JPS6069278A - Tilting angle control device for linear commanding type pump - Google Patents

Tilting angle control device for linear commanding type pump

Info

Publication number
JPS6069278A
JPS6069278A JP58178456A JP17845683A JPS6069278A JP S6069278 A JPS6069278 A JP S6069278A JP 58178456 A JP58178456 A JP 58178456A JP 17845683 A JP17845683 A JP 17845683A JP S6069278 A JPS6069278 A JP S6069278A
Authority
JP
Japan
Prior art keywords
servo
sleeve
spool
pressure chamber
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58178456A
Other languages
Japanese (ja)
Inventor
Hiroshi Morita
博 森田
Naoharu Nakagaki
中垣 尚治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP58178456A priority Critical patent/JPS6069278A/en
Publication of JPS6069278A publication Critical patent/JPS6069278A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Servomotors (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To reduce the size and weight of the device as well as the cost thereof by a method wherein a servovalve is composed of a spool formed with double- thread grooves, a sleeve into which the spool is inserted, and the linear reciprocating motion driving device for the sleeve. CONSTITUTION:The servovalve 26, which controls the switching of a servocylinder highly accurately by recieving a linear commanding signal, is composed of the spool 28 formed with double-thread grooves 27, the sleeve 29 into which the spool 28 is inserted, and the solenoid 30 advancing or retreating the sleeve 29 by a predetermined amount by the linear commanding signal. According to this method, the servovalve 26 is made by a comparatively simple structure and the number of parts thereof is minimized while a feedback mechanism is not necessitated. Accordingly, the size and weight of the device may be reduced and the cost thereof may be lowered.

Description

【発明の詳細な説明】 本発明は可変容量形ポンプの傾転角を外部指令によシ制
御するレギーレータに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a regirator that controls the tilt angle of a variable displacement pump by an external command.

この種のポンプ傾転角制御装置として第1図〜第3図に
示すものが知られている。このものは、トルクモータ(
1)の出力軸(2)に軸着されたパイロットカバー(3
)、回転羽根(4)、固定オリフィス(5)、 (6)
、図示していないシャーオリフィス及び固定羽根等から
なる油圧第1段部と、回転羽根(4)及び回転スリーブ
(力等からなる油圧第2段部とで構成されだロータリサ
ーボ機構を、ポンプ傾転角調整部たるシリンダケーシン
グ(8)と連動するサーボシリンダ(9)に液圧的に連
結せしめてなるもので、回転羽根(4)の軸上端面にお
いてこれにごく近接して配設されたパイロットカバー(
3)により一部閉塞された一対の可変オリフィス(10
)、 (1υは、軸内通路を経て弁室(12)、 (1
:(lに至り、さらに、固定オリフィス(5)、 (6
1を介して給油口0旬に連通ずることにより給油口から
サーボ圧P8の供給をうけ、一方、回転スリーブ(力は
第1図及び第3図に示す如く回転羽根(4)とで切換弁
を構成すると共に、フィードバックピン(国でサーボピ
ストン側と連結してポンプ傾転角変位のフィードバック
をうけるようにしている。
As this type of pump tilt angle control device, those shown in FIGS. 1 to 3 are known. This thing is a torque motor (
The pilot cover (3) is attached to the output shaft (2) of
), rotating vane (4), fixed orifice (5), (6)
, a rotary servo mechanism consisting of a hydraulic first stage section consisting of a shear orifice and fixed vanes (not shown), and a hydraulic second stage section consisting of a rotary vane (4) and a rotary sleeve (force, etc.) is used to tilt the pump. It is hydraulically connected to a servo cylinder (9) that operates in conjunction with a cylinder casing (8) that is an angle adjustment section, and is arranged very close to the servo cylinder (9) on the upper end surface of the shaft of the rotary blade (4). Pilot cover (
A pair of variable orifices (10
), (1υ is the valve chamber (12), (1
:(l, and further fixed orifices (5), (6
The servo pressure P8 is supplied from the oil filler port by communicating with the oil filler port 0 through the rotary sleeve (the force is applied to the switching valve by the rotary vane (4) as shown in FIGS. At the same time, a feedback pin (in Japan) is connected to the servo piston side to receive feedback of the pump tilt angle displacement.

