JPS6068558A - Thin film lithium battery - Google Patents

Thin film lithium battery

Info

Publication number
JPS6068558A
JPS6068558A JP58176412A JP17641283A JPS6068558A JP S6068558 A JPS6068558 A JP S6068558A JP 58176412 A JP58176412 A JP 58176412A JP 17641283 A JP17641283 A JP 17641283A JP S6068558 A JPS6068558 A JP S6068558A
Authority
JP
Japan
Prior art keywords
thin film
positive electrode
battery
lithium
tungsten oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58176412A
Other languages
Japanese (ja)
Other versions
JPH0547943B2 (en
Inventor
Fumiyoshi Kirino
文良 桐野
Yukio Ito
由喜男 伊藤
Keiichi Kanebori
恵一 兼堀
Katsumi Miyauchi
宮内 克己
Tetsuichi Kudo
徹一 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58176412A priority Critical patent/JPS6068558A/en
Publication of JPS6068558A publication Critical patent/JPS6068558A/en
Publication of JPH0547943B2 publication Critical patent/JPH0547943B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a positive electrode having good charge-discharge reversibility of lithium ion and large discharge capacity by using tungsten oxide thin film mainly comprising tungsten oxide having specified composition or thungsten oxide having specified composition containing transition metal oxide as a positive electrode. CONSTITUTION:A tungsten oxide thin film mainly comprising tungsten oxide having a composition of WO3-delta(0<delta<=1) or WO3-delta(0<delta<=1) containing transition metal oxide (such as molubdenum trioxide, or vanadium pentaoxide) is used as a positive electrode. For example, oxygen deficiency amount in the thin film is redily and reducibly controlled by using WO3 as a target and spattering it in a reducing atmosphere. This remarkably improves voltage-current characteristecs of a battery, diffusion coefficient of lithium ion in the positive electrode, discharge capacity, charge-discharge reversibility of lithium ion.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はリチウム電池にかかわり、特に、超薄型化に好
適な全固体薄膜リチウム電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a lithium battery, and particularly to an all-solid-state thin film lithium battery suitable for ultra-thin design.

〔発明の背景〕[Background of the invention]

近年のエレクトロニクス(代器の小型化、低消費電力化
には著しいものがある。このような情況下で、小型で安
定かつ高信頼性を有する電池に対するニーズが強まって
きている。この中で特にリチウム電池は、高エネルギ密
度、高起電力を有する新しい電池として注1」されてい
る。リチウム電池の構成は、金属リチウム負極、リチウ
ムイオン導電性電解質、そして正極活物質とからなる。
In recent years, there have been remarkable advances in the miniaturization and reduction in power consumption of electronic devices. Under these circumstances, the need for small, stable, and highly reliable batteries is increasing. Lithium batteries are noted as a new type of battery with high energy density and high electromotive force.A lithium battery consists of a metal lithium negative electrode, a lithium ion conductive electrolyte, and a positive electrode active material.

リチウム電池は、正極活物質に二酸化マンカンや弗化黒
鉛等を用いた一次電池として既に実用化されている。そ
して現在では、次の研究課題として、リチウム電池の二
次電池化が検討されている。リチウム電池の二次電池化
に成功すると、電池を半永久的に使用することが可能と
なる。さらに、−次電池と比べて充電できるためあまり
大きな放電容量を必要とぜず、電池の小型化が可能にな
る等の特長かある。
Lithium batteries have already been put into practical use as primary batteries that use mankane dioxide, graphite fluoride, or the like as positive electrode active materials. Currently, the next research topic is the conversion of lithium batteries into secondary batteries. If a lithium battery is successfully converted into a secondary battery, it will be possible to use the battery semi-permanently. Furthermore, since they can be charged more easily than secondary batteries, they do not require a very large discharge capacity, making it possible to downsize the battery.

