JPS606996Y2 - electronic microscope - Google Patents

electronic microscope

Info

Publication number
JPS606996Y2
JPS606996Y2 JP8903180U JP8903180U JPS606996Y2 JP S606996 Y2 JPS606996 Y2 JP S606996Y2 JP 8903180 U JP8903180 U JP 8903180U JP 8903180 U JP8903180 U JP 8903180U JP S606996 Y2 JPS606996 Y2 JP S606996Y2
Authority
JP
Japan
Prior art keywords
signal
image
lens
correction signal
magnification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8903180U
Other languages
Japanese (ja)
Other versions
JPS5716159U (en
Inventor
善博 新井
Original Assignee
日本電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電子株式会社 filed Critical 日本電子株式会社
Priority to JP8903180U priority Critical patent/JPS606996Y2/en
Publication of JPS5716159U publication Critical patent/JPS5716159U/ja
Application granted granted Critical
Publication of JPS606996Y2 publication Critical patent/JPS606996Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は電子顕微鏡に関腰特に投影レンズ等の歪収差の
影響のない像を得ることのできる電子顕微鏡に関する。
[Detailed Description of the Invention] The present invention relates to an electron microscope, and particularly to an electron microscope that can obtain images free from the effects of distortion aberrations caused by projection lenses, etc.

電子顕微鏡に用いられている電子レンズは径方向収差と
呼ばれる収差と、光軸を中心に像が回転する回転収差と
呼ばれる2種の歪収差がある。
Electron lenses used in electron microscopes have two types of distortion aberrations: radial aberration, and rotational aberration, in which the image rotates around the optical axis.

即ち径方向収差は螢光板上に第1図aにおいて正方形N
で示す如き像が形成されるべき場合に、同図においてA
で示すように糸巻き状の歪んだ像や、逆に同図において
Bで示すように°たる状に歪んだ像を形成する如き収差
である。
That is, the radial aberration is caused by a square N on the phosphor plate in Figure 1a.
In the same figure, when an image as shown in A is to be formed,
This is an aberration that forms a pincushion-shaped distorted image as shown by , or conversely a barrel-shaped distorted image as shown by B in the figure.

又回転収差は第1図すにおいてNで示す如き像が形成さ
れるべき場合に、同図においてCで示すように像上の各
点が光軸から離れるに従って回転した位置に結像されて
しまうような歪を引き起こす収差であり、回転の向きは
反時計まわりのこともある。
Furthermore, rotational aberration is such that when an image as shown by N in Figure 1 is to be formed, each point on the image is formed at a rotated position as it moves away from the optical axis, as shown by C in the same figure. This is an aberration that causes distortion, and the direction of rotation may be counterclockwise.

電子顕微鏡においては試料を透過した電子線を螢光板上
に拡大結像するため対物レンズ、中間レンズ、投影レン
ズからなるレンズ系を備えていることが普通であるが、
前述した歪収差の影響が最も大きく影響するのは投影レ
ンズである。
Electron microscopes are usually equipped with a lens system consisting of an objective lens, an intermediate lens, and a projection lens in order to magnify and image the electron beam that has passed through the sample onto a fluorescent plate.
The projection lens is most affected by the aforementioned distortion aberration.

従って投影レンズの歪収差の影響を可能な限り除くため
従来の電子顕微鏡においては投影レンズと中間レンズの
歪収差が打ち消し合うように考慮がはられれている。
Therefore, in order to eliminate the influence of distortion aberration of the projection lens as much as possible, in conventional electron microscopes, consideration is given to canceling out the distortion aberration of the projection lens and the intermediate lens.

しかしながら投影レンズが像に及ぼす回転収差の大きさ
は中間レンズが像に及ぼす回転収差に比較して格段に大
きいため、第2図において点線イで示すように広い観察
倍率にわたって2%程度の大きさの回転収差が存在する
However, the magnitude of the rotational aberration that the projection lens exerts on the image is much larger than the rotational aberration that the intermediate lens exerts on the image, so the rotational aberration is about 2% over a wide observation magnification, as shown by the dotted line A in Figure 2. There is a rotational aberration of .

この第2図において横軸は観察倍率であり、縦軸は歪取
差量(%)又はレンズの励磁強度(アンペア/ターン)
を表わしている。
In this figure 2, the horizontal axis is the observation magnification, and the vertical axis is the strain compensation amount (%) or the excitation intensity of the lens (ampere/turn).
It represents.