いま、トルクモータ(1)に右回転の指令信号を与える
と、トルクモータ(1)はパイロン]・カバー(3)を
回転羽根(4)上で右回転させ、可変オリフィス00)
が開、可変オリフィス旧)が閉となり、弁室(131は
圧力上昇、弁室(12)は圧力降下となる。即ち、サー
ボ圧液が回転羽根(4)の軸内油路を通って可変オリフ
ィス(10)、旧)から噴き出しているため、オリフィ
ス開では圧力降下、閉では圧力上昇となる。これにより
弁室(12)と(13)の圧力平衡がくずれて回転羽根
(4)は旋回し、弁室(121と(13)の内圧が等し
くなったところで、つまり回転羽根(4)がパイロット
カバー(3)の回転量と同量だけ旋回したところで、回
転羽根(4)は停止する。この回転羽根の回転に伴い第
3図に示す油圧第2段部の切換ポートが開いてサーボシ
リンダ(9)の圧力室(16)にサーボ圧P8が供給さ
れ、一方、他方の圧力室0ηには常時サーボ圧P8が供
給されているため、側圧力室の受圧面積差によシサーボ
シリンダ(9)のサーボピストン(図示せず)は圧力室
(16)側から(+7)側へ移動し、シリンダケーシン
グ(8)を作動させポンプ傾転角を変える。同時にフィ
ードバックピン(15)でポンプ傾転角変位が回転スリ
ーブ(力に伝えられ、切換ポートが閉じられると、サー
ボピストンは両端の油圧力が等しくなったところで静止
する。
Now, when a clockwise rotation command signal is given to the torque motor (1), the torque motor (1) rotates the pylon cover (3) clockwise on the rotary vane (4) and rotates the variable orifice (00).
opens, the variable orifice (old) closes, the pressure increases in the valve chamber (131), and the pressure decreases in the valve chamber (12).In other words, the servo pressure fluid passes through the oil passage in the shaft of the rotary vane (4) and changes the pressure. Since it is ejected from the orifice (10, old), the pressure drops when the orifice is open and increases when the orifice is closed. As a result, the pressure balance between the valve chambers (12) and (13) is disrupted, causing the rotary vane (4) to rotate, and when the internal pressures of the valve chambers (121 and (13) become equal), that is, the rotary vane (4) becomes the pilot. The rotary vane (4) stops when it has rotated by the same amount as the rotation amount of the cover (3).As the rotary vane rotates, the switching port of the hydraulic second stage shown in Fig. 3 opens and the servo cylinder ( The servo pressure P8 is supplied to the pressure chamber (16) of the side pressure chamber (16), and the servo pressure P8 is always supplied to the other pressure chamber 0η. ) moves from the pressure chamber (16) side to the (+7) side and operates the cylinder casing (8) to change the pump tilt angle.At the same time, the pump tilt angle is changed using the feedback pin (15). When the angular displacement is transferred to the rotating sleeve (force) and the switching port is closed, the servo piston comes to rest when the hydraulic pressure at both ends is equal.

このように第1図に示すポンプ傾転角制御装置では、ロ
ータリサーボ機構に回転指令を与えることによってポン
プ傾転角変位を高精度に制御できるけれども、反面、ロ
ータリサーボ゛機構が嵩張り重量が増大するだけでなく
、構造が複雑で且つコスト高となる欠点があった。
In this way, the pump tilting angle control device shown in Fig. 1 can control the displacement of the pump tilting angle with high precision by giving a rotation command to the rotary servo mechanism, but on the other hand, the rotary servo mechanism is bulky and heavy. In addition to increasing the size, the structure is complicated and the cost is high.