リチウム二次電池の特性は、(1)電池の電圧−電流特
性、(11)正極中でのリチウムイオンの化学拡散係数
、(iii)電池の放電容量、(ivl充放電の繰り返
し特性、等で表わされる。これらの特性は、正極の特性
に依存するところが大きく、その選択は非常に重要であ
る。現在までに、リチウム二次電池の正極材料に関する
報告は数多くあるが、電池としての特性には一長一短が
あり、正極材料の探索かなお続けられている。今日まで
に報告されている材料の中で、拡散係数が大きく充放電
の可逆性に優れたものに、二硫化チタン(TI32)が
ある。
The characteristics of a lithium secondary battery include (1) voltage-current characteristics of the battery, (11) chemical diffusion coefficient of lithium ions in the positive electrode, (iii) discharge capacity of the battery, (IVL charge/discharge repetition characteristics, etc.) These characteristics largely depend on the characteristics of the positive electrode, and its selection is extremely important.To date, there have been many reports on positive electrode materials for lithium secondary batteries, but the characteristics as a battery are There are advantages and disadvantages, and the search for positive electrode materials continues.Among the materials reported to date, titanium disulfide (TI32) has a large diffusion coefficient and excellent charge/discharge reversibility. .

しかしながら、この二硫化チタンは、二次元層状jR造
を有し、リチウムイオンの拡散に対して異方性が存在す
る。そこで、このような化合物を薄膜化する場合には、
リチウムイオンの拡散の大きな方向に結晶を配向させる
必要がある。しかし、一般に配向膜を作成することは技
術的に困難であり、さらに、電池の放電容量増加のため
に正極膜厚を増する場合、一層困難になることが予想さ
れる。
However, this titanium disulfide has a two-dimensional layered structure and has anisotropy with respect to the diffusion of lithium ions. Therefore, when making such a compound into a thin film,
It is necessary to orient the crystal in the direction of greater lithium ion diffusion. However, it is generally technically difficult to create an alignment film, and it is expected that this will become even more difficult when increasing the thickness of the positive electrode film in order to increase the discharge capacity of the battery.

そこで、リチウムイオンの拡散に対して異方性が存在せ
す、大きな拡散係数を有し、しかも充放電の繰り返し特
性に優れた材料を見いだすことは、リチウム二次電池の
実用化に向けて、非常に重要な課題である。本発明では
、前述の課題を解決するため、三次元網目構造を有する
正極材料に着目し、タングステン酸化物を取り上げた。
Therefore, it is important to find a material that exhibits anisotropy with respect to lithium ion diffusion, has a large diffusion coefficient, and has excellent repeatable charging and discharging characteristics, in order to put lithium secondary batteries into practical use. This is a very important issue. In order to solve the above-mentioned problems, the present invention focuses on a positive electrode material having a three-dimensional network structure and uses tungsten oxide.

