JPS606906A - Semiconductor light element - Google Patents

Semiconductor light element

Info

Publication number
JPS606906A
JPS606906A JP58112945A JP11294583A JPS606906A JP S606906 A JPS606906 A JP S606906A JP 58112945 A JP58112945 A JP 58112945A JP 11294583 A JP11294583 A JP 11294583A JP S606906 A JPS606906 A JP S606906A
Authority
JP
Japan
Prior art keywords
layer
slope
light
layers
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58112945A
Other languages
Japanese (ja)
Inventor
Koichi Imanaka
今仲 行一
Hideaki Horikawa
英明 堀川
Tomoyuki Yamada
山田 朋幸
Toshiaki Fukunaga
敏明 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP58112945A priority Critical patent/JPS606906A/en
Publication of JPS606906A publication Critical patent/JPS606906A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To cause good Bragg's reflection and enable guide of only the light of a selected wavelength by forming a multilayer crystal member obtained by alternately forming mixed crystal layers different in refractive index at prescribed intervals on a mixed crystal semiconductor substrate, with a slope formed on its one side, and forming a light guide layer on this slope. CONSTITUTION:A plurality of InP layers 13 of n1 refractive index and GaInAsP layers 14 of n2 refractive index are alternately grown on a mixed crystal semiconductor substrate 11 of, e.g. to form a multilayer crystal member 12. A slope 15 is formed by grinding or etching one side of said member 12. A light guide layer 16 made of GaInAsP is formed on the upper faces of the slope 15 and the member 12 and the surface of the substrate 11. The sum LAMBDA of the width of the layers 13,14 adjacent to each other on the side of the slope 15 is kept constant and laminated at equal intervals, resulting in guiding only the light of wavelength set with said sum LAMBDA and the difference of refractive indices n1-n2 between the layers 13,14 through the light layer 16. For example, an activated carbon layer 17 and a clad layer 18 are formed successively on the layer 16 and light produced at the layer 17 with a current is introduced into the layer 16 to cause the Bragg's reflection to use it for emission of laser beams, etc.

Description

【発明の詳細な説明】 (技術分野) この発明は半導体光素子、詳しくは波長選択性を有する
半導波路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a semiconductor optical device, and more particularly to a semi-waveguide having wavelength selectivity.

(・従来技術) 従来のコルゲーション(Corrugation )型
光導波路を第1図に示す。この図に示すように従来の上
記光導波路は、結晶1上にし〜ザ光の干渉縞を用いてエ
ツチングによりAの周期構造を設け、その上に屈折率の
異なる導波層2を成長させている。
(Prior Art) A conventional corrugation type optical waveguide is shown in FIG. As shown in this figure, in the conventional optical waveguide, a periodic structure A is provided on a crystal 1 by etching using interference fringes of laser light, and a waveguide layer 2 having a different refractive index is grown on top of the periodic structure A. There is.

しかしガから、このようなコルグージョン型光= v 
y=では、■コルク゛−ジョンの凸凹を充分深くと九々
い、■導波層2を成長する際、熱的に凸凹がくずれて良
好に干渉効果を誘起できない、■凸凹の間隔はレーザ光
の波長によシ制限され、あまり密にできない、という欠
点があった。
However, from the moth, such corgousion type light = v
At y=, ■ The corrugation should be deep enough and the convexity should be sufficiently deep. ■ When the waveguide layer 2 is grown, the concavity and convexity will be thermally destroyed and a good interference effect cannot be induced. The disadvantage is that it is limited by the wavelength of

(発明の目的) この発明は上記の点に鑑みなされたもので、従来の欠点
を解決できる半導体光素子を提供することを目的とする
(Objective of the Invention) The present invention has been made in view of the above points, and an object of the present invention is to provide a semiconductor optical device capable of solving the conventional drawbacks.

(実施例) ・ 以下この発明の一実施例を図面を参照して説明する。第
2図はこの発明の一実施例を示す図である この図にお
いて、11は混晶半導体基板としてのInP基板で、そ
の上には多層結晶部12が形成される。この多層結晶部
12は、屈折率n、の第1の混晶としてのInP層13
と屈折率n2 (n、4 n2 )の第2の混晶として
のGa In As P層14を一定の厚みのもとに交
互に成長させて形成される。また、その成M、層の一部
全斜めに研摩またはエツチングすることにより、多層結
晶部12は一側面が余1而15となっている。そして、
その斜面15と多層結晶部12の上面、さらには前記斜
面15の下端に連続する基板11の表面には光導波層1
6が形成される。この光導波層16はGaInAsP#
からなる。
(Example) - An example of the present invention will be described below with reference to the drawings. FIG. 2 is a diagram showing an embodiment of the present invention. In this diagram, reference numeral 11 denotes an InP substrate as a mixed crystal semiconductor substrate, and a multilayer crystal portion 12 is formed on the InP substrate. This multilayer crystal part 12 includes an InP layer 13 as a first mixed crystal with a refractive index of n.
Ga In As P layers 14 as a second mixed crystal having a refractive index n2 (n, 4 n2 ) are grown alternately to a constant thickness. Furthermore, by polishing or etching a portion of the layer at an angle, one side of the multilayer crystal part 12 is left with a remainder 15. and,
An optical waveguide layer 1 is formed on the surface of the substrate 11 that is continuous with the slope 15, the upper surface of the multilayer crystal part 12, and the lower end of the slope 15.
6 is formed. This optical waveguide layer 16 is made of GaInAsP#
Consisting of