そこで本発明は前記の欠点を解消した直線指令式ポンプ
傾転角制御装置を提供することを目的としている。
SUMMARY OF THE INVENTION An object of the present invention is to provide a linear command type pump tilt angle control device that eliminates the above-mentioned drawbacks.

この目的を達成するため、本発明においては、ポンプ傾
転部と連動させるサーボシリンダの圧力室を切換制御す
るサーボ弁を、ポンプ傾転部の回転軸と連動し且つ2条
ねじ溝を形成したスプールと、このスプールに嵌挿する
スリーブと、スリーブを直線往復動させる往復動駆動装
置とで構成し、スリーブにはスプールの隣接2条ねじ溝
を挾む位置でランドにより閉塞される二つの制御ポート
を設け、一方の制御ポートはサーボシリンダの二つの圧
力室のうチ常時サーボ圧を導く圧力室に他方の制御ポー
トはタンクに接続し、サーボシリンダの他方の圧力室は
スプールの2条ねじ溝に常時連通するようにして、サー
ボシリンダの高精度の切換制御を可能ならしめると共に
、サーボ機構の構造の簡単化、小型軽量化及びコストの
低減を図っている。
In order to achieve this object, in the present invention, a servo valve that switches and controls the pressure chamber of a servo cylinder that is linked to the pump tilting part is linked to the rotating shaft of the pump tilting part and has a double thread groove. It consists of a spool, a sleeve that fits into the spool, and a reciprocating drive device that reciprocates the sleeve linearly. One control port is connected to the two pressure chambers of the servo cylinder, and the other control port is connected to the tank, and the other pressure chamber of the servo cylinder is connected to the two-thread thread of the spool. By constantly communicating with the groove, it is possible to perform highly accurate switching control of the servo cylinder, and the structure of the servo mechanism is simplified, reduced in size and weight, and reduced in cost.

以下本発明を図面に示す実施例に基いて具体的に説明す
る。第4図及び第5図において、(21)は可変容量形
ポンプ、(221はサーボシリンダ、(ハ)はサーボシ
リンダ(221のサーボピストン(24)移動量をポン
プ傾転部たるシリンダケーシング(25)に伝達する傾
転駆動レバー、(261はサーボ弁である。
The present invention will be specifically described below based on embodiments shown in the drawings. In FIGS. 4 and 5, (21) is a variable displacement pump, (221 is a servo cylinder, and (c) is a servo cylinder (221's servo piston (24) movement amount is measured by a cylinder casing (25) which is a pump tilting part. ), (261 is a servo valve).

サーボ弁(26)は、左2条ねじ溝(27)を形成した
ス(5) プール(28)と、これに嵌挿するスリーブ(29)と
、直線指令信号によりスリーブ(29)を所定量前進又
は後退させる直線往復動駆動装置本実施例ではソレノイ
ド(30)とで構成している。スプール(28)は中央
隣接2条ねじ溝(27)の中間に環状溝(31)を形成
すると共に、可変容量形ポンプ(21)のシリンダケー
シング(2団の回転軸(3功に図示の如く直結するか又
は中間軸を介して連動可能に連結する。スIJ−プ(2
9)にはスプール(28)の中央隣接2条ねじ溝(27
)を挾む位置でランド(33)、 (341により閉塞
される二つの制御ポー) (J5)、 (361を穿設
し、又常時環状溝(31)と連通ずる適宜位置に制御ポ
ート(3Dを穿設している。さらに、スリーブ(29)
の外周面に制御ポー)t351i列、(3Dに通じる環
状溝(38)、 (39)、顛を形成する。
The servo valve (26) consists of a spool (28) (5) in which a left double thread groove (27) is formed, a sleeve (29) to be fitted into the spool (28), and a linear command signal to move the sleeve (29) by a predetermined amount. In this embodiment, the linear reciprocating drive device for moving forward or backward is composed of a solenoid (30). The spool (28) forms an annular groove (31) in the middle of the two threaded grooves (27) adjacent to the center, and also forms an annular groove (31) between the cylinder casing (two groups of rotating shafts) of the variable displacement pump (21). Directly connected or interlockingly connected via an intermediate shaft.
9) has a two thread thread groove (27) adjacent to the center of the spool (28).
) at the position sandwiching the land (33), (two control ports closed by 341) (J5), (361), and a control port (3D Furthermore, a sleeve (29) is provided.
A row of control holes (38), (39), and a ring (39) communicating with the 3D are formed on the outer peripheral surface of the control port (351i).

