鋼3内に適当深さに浸潰したランス4
によりArガスを吹込み、バブリングを生起させること
によって行なうことができる。Arガスの吹込量は、十
分な縄梓効果が得られる量であることが必要であるが、
一例として、流量約600夕/分にて行なうことができ
る。また蝿梓処理時間は、縄梓の強度、溶鋼量にもよる
が、通常、約10〜18分間の吹込みにより好結果が得
られる。また、上記澄梓処理の際、不活性ガスとともに
適当なフラツクスを溶鋼中に吹込み、Si脱酸反応の促
進、若干量存在するカルシァ系やァルミナ系の大型介在
物(厚さ約15仏以上)の減少等とは。 このフラツクスとして、Ca○約50〜90%、CaF
2約5〜40%、山203約0〜30%を含む造連剤を
溶融後粉砕して得られる、所謂プリメルトフラツクスを
用いる。上記脱酸・損梓処理により、Si脱酸反応を平
衡に到達させると、溶鋼中の酸素量約4Q血(トータル
酸素量)以下の低酸素鋼が得られる。 脱酸・蝿杵処理を終えたのちは、常法に従い、造塊、分
塊および圧延等の工程を経て、所定のバネ鋼を製する。 次に実施例を挙げて本発明方法および得られる製品の品
質について具体的に説明する。実施例 1 転炉にてSUP6バネ鋼を溶製し(成分:CO.60%
「 Sil.65%、Mho.90%、PO.015%
、SO.010%)、これに下記成分の脱酸剤「FeS
iL山LTi」(Si:?2〜73%、AI:0.02
〜0.05%、Ca:0.1%以下、Tio.02〜0
.04%)を23k9/トンおよび「FeMmHC」(
Mn75%、C7%、残部鉄)を9k9/トン添加した
のち、塩基性取鍋に受鋼し、第1図に示すごとき態様に
て、アルゴンガス雰囲気下、アルゴンガス吹込みによる
溶鋼蝿梓処理を約18分間施した。 なお、スラグ調整剤として、Ca03k9ノトン、Ca
F21kg/トン、山2031k9/トンを取鍋内溶鋼
上に添加し、その後Arバブリングを行なった。塩基度
は約2.0に調整した。処理後、溶鋼を下往々入にて6
トン鋼塊に造捜し、通常の手順に従い、分魂、圧延工程
を経て、線材(45肌0)を得た。 得られた線村(抗張力:160kg/孫)を「中村式回
転曲げ疲労」試験に付し耐疲労性を測定し、第2図に示
す結果を得た。 図中、Aは本発明方法によるもの、Bは従来法による比
較材である。これより、本発明方法によるバネ鋼の耐疲
労性は、従来材に比し著しくすぐれていることが判る。
実施例 2実施例1と同様に(但し、溌梓用アルゴンガ
スにてプリメルトフラツクスCa○:AI203:Ca
F2=6:2:1)添加、脱酸・蝿梓処理を行なって、
4.5肋中線材を得、耐疲労性を測定した結果、実施例
1と同様の結果が得られた。 なお、上記各実施例における溶鋼鷹梓処理中の溶鋼中ト
ータル酸素量の経時変化は第3図に示すごとくであり、
(図中、0印は実施例1、●印は実施例2の場合)、S
i脱酸後、約15分の櫨梓処理により鋼中酸素量は約3
の蝿こまで低減し、Si脱酸反応はほゞ平衡に達してい
ることが確認された。 以上のように、本発明方法によれば、Si脱酸と縄杵処
理にて、鋼中酸素は十分に低減することができ、またC
a、AI等の脱酸剤を用いないので非延性の介在物、す
なわち球形状に近い介在物量は大幅に減少し、得られる
バネ鋼の耐疲労性が著しく改善される。
The deoxidation reaction of [0] is carried out exclusively by Si
Depends on deoxidation reaction. This prevents the formation of non-ductile nonmetallic inclusions such as calcia (Ca○)-based compounds, alumina (AI203)-based compounds, and titanium compounds (TINO), thereby preventing large 0 inclusions that worsen fatigue resistance. This is especially aimed at preventing the generation of harmful large inclusions that are spherical (or close to spherical). The deoxidation treatment in the above pot is as follows:
If it is carried out during tapping, it is advantageous because it brings about the effect of molten steel.
Therefore, in the present invention, AI deoxidation and Ca deoxidation are not performed, and the deoxidizing agent used in the Si deoxidation reaction is also
and one with a low Ti content, preferably Ca about 0.
10% or less, N approximately 0.05% or less, and Ti approximately 0.04% or less. Examples of such a Si deoxidizing agent include "FeSiLAILTi", which is a low-mountain, low-Ti ferrosilicon (FeSi) alloy iron. In addition,
For this Si deoxidation, high carbon ferromanganese alloy iron “Fe” is used.
MmHC" may be used in combination. In addition to contributing as a deoxidizing element, the Mn contained in the ferroalloy also
The n-oxide forms a composite oxide with the Si oxide produced in the Si-oxygen reaction, and has the function of facilitating flotation separation from the molten steel. is valid. The refractory lining for the ladle may be basic, neutral or acidic, but basic is particularly preferred. After receiving the steel, inert gas is blown into the molten steel in the steel stack. This treatment is carried out in an inert gas atmosphere such as argon (Ar) gas or nitrogen (N2) gas, preferably in a gas atmosphere, in order to prevent re-oxidation of the molten steel due to contact with the atmosphere. In addition, molten steel lighting by inert gas injection promotes the floating of the reaction products of Si deoxidation and adsorption separation into the slag, thereby achieving the equilibrium state of the reaction at an early stage. be. Therefore, it is necessary that the slag on the surface of the lacquered steel during the lacquer treatment has strong basicity and a strong ability to adsorb acidic oxides such as Si02 produced by the Si deoxidation reaction. The basicity of the slag is preferably adjusted to about 2.0 or higher.