このよりな一実施例においては、多層結晶部12に斜面
15を形成することにより、この斜面15においては/
IT(折率n、のInP層13と屈折率n、のGaIn
AsP層14が交互に一定の周期でもって並ぶ。
In this more specific embodiment, by forming the slope 15 on the multilayer crystal part 12, the slope 15 can be
IT (InP layer 13 with refractive index n and GaIn layer 13 with refractive index n)
The AsP layers 14 are arranged alternately at a constant period.

ここで、周期は、InP層13とGaInAsP層14
の厚さに基づいて、第1図と同じAとなるように設定さ
れる。したがって、この斜面15を含む部分に形成てれ
た光導波層16に光が導入されると、その光は、斜面1
5におけるInP層13の屈折率n1トGa1nAsP
層14の屈折率n2が異なるためブラッグ(Bragg
 )反射を起し、Aによって設定される波長の光のみが
導波される。
Here, the period is the InP layer 13 and the GaInAsP layer 14.
Based on the thickness of , it is set to be A, which is the same as in FIG. Therefore, when light is introduced into the optical waveguide layer 16 formed in the portion including the slope 15, the light is transmitted to the slope 15.
The refractive index n1 of the InP layer 13 in 5 is Ga1nAsP
Since the refractive index n2 of the layer 14 is different, the Bragg
) reflection occurs, and only light of the wavelength set by A is guided.

そして1以上のよりな一実施例によれば、■実効的に屈
折率の凸凹が深いため良好にブラッグ反射を起こせる、
■幾何学的な凸凹を用いないため光導波層16の成長時
に熱的損傷などの問題が起きない、■InP層13とG
a InAs P層14の膜厚は超薄膜にまで制御可能
なことからAをかなり小さくとれる、という利点がある
According to one or more preferred embodiments, ① Bragg reflection can be caused well because the refractive index is effectively deep;
■Problems such as thermal damage do not occur during the growth of the optical waveguide layer 16 because no geometrical unevenness is used.■InP layer 13 and G
Since the film thickness of the a InAs P layer 14 can be controlled to an ultra-thin film, there is an advantage that A can be made quite small.

なお、このような一実施例の半導体光素子(光導波路)
は、InP基板11上にInP層13とGaInAsP
層14とを一定の厚みのもとに交互に成長させて多層結
晶全形成した後、その一部を斜めに研摩またはエツチン
グし、しかる後、光導波層16を成長させることにより
製造される。
In addition, such a semiconductor optical device (optical waveguide) as an example
InP layer 13 and GaInAsP are formed on InP substrate 11.
The optical waveguide layer 16 is manufactured by growing the layers 14 alternately to a constant thickness to completely form a multilayer crystal, then polishing or etching a part of it diagonally, and then growing the optical waveguide layer 16.

第3図はこの発明の半導体光素子の応用例を示す。この
応用例は、一実施例の半導体光素子を半導体レーザに応
用した場合である。したがって、この応用例においては
、第2図の構成に加えて、活性層17とクラッド層18
が光導波層16上に順次成長形成されている。ここで、
各層のエネルギーギャップは(クラッド層)〉(導波層
)〉(活性層)に選ばれる。したがって、電流注入によ
シ活性層17に発生した光は導波層16に導入サレ、フ
ラッグ反射によp7アグリ・ベローによらずレーデ発振
する。
FIG. 3 shows an example of application of the semiconductor optical device of the present invention. This application example is a case where the semiconductor optical device of the embodiment is applied to a semiconductor laser. Therefore, in this application example, in addition to the structure shown in FIG.
are successively grown on the optical waveguide layer 16. here,
The energy gap of each layer is selected as (cladding layer)>(waveguide layer)>(active layer). Therefore, the light generated in the active layer 17 by current injection is introduced into the waveguide layer 16 and causes Radhe oscillation due to flag reflection, regardless of the p7 agri-bellow.