また回転収差量の大きさは光軸から距離Rの点が距離Δ
1回転した場合Δ1/R1径方向収差は光軸からRの点
が径からΔRだけ移動した結像位置に移動したらΔR/
Rであるものとして示されている。
Also, the amount of rotational aberration is determined by the distance Δ from the point at distance R from the optical axis.
For one rotation, Δ1/R1 radial aberration is ΔR/ if the point R from the optical axis moves to an imaging position that is moved by ΔR from the radius.
It is shown as being R.

一方第2図から明らかなように観察倍率に応じて投影レ
ンズの励磁強度は同図において点線Pで示すように変更
され、中間レンズの励磁強度は同図において■で示すよ
うに変更される。
On the other hand, as is clear from FIG. 2, the excitation intensity of the projection lens changes as shown by the dotted line P in the same figure, and the excitation intensity of the intermediate lens changes as shown by ■ in the same figure, depending on the observation magnification.

像倍率が低下するに伴い中間レンズの励磁強度が増大す
るような虚像領域より低倍の領域では中間レンズの相殺
作用が有効に働き径方向収差は小さなものであるが、こ
の領域より高倍の領域ではやはり2%程度の径方向収差
が存在する。
In areas with lower magnification than the virtual image area, where the excitation intensity of the intermediate lens increases as the image magnification decreases, the canceling effect of the intermediate lens works effectively and the radial aberration is small, but in areas with higher magnification than this area. In this case, there still exists a radial aberration of about 2%.

本考案はこのような従来の欠点に鑑みなされたもので、
観察倍率に応じて変化する歪収差を除いた像を得ること
のできる電子顕微鏡を提供しようとするもので、以下図
面を付して本考案の一実施例を詳述する。
The present invention was developed in view of these conventional drawbacks.
The object is to provide an electron microscope that can obtain images free of distortion aberrations that vary depending on the observation magnification, and one embodiment of the present invention will be described in detail below with reference to the drawings.

第3図は本考案の一実施例装置の概略図であり、図中1
は電子銃であり、該電子銃1よりの電子線2は収束レン
ズ3によって収束されて、試料4上に照射される。
FIG. 3 is a schematic diagram of an embodiment of the device of the present invention.
is an electron gun, and an electron beam 2 from the electron gun 1 is converged by a converging lens 3 and irradiated onto a sample 4.

試料4を透過した電子線は対物レンズ5、中間レンズ6
、投影レンズ7からなるレンズ系によって螢光板8上に
拡大結像される。
The electron beam transmitted through the sample 4 is passed through the objective lens 5 and the intermediate lens 6.
, a projection lens 7 forms an enlarged image on a fluorescent plate 8.

9は倍率制御回路であり、該倍率制御回路9は例えは2
0段階に分かれた倍率のうち操作者の選択した倍率に応
じた信号を発生する回路であり、該回路9よりの信号に
よりレンズ電源10は前記中間レンズ6、投影レンズ7
に第2図に示した如き選択された倍率に応じた励磁電流
を供給する。
9 is a magnification control circuit, and the magnification control circuit 9 is, for example, 2.
This is a circuit that generates a signal according to the magnification selected by the operator from among the magnifications divided into 0 stages, and the lens power source 10 is activated by the signal from the circuit 9 to control the intermediate lens 6 and the projection lens 7.
An excitation current corresponding to the selected magnification as shown in FIG. 2 is supplied to the excitation current.

11は螢光板8上に形成された像を撮像するための撮像
管であり、該撮像管11よりの映像信号は受像管12の
グリッドGに供給されている。
Reference numeral 11 denotes an image pickup tube for capturing an image formed on the fluorescent plate 8, and a video signal from the image pickup tube 11 is supplied to a grid G of a picture tube 12.

該撮像管11と受像管12は走査回路13より供給され
る水平、垂直走査信号により同期走査される。
The image pickup tube 11 and the picture tube 12 are synchronously scanned by horizontal and vertical scanning signals supplied from a scanning circuit 13.

H,Vは撮像管11の水平、垂直コイルであり、H’、
V’は受像管12の水平、垂直コイルである。
H and V are horizontal and vertical coils of the image pickup tube 11, H',
V' are the horizontal and vertical coils of the picture tube 12.