be done. The amount of the basicity adjuster added is adjusted as appropriate depending on the composition of the converter slag in the ladle, but is usually about 0% Ca.
2~6k9/ton (molten steel, same below), CaF2 approx. 0~
2k9/ton, N203 is added at about 0 to 2k9/ton. The addition can be done by directly spraying it on the slag, but the method of injecting inert gas into the port steel as a carrier gas slows down the Si deoxidation rate and also removes the presence of some amount of calcia. It is advantageous in terms of reducing large-sized inclusions (thickness of about 15 mm or more) and alumina.
4. As the inert gas, heart gas is preferably used. As shown in FIG. 1, the molten steel treatment with the same gas involves softening the cover 2 on the ladle 1, creating a gas atmosphere in the space above the molten steel 3 in the ladle 1, and The lance 4 is immersed to an appropriate depth into the port steel 3 through the lance 2.
This can be carried out by blowing Ar gas to cause bubbling. It is necessary that the amount of Ar gas injected is such that a sufficient rope azusa effect can be obtained.
As an example, a flow rate of about 600 m/min can be performed. Although the time required for the fly azure treatment depends on the strength of the rope azure and the amount of molten steel, good results are usually obtained by blowing for about 10 to 18 minutes. In addition, during the clearing process, an appropriate flux is injected into the molten steel together with an inert gas to promote the Si deoxidation reaction and remove large calcia-based and alumina-based inclusions (approximately 15 mm or more in thickness). ) decrease, etc. As this flux, approximately 50 to 90% Ca○, CaF
A so-called pre-melt flux is used, which is obtained by melting and pulverizing a connecting agent containing about 5 to 40% of 203 and about 0 to 30% of 203. When the Si deoxidation reaction reaches equilibrium through the deoxidation and deoxidation treatment described above, a low-oxygen steel can be obtained in which the amount of oxygen in the molten steel is approximately 4Q blood (total oxygen amount) or less. After the deoxidation and fly-pull treatments are completed, a predetermined spring steel is manufactured through processes such as ingot-forming, blooming, and rolling according to conventional methods. Next, the method of the present invention and the quality of the products obtained will be specifically explained with reference to Examples. Example 1 SUP6 spring steel was melted in a converter (component: CO.60%
"Sil.65%, Mho.90%, PO.015%
, S.O. 010%), and the deoxidizing agent “FeS” with the following components.
iL Mountain LTi” (Si: ?2-73%, AI: 0.02
~0.05%, Ca: 0.1% or less, Tio. 02~0
.. 04%) to 23k9/ton and "FeMmHC" (
After adding 9k9/ton of 75% Mn, 7% C, balance iron), the steel was placed in a basic ladle and subjected to molten steel treatment by blowing argon gas under an argon gas atmosphere in the manner shown in Figure 1. was applied for about 18 minutes. In addition, as a slag conditioner, Ca03k9noton, Ca