現在までに、タングステン酸化物の中て三酸化タングス
テンは、リチウム電池用正極利料あるいはエレクトo(
クロミック表示素子用11料として、数多(検討されて
きた。この中で特に、リヂ・タム二次電池用正極材料と
しての三酸化タングステンは、一般に放電容量が太き(
、充放電の繰り返し特性に優れた有望な材料であること
が知られている。さらに、最近では、三酸化タングステ
ンを声]膜化し、その電気化学的特性についても検討さ
れている。三酸化タングステンを薄膜化するについては
、次のような問題点がある。まず、第1に、リチウム電
池を超薄型化する場合、電池構成材料を圧粉法や焼結法
で作成するには限界があり、別の手法による薄膜化の検
討が必要である。現在用いられている薄膜化の手法は、
真空蒸着法あるいはスパッタ法である。しかしながら、
真空蒸着法は、タングステンと酸素の組成比を精密にか
つ再現性よく変えることが困難である。また、スパッタ
法による二酸化タングステン薄膜の作成は、主に金属タ
ングステンをターゲツト材として用い、酸素含有雰囲気
中で行われているが、この手法も、り7 クステンと酸
素の組成比を精密にコントロールすることが困難である
。第2に、三酸化タングステンは、この物質自身電子導
電率が小さく、正極材料として用いるにはグラファイト
等の導電性材料を添加しなければならない。しかし、導
電性材料の添加は、電池の放電容量の低下をきたす欠点
かあり、特に正極薄膜材料として用いるには、このよう
な材料の添加は非常に不利になる。第3に、正極材料に
要求される重要な特性として、リチウムイオンの化学拡
散係数が大きいこと、および充放電の繰り返し特性に優
れていることである。現在までに報告さ乏1でいる三酸
化タングステン薄膜におけるリチウムイオンの拡散係数
として最も大きな値は、4 X 10 ” 771’/
S (MINOGREEN and K。
To date, among tungsten oxides, tungsten trioxide has been used as a positive electrode material for lithium batteries or as an electrolyte (electrode).
Many materials have been studied as materials for chromic display elements. Among these, tungsten trioxide, which is used as a positive electrode material for Lidge-Tham secondary batteries, generally has a large discharge capacity (
, is known to be a promising material with excellent repeated charge and discharge characteristics. Furthermore, recently, tungsten trioxide has been made into a film and its electrochemical properties have been studied. There are the following problems when making tungsten trioxide into a thin film. First of all, when making a lithium battery ultra-thin, there are limits to how battery constituent materials can be made using the compaction method or sintering method, and it is necessary to consider other methods for thinning the battery. The thinning methods currently used are:
These are vacuum evaporation method or sputtering method. however,
In the vacuum evaporation method, it is difficult to change the composition ratio of tungsten and oxygen precisely and with good reproducibility. In addition, the creation of tungsten dioxide thin films by sputtering is mainly performed in an oxygen-containing atmosphere using metallic tungsten as a target material, but this method also requires precise control of the composition ratio of 7 sten and oxygen. It is difficult to do so. Second, tungsten trioxide itself has low electronic conductivity, and to be used as a positive electrode material, a conductive material such as graphite must be added. However, the addition of a conductive material has the disadvantage of reducing the discharge capacity of the battery, and the addition of such a material is particularly disadvantageous when used as a positive electrode thin film material. Thirdly, important properties required of a positive electrode material are a large chemical diffusion coefficient for lithium ions and excellent repeatability of charging and discharging. The largest value of the lithium ion diffusion coefficient in a tungsten trioxide thin film that has been reported to date is 4 x 10''771'/
S (MINOGREEN and K.

S、 KANG、 Th1n 5olid Film 
50.145 (1978) )である。しかし、三酸
化タングステンを薄膜リチウム電池用正極材料として用
いるには、拡散係数の値をさらに1〜2桁程度向上させ
ることが必要となる。さらに、この材料を二次電池用正
極材料として用いるには、充放電に伴うリチウムイオン
の出入りの可逆性の改善が要求される。
S, KANG, Th1n 5olid Film
50.145 (1978)). However, in order to use tungsten trioxide as a positive electrode material for thin-film lithium batteries, it is necessary to further improve the value of the diffusion coefficient by about one to two orders of magnitude. Furthermore, in order to use this material as a positive electrode material for secondary batteries, it is required to improve the reversibility of lithium ion inflow and outflow during charging and discharging.

以上述べたように、従来の薄膜製造法で作成した三酸化
タングステン薄膜には欠点があるとともに、これをリチ
ウム電池の正極薄膜材料として用いるには解決しなけれ
ばならない問題があった。
As described above, the tungsten trioxide thin film produced by the conventional thin film manufacturing method has drawbacks, and there are also problems that must be solved in order to use it as a positive electrode thin film material for lithium batteries.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、薄膜リチウム電池、特に薄膜リチウム
二次電池のための、リチウムイオンの拡散に対して異方
性が存在せずかつ拡散係数が大きく、充放電に伴うリチ
ウムイオンの出入りの可逆性に優れ、放電容量の大きな
リチウム電池用正極を提供することにある。
An object of the present invention is to provide a thin film lithium battery, particularly a thin film lithium secondary battery, which has no anisotropy in the diffusion of lithium ions, has a large diffusion coefficient, and has a reversible flow of lithium ions in and out during charging and discharging. An object of the present invention is to provide a positive electrode for a lithium battery that has excellent properties and a large discharge capacity.