14は補正信号発生装置であり、該補正信号発生手段は
デジタルメモリーと該メモリーよりの信号をアナログ信
号に変換するためのD/A変換器等を具備し、走査回路
13より供給される走査信号により、各走査点に対応す
るメモリーの番地に記載されていた補正信号が読み出さ
れ、該補正信号は各々第1、第2の加算回路15.16
において走査回路13よりの水平、垂直走査信号と加算
される。
Reference numeral 14 denotes a correction signal generation device, and the correction signal generation means includes a digital memory and a D/A converter for converting the signal from the memory into an analog signal, and receives the scanning signal supplied from the scanning circuit 13. As a result, the correction signal written in the memory address corresponding to each scanning point is read out, and the correction signal is sent to the first and second adder circuits 15 and 16, respectively.
It is added to the horizontal and vertical scanning signals from the scanning circuit 13.

補正信号発生回路14のメモリーに格納される補正信号
は種々その値を変動させつつ陰極線管12の表示像を観
察し、その像の歪が最も小さくなるような値に選ばれて
いる。
The correction signal stored in the memory of the correction signal generation circuit 14 is selected by observing the image displayed on the cathode ray tube 12 while changing its value to a value that minimizes the distortion of the image.

このような補正信号は歪みが第2図に示すように低倍に
おいては中高倍の場合と大きさを異にするため、1種の
中高借用と数種の低倍用が用意されている。
Since the distortion of such a correction signal is different at low magnifications from that at medium and high magnifications as shown in FIG. 2, one type of medium and high magnification borrowing and several types of low magnifications are prepared.

倍率制御回路9よりの観察倍率を表わす信号が補正信号
発生回路14に供給されており、該信号により複数種の
補正信号のうち倍率に応じた補正信号が該回路14より
読み出される。
A signal representing the observation magnification from the magnification control circuit 9 is supplied to the correction signal generation circuit 14, and based on the signal, a correction signal corresponding to the magnification among the plurality of types of correction signals is read out from the circuit 14.

上述した如き構成において、操作者が観察倍率を選べば
観察倍率に応じた試料像が螢光板8上に形成される。
In the above-described configuration, when an operator selects an observation magnification, a sample image corresponding to the observation magnification is formed on the fluorescent plate 8.

該螢光板8上の像は撮像管11によって撮像され、該撮
像された像は陰極線管12に表示されるが、陰極線管1
2の水平、垂直偏向コイルH’、 V’に供給される偏
向信号は走査回路13よりの水平、垂直走査信号に補正
回路14よりの観察倍率に応じた補正信号を重畳した信
号であるため、撮像管11によって撮像された像の各部
は像の歪を補正するような陰極線管12上の位置に表示
され、常に歪のない像を得ることができる。
The image on the fluorescent plate 8 is captured by an image pickup tube 11, and the captured image is displayed on a cathode ray tube 12.
The deflection signals supplied to the horizontal and vertical deflection coils H' and V' of No. 2 are signals obtained by superimposing a correction signal according to the observation magnification from the correction circuit 14 on the horizontal and vertical scanning signals from the scanning circuit 13. Each part of the image captured by the image pickup tube 11 is displayed at a position on the cathode ray tube 12 that corrects image distortion, so that a distortion-free image can always be obtained.