F21kg/ton and mountain 2031k9/ton were added onto the molten steel in the ladle, and then Ar bubbling was performed. Basicity was adjusted to about 2.0. After treatment, pour the molten steel into the bottom 6
A wire rod (45 skin 0) was obtained by digging into a ton steel ingot and subjecting it to a rolling process according to the usual procedure. The obtained Shinmura (tensile strength: 160 kg/min) was subjected to a "Nakamura type rotary bending fatigue" test to measure fatigue resistance, and the results shown in FIG. 2 were obtained. In the figure, A is a material made by the method of the present invention, and B is a comparative material made by the conventional method. From this, it can be seen that the fatigue resistance of the spring steel produced by the method of the present invention is significantly superior to that of conventional materials.
Example 2 Same as Example 1 (However, pre-melt flux Ca○:AI203:Ca
F2=6:2:1) addition, deoxidation and fly azusa treatment,
As a result of obtaining a 4.5 midrib wire rod and measuring its fatigue resistance, the same results as in Example 1 were obtained. Incidentally, the change over time in the total oxygen content in the molten steel during the molten steel Takaazusa treatment in each of the above examples is as shown in Fig. 3.
(In the figure, 0 mark is for Example 1, ● mark is for Example 2), S
i After deoxidation, the amount of oxygen in the steel is reduced to about 3 by the 15-minute process.
It was confirmed that the Si deoxidation reaction had almost reached equilibrium. As described above, according to the method of the present invention, oxygen in steel can be sufficiently reduced by Si deoxidation and rope punch treatment, and C
Since a deoxidizer such as AI is not used, the amount of non-ductile inclusions, that is, inclusions that are close to spherical shapes, is significantly reduced, and the fatigue resistance of the resulting spring steel is significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、不活性ガスのバブリングによる溶鋼蝿梓処理
状況の一例を示す図、第2図は耐疲労性測定結果を示す
グラフ、第3図は不活性ガス吹込み時の鋼中酸素量の経
時変化を示すグラフである。 図面中の主な符号は次のとおりである。 1:取鍋、2:カバー、3:溶鋼、4:ランス。 第1図 第2図 第3図
Figure 1 is a diagram showing an example of molten steel treatment by bubbling inert gas, Figure 2 is a graph showing fatigue resistance measurement results, and Figure 3 is the amount of oxygen in steel when inert gas is injected. It is a graph showing a change over time. The main symbols in the drawings are as follows. 1: Ladle, 2: Cover, 3: Molten steel, 4: Lance. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1 取鍋内でシリコン脱酸剤を添加したのち、取鍋内ス
ラグ塩基性に調整し、かつ、溶鋼中に、アルゴンガスと
ともに、CaO50〜90%、Al_2O_310〜3
0%、CaF_25〜40%を含むプリメルトフラツク
スを吹き込むことにより該溶鋼を撹拌することを特徴と
する耐疲労性のすぐれた高シリコンバネ鋼の製造法。
1 After adding silicon deoxidizer in the ladle, adjust the slag basicity in the ladle, and add 50 to 90% CaO, Al_2O_310 to 3 with argon gas to the molten steel.
A method for producing high-silicon spring steel with excellent fatigue resistance, which comprises stirring the molten steel by blowing pre-melt flux containing 0% and 25 to 40% of CaF.
JP54056049A 1979-05-07 1979-05-07 Manufacturing method for high-silicon spring steel with excellent fatigue resistance Expired JPS607001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54056049A JPS607001B2 (en) 1979-05-07 1979-05-07 Manufacturing method for high-silicon spring steel with excellent fatigue resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54056049A JPS607001B2 (en) 1979-05-07 1979-05-07 Manufacturing method for high-silicon spring steel with excellent fatigue resistance