〔発明の概要〕[Summary of the invention]

本発明は、正極を、WO3−δ(0〈δ≦1)なる組成
の酸化タングステン、または遷移金属酸化物(例えば三
酸化モリブデン、五酸化バナジウムなど)を含むWO3
−δ(0くδ≦1)なる組成の酸化タングステンを主体
とする物質からなる酸化タンクステン薄膜とすることが
、その要点である。
In the present invention, the positive electrode is made of tungsten oxide having a composition of WO3-δ (0<δ≦1) or WO3 containing a transition metal oxide (for example, molybdenum trioxide, vanadium pentoxide, etc.).
The key point is to form a tanksten oxide thin film made of a substance mainly consisting of tungsten oxide with a composition of −δ (0 x δ≦1).

現在報告されている正極材料のうち、−次元鎖状あるい
は二次元層状構造を有する材料は、リチウムイオンの拡
散に対して異方性を有する。これらの材料をリチウム電
池の正極材料として用いると8、その異方性のため薄膜
形成時に結晶の配向を考慮する必要があり、これは薄膜
作成を著しく困難にする。そこで、正極材料として、リ
チウムイオンの拡散に対して異方性が存在しない三次元
網]]構造を有する化合物に着目し、その中で三酸化タ
ングステンを採り上げた。この材料は、三次元構造を有
する化合物の中で、放電容量が大きく、充放電の繰り返
しに伴う可逆性も良好で、しかもリチウムイオンの化学
拡散係数は4 x 1O−17d4と比較的大きく、リ
チウム電池用正極材料として有望であると考えられる。
Among currently reported positive electrode materials, materials having a -dimensional chain or two-dimensional layered structure have anisotropy with respect to lithium ion diffusion. When these materials are used as cathode materials for lithium batteries,8 due to their anisotropy, it is necessary to consider crystal orientation when forming thin films, which makes thin film formation extremely difficult. Therefore, as a positive electrode material, we focused on compounds with a three-dimensional network [ ]] structure that does not exhibit anisotropy with respect to lithium ion diffusion, and selected tungsten trioxide among them. Among compounds with a three-dimensional structure, this material has a large discharge capacity and good reversibility with repeated charging and discharging, and the chemical diffusion coefficient of lithium ions is relatively large at 4 x 1O-17d4. It is considered to be promising as a positive electrode material for batteries.

しかしながら、この材料を正極IJ料に用いるためには
、さらに次の問題を解決しなければならない。すなわち
、(1)放電容量の増加、(i:) !Jチウムイオン
の拡散係数の向上、(iii)充放電に伴うリチウムイ
オンの出入りの可逆性の向上、(1v)導電性添加剤を
加えずに電子導電率を上げること、等である。これらの
問題の解決のため本発明で採り上げた対策について、以
下訂述する。
However, in order to use this material for a positive electrode IJ material, the following problem must be solved. That is, (1) increase in discharge capacity, (i:)! (iii) improving the reversibility of lithium ions in and out during charging and discharging; (1v) increasing electronic conductivity without adding conductive additives. The measures adopted in the present invention to solve these problems will be detailed below.