冑、制御ポー1351. (36)、 (3′Oは第6
図に示す如く2個対称に設けて油圧バランスをとってい
る。又、スプール(ハ)は2条ねじ溝を形成しているか
ら、スプール軸線を含む平面に対してランド及びねじ溝
は対称となり油圧的にバランスして(6) いる。もし1条ねじ溝とすれば油圧バランスが得られず
、スプールはスリーブに圧接して動きにくくなる。
Helmet, control port 1351. (36), (3'O is the 6th
As shown in the figure, two are provided symmetrically to maintain hydraulic balance. Further, since the spool (C) has a double thread groove, the land and the thread groove are symmetrical with respect to a plane including the spool axis and are hydraulically balanced (6). If a single thread is used, hydraulic balance will not be obtained, and the spool will come into pressure contact with the sleeve, making it difficult to move.

サーボシリンダ(22)は、サーボピストン(24)の
大径ピストン部(41)が臨む圧力室(4′!Iを通路
(431%JJ状溝顛、制御ポート(3Dによりスプー
ル(28)の環状溝(31)に常時連通し、小径ピスト
ン部(44)が臨む圧力室(4ツは可変容量形ポンプ(
21)とサーボ弁(26)の制御ポート(3ツに常時連
通している。一方、制御ポー) (36)は環状溝(3
9)、通路f46)によりタンク(47)に連通してい
る。
The servo cylinder (22) has a pressure chamber (4'! Pressure chambers (four are variable displacement pumps) that constantly communicate with the groove (31) and face the small diameter piston part (44)
21) and the control port (3) of the servo valve (26).On the other hand, the control port (36) is connected to the annular groove (3).
9) and communicates with the tank (47) through a passage f46).

可変容量形ポンプ(21)駆動時ポンプ吐出圧Pdはサ
ーボシリンダ(2渇の圧力室(451とサーボ弁(26
)の制御ポート(39に作用しており、スプール(28
)がランド(33)、 (341で制御ポートt351
. (361を閉塞している図示状態では、制御ポート
(3ηに通じる圧力室(42)は圧力室(4つ及びタン
ク(4ηから完全にしゃ断されていてサーボピストン(
2滲は静止している。
When the variable displacement pump (21) is driven, the pump discharge pressure Pd is determined by the servo cylinder (2 pressure chambers (451) and the servo valve (26).
) is acting on the control port (39) of the spool (28
) is the land (33), (341 is the control port t351
.. (In the illustrated state where the control port (361) is closed, the pressure chamber (42) leading to the control port (3η) is completely cut off from the pressure chambers (4) and the tank (4η), and the servo piston (
2. The water is stationary.