尚、上述した実施例においては補正信号を陰極線管12
の偏向信号に重畳するようにしたが、撮像管11の偏向
信号に重畳するようにしても良い。
In the above embodiment, the correction signal is sent to the cathode ray tube 12.
In this embodiment, the deflection signal of the image pickup tube 11 may be superimposed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は歪収差によって歪んだ像を説明するための図、
第2図は観察倍率と歪収差の大きさを説明するための図
、第3図は本考案の一実施例を示すための図である。 1:電子銃、2:電子線、3:収束レンズ、4:試料、
5:対物レンズ、6:中間レンズ、7:投影レンズ、8
:螢光板、9:倍率制御回路、10:レンズ電源、11
:撮像管、12:受像管、13:走査回路、14:補正
信号発生回路、15.16:加算回路。
Figure 1 is a diagram to explain an image distorted by distortion aberration.
FIG. 2 is a diagram for explaining observation magnification and the magnitude of distortion aberration, and FIG. 3 is a diagram for showing an embodiment of the present invention. 1: Electron gun, 2: Electron beam, 3: Converging lens, 4: Sample,
5: Objective lens, 6: Intermediate lens, 7: Projection lens, 8
: Fluorescent plate, 9: Magnification control circuit, 10: Lens power supply, 11
: image pickup tube, 12: picture tube, 13: scanning circuit, 14: correction signal generation circuit, 15.16: addition circuit.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 電子銃と、該電子銃よりの電子線を収束して試料に照射
するための収速レンズと、試料を透過した電子線を拡大
結像するための対物、中間、投影レンズからなるレンズ
系と、観察倍率に応じた信号を発生する倍率制御回路と
、該倍率制御回路よりの信号に基づいて前記レンズ系に
励磁電流を供給するための励磁電源と、前記結像された
像を撮像するための撮像管と、該撮像管よりの映像信号
が供給される受像管と、前記レンズ系の歪収差を補正す
るため前記倍率制御回路よりの信号に応じて変化する補
正信号を発生する補正信号発生手段と、該補正信号発生
手段よりの補正信号を前記受像管又は撮像管の偏向信号
に重畳して供給するための手段とよりなる電子顕微鏡。
A lens system consisting of an electron gun, a collection lens for converging the electron beam from the electron gun and irradiating it onto the sample, and an objective, intermediate, and projection lens for enlarging and imaging the electron beam transmitted through the sample. , a magnification control circuit that generates a signal according to the observation magnification, an excitation power supply for supplying an excitation current to the lens system based on the signal from the magnification control circuit, and a system for capturing the formed image. an image pickup tube, a picture tube to which a video signal from the image pickup tube is supplied, and a correction signal generator that generates a correction signal that changes according to a signal from the magnification control circuit to correct distortion of the lens system. and means for supplying a correction signal from the correction signal generating means superimposed on a deflection signal of the picture tube or image pickup tube.
JP8903180U 1980-06-25 1980-06-25 electronic microscope Expired JPS606996Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8903180U JPS606996Y2 (en) 1980-06-25 1980-06-25 electronic microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8903180U JPS606996Y2 (en) 1980-06-25 1980-06-25 electronic microscope

Publications (2)

Publication Number Publication Date
JPS5716159U JPS5716159U (en) 1982-01-27
JPS606996Y2 true JPS606996Y2 (en) 1985-03-07

Family

ID=29451082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8903180U Expired JPS606996Y2 (en) 1980-06-25 1980-06-25 electronic microscope

Country Status (1)

Country Link
JP (1) JPS606996Y2 (en)

Also Published As

Publication number Publication date
JPS5716159U (en) 1982-01-27

Similar Documents

Publication Publication Date Title
JPH02197050A (en) Scan permeation type phase difference electron microscope
JPH0313700B2 (en)
JPS606996Y2 (en) electronic microscope
KR100377026B1 (en) Focused ion beam apparatus, focused ion beam observation method and focused ion beam processing method
US5258617A (en) Method and apparatus for correcting axial coma in electron microscopy
JP3118559B2 (en) Electron microscope apparatus and sample image reproducing method using electron microscope
JP3268445B2 (en) Electron microscope equipment
JP2001084938A (en) Transmission electron microscope and method for observing image thereof
JPH09260238A (en) Charged particle beam equipment
US8253101B2 (en) Method and system for acquisition of confocal STEM images
CN111757093A (en) Method, apparatus and computer program product for determining image recording aberrations
JPH0479101B2 (en)
JPS63150842A (en) Scanning electron microscope
US6563115B1 (en) High-density recording scanning microscope
JP3112541B2 (en) Astigmatism correction method for electron beam device
JPH0234750Y2 (en)
JPS6174249A (en) Device for focusing electron microscope
JPH05325860A (en) Method for photographing image in scanning electron microscope
JPS63114035A (en) Beam centering
JPH0139394Y2 (en)
JPS589431B2 (en) Character signal generation method
JPH06302294A (en) Scanning type charged particle beam device
JPS6134840A (en) Astigmatism correction in sample scanning type sample image display device by particle rays
JPS5945173B2 (en) scanning electron microscope
JPS62176127A (en) Electron beam lithography equipment