Publications (2)

Publication Number Publication Date
JPS55148713A JPS55148713A (en) 1980-11-19
JPS607001B2 true JPS607001B2 (en) 1985-02-21

Family

ID=13016220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54056049A Expired JPS607001B2 (en) 1979-05-07 1979-05-07 Manufacturing method for high-silicon spring steel with excellent fatigue resistance

Country Status (1)

Country Link
JP (1) JPS607001B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61234302A (en) * 1985-04-10 1986-10-18 Hino Motors Ltd Wheel alignment gauge attachment

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5899606U (en) * 1981-12-28 1983-07-06 東芝機械株式会社 Measuring device
JPS62227029A (en) * 1986-03-28 1987-10-06 Sumitomo Metal Ind Ltd Production of clean steel
CN103060509B (en) * 2012-03-31 2015-03-18 上海梅山钢铁股份有限公司 High-silicon molten iron smelting method
CN113502372B (en) * 2021-05-26 2022-05-31 山东鲁丽钢铁有限公司 Rapid white slag making material for 120tLF refining furnace and process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61234302A (en) * 1985-04-10 1986-10-18 Hino Motors Ltd Wheel alignment gauge attachment

Also Published As

Publication number Publication date
JPS55148713A (en) 1980-11-19

Similar Documents

Publication Publication Date Title
JPS607001B2 (en) Manufacturing method for high-silicon spring steel with excellent fatigue resistance
JP3510989B2 (en) Refining method of Si alloy iron and stainless steel used for refining stainless steel
KR100887860B1 (en) Method for manufacturing the ferrite stainless steel
JPS609564B2 (en) Inclusion refinement method for high silicon spring steel
SU1044641A1 (en) Method for alloying steel with manganese
JPS5922765B2 (en) Manufacturing method for low-oxygen, low-sulfur steel that controls sulfide formation
KR19990047461A (en) Method for deoxidizing ladle slag of aluminum deoxidized steel
KR100267273B1 (en) The making method of high purity al-si complex deoxidizing steel
RU2140995C1 (en) Method of deoxidation, modification and microalloying of steel with vanadium-containing materials
RU2064509C1 (en) Method of deoxidizing and alloying vanadium-containing steel
RU2096491C1 (en) Steel foundry process
RU2120477C1 (en) Method of deoxidization, modification, and vanadium-alloying of steel
JP3160124B2 (en) Deoxidation method of low silicon aluminum killed steel
SU726179A1 (en) Slag producing mixture for steel processing
SU1585342A1 (en) Slag-forming mixture
JPS6146524B2 (en)
RU2044060C1 (en) Method for making vanadium-containing rail steel
SU1696497A1 (en) Method of deoxidizing and alloying of low-carbon steel
RU1753705C (en) Process for deoxidizing and microalloying of converter and open-hearth steel
RU2055094C1 (en) Method for producing vanadium-bearing rail steel
RU2104311C1 (en) Method of alloying steel by manganese
RU2044063C1 (en) Method for making low-alloyed steel with niobium
US4539042A (en) Preventing an increase of the nitrogen content in molten steel
SU763475A1 (en) Method of producing manganese-containing steel
JP2855333B2 (en) Modification method of molten steel slag