いま、ソレノイド(30)に前進指令信号を与えてスリ
ーブc!9)を所定量前進させると、制御ポート(36
)はラント責341で閉塞された寸まであるが、制御ポ
ートt351はねじ溝(27)に連通しサーボシリンダ
の圧力室(42)と(45)とを連通せしめポンプ吐出
圧Pdが圧力室(421にも作用する結果、サーボピス
トン(24)は受圧面積差により圧力室(421側から
圧力室(4句側へ移動しシリンダケーシング(25)を
左回転させポンプ傾転角を変える。スプール(28)は
シリンダケーシング(2ωの回転軸(3つに同軸上で連
結されているから、シリンダケーシング(251の回転
と共に左回転し、制御ポート(3つをねじ溝(27)側
からランド(331側へ移行せしめる。スリーブ(29
)の前進が止まり制御ポート(35)がランド(331
で閉塞されると、サーボピストン(24)は両端の油圧
力が等しく々つだところで停止し、シリンダケーシング
(25)はスリーブ(29)の所定前進量に比例したポ
ンプ傾転角変位を得る。
Now, give a forward command signal to the solenoid (30) to move the sleeve c! 9) is advanced a predetermined amount, the control port (36
) is close to being blocked by the runt capacitor 341, but the control port t351 communicates with the thread groove (27) and communicates the pressure chambers (42) and (45) of the servo cylinder, so that the pump discharge pressure Pd is controlled by the pressure chamber ( As a result, the servo piston (24) moves from the pressure chamber (421 side) to the pressure chamber (4 side) due to the difference in pressure receiving area, rotates the cylinder casing (25) to the left, and changes the pump tilt angle. Since the cylinder casing (2ω) is coaxially connected to the three rotating shafts (2ω), it rotates counterclockwise with the rotation of the cylinder casing (251), and connects the control port (three) from the thread groove (27) side to the land (331). Sleeve (29)
) stops moving forward and the control port (35) closes to the land (331).
When the servo piston (24) is closed, the servo piston (24) stops when the hydraulic pressures at both ends are equal, and the cylinder casing (25) obtains a pump tilt angle displacement proportional to the predetermined amount of advance of the sleeve (29).

次に、ソレノイド(30)に後退指令信号を与えてスリ
ーブ(29)を所定量後退させると、制御ポート0!5
1はラント責331で閉塞されたままであるが、制御ボ
ー) (36)はねじ溝(27)に連通し圧力室(4り
をタンク(47)に連通ずるため、サーボピストン(2
4Jは圧力室(句の液圧力により圧力室(4ツ側から圧
力室(421側へ移動しシリンダケーシング(251を
右回転させ、ポンプ傾転角を変える。一方、スプール(
至)はシリンダケーシング(25+と連動しシリンダケ
ーシング(ガの回転と共に右回転するため、制御ポート
06)はねじ溝(5)側からランド責圓側へ移行する。
Next, when a retraction command signal is given to the solenoid (30) to retract the sleeve (29) by a predetermined amount, control port 0!5
1 remains blocked by the runt capacitor 331, but the control bow (36) communicates with the thread groove (27) to communicate the pressure chamber (4) with the tank (47), so the servo piston (2
4J moves from the pressure chamber (421 side to the pressure chamber (421 side) due to the liquid pressure in the pressure chamber (251) and changes the pump tilting angle by rotating the cylinder casing (251 clockwise).
) is interlocked with the cylinder casing (25+), and the cylinder casing (because it rotates clockwise with the rotation of the cylinder, the control port 06) moves from the thread groove (5) side to the land control side.

スリーブ(29)の後退が止まシ制御ボート(36)が
ランドC341で閉塞されると、圧力室(421はタン
ク(47)との連通を断たれ、サーボピストン(241
は両端に作用する油圧力が等しくなったところで停止し
、シリンダケーシング(25)はスリーブ(2glの所
定後退量に比例しだポンプ傾転角変位を得る。
When the sleeve (29) stops retreating and the control boat (36) is closed by the land C341, the pressure chamber (421) is cut off from communicating with the tank (47) and the servo piston (241
stops when the hydraulic pressure acting on both ends becomes equal, and the cylinder casing (25) obtains a pump tilt angle displacement proportional to the predetermined retraction amount of the sleeve (2 gl).