まず、リチウムイオンの拡散係数を向上させるため、正
極作成時に薄膜を非晶質化することでリチウムイオンの
移動できるチャネルの大きさおよび数を増すことを試み
た。また、電子導電率を」二げるために、正極薄膜中に
酸素欠陥を生成させることをもくろんだ。ここで、でき
る酸素欠損型化合物は、放電容量の増加および充放電に
伴うリチウムイオンの出入りの可逆性の向上を期待てき
るものである。そこで、薄膜の作成は、ターゲットに三
曽化タングステンWO3(遷移金属濃化物を含む場合に
ついては後記する)を用い、水素含有の還元雰囲気中で
、スパッタ法により行った。ここで、薄膜作成を還元雰
囲気中で行ったのは、薄膜中に酸素欠陥を作成すること
が容易だからである。
First, in order to improve the diffusion coefficient of lithium ions, we attempted to increase the size and number of channels through which lithium ions can move by making the thin film amorphous when creating the positive electrode. They also planned to generate oxygen defects in the positive electrode thin film in order to increase the electronic conductivity. Here, the resulting oxygen-deficient compound is expected to increase discharge capacity and improve the reversibility of lithium ions in and out during charging and discharging. Therefore, the thin film was formed by sputtering in a hydrogen-containing reducing atmosphere using Sanso tungsten WO3 as a target (the case containing a transition metal concentrate will be described later). Here, the thin film was formed in a reducing atmosphere because it is easy to create oxygen defects in the thin film.

すなわち、通常、酸素欠損型の化合物のWO2−δで表
わされる不定比化合物を合成するには、金属タングステ
ンW、タングステン酸アンモニウムNH,WO4、タン
グステン酸H2WO4、および三酸化タングステンWO
3の混合物を石英管中に真空封入したものを900″C
で24〜48時間反応させて作るが、こうして合成した
原料を蒸発源に用いて真空蒸着法あるいはスパッタ法に
より薄膜化しても、元のタングステンと酸素の組成比を
保つことは困難であり、さらに、原料の合成から電池に
よる評価まで多大の時間と労力を要するという欠点があ
る。そこで、薄膜中の鍍素欠tMiAを容易にかつ再現
性よくコントロールできる手法として、WO2をターゲ
ットに用い、還元雰囲気中でスパッタする方法を用いた
ものである。なお、正極の作成方法トシて、スパッタ法
以外に、イオンブレーティング法、真空蒸着法、あるい
はCVD法によって作成してもよい。
That is, to synthesize a non-stoichiometric compound represented by the oxygen-deficient compound WO2-δ, metal tungsten W, ammonium tungstate NH, WO4, tungstate H2WO4, and tungsten trioxide WO are usually used.
The mixture of 3 was vacuum sealed in a quartz tube and heated to 900″C.
However, even if the raw material synthesized in this way is used as an evaporation source to form a thin film by vacuum evaporation or sputtering, it is difficult to maintain the original composition ratio of tungsten and oxygen. However, the drawback is that it requires a lot of time and effort from synthesis of raw materials to evaluation using batteries. Therefore, as a method for easily and reproducibly controlling the chloride-deficient tMiA in the thin film, a method of sputtering in a reducing atmosphere using WO2 as a target was used. Note that, in addition to the sputtering method, the positive electrode may be created by an ion blating method, a vacuum evaporation method, or a CVD method.