(発明の効果) 以上詳述したようにこの発明の半導体光素子は、多層結
晶を斜めに切ることにより等測的なコルゲーションとし
たから、良好にフラッグ反射を起こせるとともに、光導
波層の成長時に悪影響はなく、しかも屈折率nl l 
n、、の周期をかなシ小さくできる。
(Effects of the Invention) As detailed above, in the semiconductor optical device of the present invention, the multilayer crystal is cut diagonally to create isometric corrugation, so that it can cause good flag reflection and when the optical waveguide layer grows. There is no adverse effect, and the refractive index nl l
The period of n, , can be made much smaller.

この発明の半導体光素子は縦単一モード半導体レーザな
どに利用できる。
The semiconductor optical device of the present invention can be used in longitudinal single mode semiconductor lasers and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のコルゲーション型光導波路を示す断面図
、第2図はこの発明の半導体光素子の一実施例を示す断
面図、第3図はこの発明の半導体光素子の応用例を示す
断面図である。 11・・・InP基板、12・・・多層結晶部、13・
・・InP Nj、 14− GaInAsP層、 1
5 ・・・斜面、16 ・・・光導波層。
FIG. 1 is a cross-sectional view showing a conventional corrugated optical waveguide, FIG. 2 is a cross-sectional view showing an embodiment of the semiconductor optical device of the present invention, and FIG. 3 is a cross-sectional view showing an application example of the semiconductor optical device of the present invention. It is a diagram. 11... InP substrate, 12... multilayer crystal part, 13...
...InP Nj, 14-GaInAsP layer, 1
5... Slope, 16... Optical waveguide layer.

Claims (1)

【特許請求の範囲】[Claims] 混晶半導体基板と、この基板上に屈折率がn、の第1の
混晶と屈折率がn2(n、〜nz)の第2の混晶を一定
の厚みのもとに交互に成長して形成され、所定の側面は
、屈折率nl*n2の第1.第2の混晶が交互に一定の
周期でもって並ぶ斜面に形成された多層結晶部と、この
多層結晶部の少なくとも前記斜面に形成された先導波層
とを具備してなる半導体光素子。
A mixed crystal semiconductor substrate, and on this substrate, a first mixed crystal with a refractive index of n and a second mixed crystal with a refractive index of n2 (n, ~ nz) are grown alternately at a constant thickness. The predetermined side surface has a first . A semiconductor optical device comprising: a multilayer crystal part formed on a slope in which second mixed crystals are arranged alternately at a constant period; and a waveguide layer formed on at least the slope of the multilayer crystal part.
JP58112945A 1983-06-24 1983-06-24 Semiconductor light element Pending JPS606906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58112945A JPS606906A (en) 1983-06-24 1983-06-24 Semiconductor light element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58112945A JPS606906A (en) 1983-06-24 1983-06-24 Semiconductor light element

Publications (1)

Publication Number Publication Date
JPS606906A true JPS606906A (en) 1985-01-14

Family

ID=14599441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58112945A Pending JPS606906A (en) 1983-06-24 1983-06-24 Semiconductor light element

Country Status (1)

Country Link
JP (1) JPS606906A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4747649A (en) * 1985-01-07 1988-05-31 Siemens Aktiengesellschaft Monolithically integrated WDM demultiplex module and method of manufacture of such module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4747649A (en) * 1985-01-07 1988-05-31 Siemens Aktiengesellschaft Monolithically integrated WDM demultiplex module and method of manufacture of such module

Similar Documents

Publication Publication Date Title
JPS60145685A (en) Distributed feedback type semiconductor device
JPH088394B2 (en) Semiconductor laser and manufacturing method thereof
JP4618854B2 (en) Semiconductor device and manufacturing method thereof
JP2000228558A (en) Light modulator integrated semiconductor laser and its manufacture
JPS606906A (en) Semiconductor light element
JPS6250075B2 (en)
JPS63213383A (en) Semiconductor laser
JPS60132380A (en) Distributed feedback type semiconductor laser device
JPS61202487A (en) Distributed feedback type semiconductor laser
JPS63263788A (en) Semiconductor laser
JPS5911690A (en) Semiconductor laser device
JP2687404B2 (en) Distributed feedback semiconductor laser
JPH0228389A (en) Semiconductor laser element
JP3075822B2 (en) Semiconductor distributed feedback laser device
JPS6054489A (en) Semiconductor laser device
JPH02105489A (en) Manufacture of semiconductor laser
JPH07118563B2 (en) Semiconductor distributed feedback laser device
JPH04369269A (en) Manufacture of optical integrated circuit
JPH0632342B2 (en) Semiconductor laser
JPS5858783A (en) Semiconductor laser
JPH06232498A (en) Distribution feedback type semiconductor laser
JPS57157587A (en) Semiconductor laser device
JPH08184721A (en) Optical isolator
JPH0661581A (en) Semiconductor laser and its manufacture
JPH0728083B2 (en) Semiconductor laser device