岡、本実施例ではスプールの2条ねじ溝の中間に環状溝
(31)を形成したが、これをスリーブの内周部に形成
してもよく、又、スリーブ駆動装置にソレノイドを用い
たが本発明はこれに限定するものではなく適宜の公知直
線往復動駆動装置を用いるようにしてもよい。
In this example, the annular groove (31) is formed in the middle of the two thread grooves of the spool, but it may also be formed on the inner circumference of the sleeve, or a solenoid may be used as the sleeve drive device. The present invention is not limited to this, and any known linear reciprocating drive device may be used.

以上の説明から明らかなように本発明によれ(9) ば、直線指令信号をうけてサーボシリンダを高精度に切
換制御するサーボ弁は、2条ねじ溝を形成したスプール
とこれに嵌挿するスリーブとスリーブ直線往復動駆動装
置とで構成する比較的簡単な構成で、しかも部品点数が
最少と々るため、小型軽量となりコストを低減できると
共に、スプールをポンプ傾転部たるシリンダケーシング
の回転軸に直結すればフィードバック機構が不要となる
ものである。従って、このサーボ弁とサーボシリンダか
らなる本発明装置は小型軽量となし得しかも安価に製作
できる優れた効果を有する。又、本発明はねじ溝リード
を変えることによりサーボピストンのストロークを変え
ることができるから、スリーブ直線往復動駆動装置、ポ
ンプ傾転域の変更も自在となり、応用範囲が広い。
As is clear from the above description, according to the present invention (9), the servo valve that receives a linear command signal and controls the switching of the servo cylinder with high precision has a spool formed with a double thread groove and a spool that is inserted into the spool. It has a relatively simple structure consisting of a sleeve and a sleeve linear reciprocating drive device, and since the number of parts is kept to a minimum, it is small and lightweight, reducing costs. If it is directly connected to the , a feedback mechanism is not required. Therefore, the device of the present invention comprising this servo valve and servo cylinder has an excellent effect of being small and lightweight, and can be manufactured at low cost. Furthermore, since the stroke of the servo piston can be changed by changing the thread groove lead of the present invention, the sleeve linear reciprocating drive device and the pump tilting range can be changed freely, and the range of application is wide.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来装置の一部切欠き斜視図、第2図は第1図
のA矢視図、第3図は第1図のB −B断面図、第4図
は本発明の実施例を示す一部(10) 切欠き縦断面図、第5図は同実施例の一部切欠き斜視図
及び油圧回路図、第6図は第4図のE−E断面図である
。 21・・・可変容量形ポンプ、22・・・サーボシリン
ダ、26・・・傾転駆動レバー、24・・・サーボピス
トン、25・・・シリンダケーシング、26・・・左2
条ねじ溝、28・・・スプール、29・・・スリーブ、
30・・・ソレノイド、32・・・回転軸、35,36
.37・・・制御ポー)、42.45・・・圧力室、4
7・・・タンク。 特許出願人 川崎重工業株式会社 代理人 弁理士太田謙三 C11) 第1図 第2図 第3図 第4図
Fig. 1 is a partially cutaway perspective view of a conventional device, Fig. 2 is a view taken along arrow A in Fig. 1, Fig. 3 is a sectional view taken along line B-B in Fig. 1, and Fig. 4 is an embodiment of the present invention. FIG. 5 is a partially cutaway perspective view and hydraulic circuit diagram of the same embodiment, and FIG. 6 is a cross-sectional view taken along line EE in FIG. 4. 21... Variable displacement pump, 22... Servo cylinder, 26... Tilt drive lever, 24... Servo piston, 25... Cylinder casing, 26... Left 2
threaded groove, 28... spool, 29... sleeve,
30... Solenoid, 32... Rotating shaft, 35, 36
.. 37...control port), 42.45...pressure chamber, 4
7...Tank. Patent Applicant Kawasaki Heavy Industries Co., Ltd. Agent Patent Attorney Kenzo Ota C11) Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] ポンプ傾転部と連動するサーボシリンダの一方の圧力室
に常時サーボ圧を導き他方の圧力室をサーボ弁により前
記一方の圧力室又はタンクに連通ずるようにしたポンプ
傾転角制御装置において、サーボ弁は2条ねじ溝を形成
し且つポンプ傾転部の回転軸と連動するスプールと、こ
のスプールに嵌挿するスリーブと、スリーブを直線往復
動させる往復動駆動装置からなり、スリーブにはスプー
ルの2条ねじ溝を挾む位置でランドにより閉塞される二
つの制御ポートを設け、一方の制御ポートはサーボシリ
ンダの前記一方の圧力室に他方の制御ポートはタンクに
接続し、サーボシリンダの前記他方の圧力室は2条ねじ
溝に常時連通しだことを特徴とする直線指令式ポンプ傾
転角制御装置。
In a pump tilting angle control device in which servo pressure is constantly applied to one pressure chamber of a servo cylinder that is linked to a pump tilting section, and the other pressure chamber is communicated with the one pressure chamber or tank by a servo valve, the servo cylinder is connected to a pump tilting section. The valve consists of a spool that forms a double thread groove and is interlocked with the rotating shaft of the pump tilting part, a sleeve that is fitted into the spool, and a reciprocating drive device that reciprocates the sleeve linearly. Two control ports are provided that are closed by lands at positions sandwiching the double thread groove, one control port is connected to the one pressure chamber of the servo cylinder, the other control port is connected to the tank, and the other control port of the servo cylinder is connected to the pressure chamber of the servo cylinder. A linear command type pump tilt angle control device characterized in that the pressure chamber is always in communication with the double thread groove.
JP58178456A 1983-09-26 1983-09-26 Tilting angle control device for linear commanding type pump Pending JPS6069278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58178456A JPS6069278A (en) 1983-09-26 1983-09-26 Tilting angle control device for linear commanding type pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58178456A JPS6069278A (en) 1983-09-26 1983-09-26 Tilting angle control device for linear commanding type pump

Publications (1)

Publication Number Publication Date
JPS6069278A true JPS6069278A (en) 1985-04-19

Family

ID=16048828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58178456A Pending JPS6069278A (en) 1983-09-26 1983-09-26 Tilting angle control device for linear commanding type pump

Country Status (1)

Country Link
JP (1) JPS6069278A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002211865A (en) * 2001-01-22 2002-07-31 Mitsubishi Electric Corp Control system for man conveyor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002211865A (en) * 2001-01-22 2002-07-31 Mitsubishi Electric Corp Control system for man conveyor

Similar Documents

Publication Publication Date Title
US3250227A (en) Torque control apparatus for hydraulic power units
US8074558B2 (en) Axial piston device having rotary displacement control
US4581896A (en) Infinitely variable hydraulic transmission
SU1041044A3 (en) Hydrostatic regulator
US3406608A (en) Control for variable volume pumps and motors
US2722889A (en) Servo-type control for pumps
JPS6069278A (en) Tilting angle control device for linear commanding type pump
JPS6327234B2 (en)
JPS6069277A (en) Tilting angle control device for rotation commanding type pump
US4313364A (en) Dual cylinder linear servo motor
US1321086A (en) Variable-stroke pump.
US6832903B2 (en) Functionalties of axially movable spool valve
KR100316751B1 (en) Steering control unit
US3545881A (en) Controllable pitch propeller with hydraulic power supply and control
US4384631A (en) Power steering mechanism
CN109611304B (en) Swash plate swing angle control mechanism of plunger pump
US5975138A (en) Fluid controller with improved follow-up
CA1056263A (en) Variable delivery hydraulic equipment
JP2695426B2 (en) Control device for fluid pressure actuator
CN108953262B (en) Hydraulic valve capable of being controlled by micro motion, hydraulic control system and engineering machinery
JPS60224979A (en) Variable capacity radial piston motor controller
JPH0926043A (en) Electro-hydraulic stepping cylinder
SU1479770A1 (en) Hydrostatic transmission
CA1133793A (en) Duel cylinder linear servo motor
JPS6244157Y2 (en)