」−2の薄膜作成において、酸素欠損量のコントロール
は、ターゲットに印加する高周波の出力、および放電ガ
ス中の含有水素量を変化させることにより行った。また
、作成した正極の評価は、リチウム電池を作成して行っ
た。すなわち、まずカラス製基板上にスパッタ法により
正極薄膜を形成した。次に、作成した正極薄膜について
、X線11!1折法による結晶性の評価、および電子導
電率の測定を行った。その結果、放電ガス中の含有水素
計一定の場合、高周波出力の上昇とともに結晶化か進み
、電子導電率も上昇した。また、高周波出カ一定の場合
、水素ガス量を増加させてゆくと、電子導電率は上昇す
るが、結晶性の変化はX線的には見られず、すべて非晶
質であった。この薄膜評価の後に、上記正極薄膜上にス
パッタ法により固体電解質薄膜を形成し、最後にリチウ
ム負極を真空蒸着法により形成し、リチウム電池を作成
した。
In the production of the thin film of Example 1-2, the amount of oxygen vacancies was controlled by changing the output of the high frequency wave applied to the target and the amount of hydrogen contained in the discharge gas. In addition, the positive electrode thus created was evaluated by creating a lithium battery. That is, first, a positive electrode thin film was formed on a glass substrate by sputtering. Next, the produced positive electrode thin film was evaluated for crystallinity by X-ray 11!1 folding method and measured for electronic conductivity. As a result, when the hydrogen content in the discharge gas was constant, crystallization progressed as the high frequency output increased, and the electronic conductivity also increased. Further, when the high frequency output was constant, as the amount of hydrogen gas was increased, the electronic conductivity increased, but no change in crystallinity was observed by X-rays, and all were amorphous. After this thin film evaluation, a solid electrolyte thin film was formed on the positive electrode thin film by sputtering, and finally a lithium negative electrode was formed by vacuum evaporation to create a lithium battery.

電池の評価は、まず、(1)電池の電圧−電流特性、(
11)正極中におけるリチウムイオンの化学拡散係数、
について行った。その結果、本発明により作成した正極
薄膜は、いずれも既知の材料の中で最も良い電池特性を
有する二硫化チタンと同等あるいはそれに近い電圧−電
流特性および拡散係数(10−16〜10−15イ/8
)を有していた。また、傾向として、非晶質薄膜の方が
結晶質薄膜よりわずかに大きかった。また、より強い還
元性雰囲気中で作成したタングステン酸化物薄膜、WO
3−δにおいてδ〉]のものでは、電池の起電力、放電
容量とも小さく、電池には不向きであった。次に、電池
の評価として、充放電の繰り返しによるリチウムイオン
の出入りの可逆性について検討した。すなわち、電池を
一定電流により、ある一定電位間で充電・放電を繰り返
し、そのときの充電または放電に要する時間を測定した
。その結果、放電容量0、]5mA/cINを有し、充
放電の繰り返しに伴う劣化の小さい薄膜リチウム二次電
池が得られることかわかった。
To evaluate a battery, first, (1) the voltage-current characteristics of the battery, (
11) Chemical diffusion coefficient of lithium ions in the positive electrode,
I followed him. As a result, the positive electrode thin films prepared according to the present invention have voltage-current characteristics and diffusion coefficients (10-16 to 10-15) that are equivalent to or close to titanium disulfide, which has the best battery characteristics among known materials. /8
). Additionally, as a trend, the amorphous thin film was slightly larger than the crystalline thin film. In addition, a tungsten oxide thin film created in a stronger reducing atmosphere, WO
3-δ >δ>], both the electromotive force and discharge capacity of the battery were small, and it was unsuitable for use as a battery. Next, to evaluate the battery, we examined the reversibility of lithium ion inflow and outflow through repeated charging and discharging. That is, the battery was repeatedly charged and discharged between certain potentials with a constant current, and the time required for charging or discharging at that time was measured. As a result, it was found that a thin film lithium secondary battery having a discharge capacity of 0.5 mA/cIN and exhibiting little deterioration due to repeated charging and discharging could be obtained.

以上の倹削から、三酸化タングステンをターゲットに用
い、還元性雰囲気中でスパッタして得られた薄膜を正極
活物質に用いることにより、電池の電圧−電流稲−性、
正極中でのリチウムイオンの拡散係数、放電容量、およ
び充放電の繰り返しに伴うリチウムイオンの出入りの可
逆性を大きく改善することができることが確認された。
As a result of the above considerations, by using tungsten trioxide as a target and using a thin film obtained by sputtering in a reducing atmosphere as the positive electrode active material, the voltage and current characteristics of the battery can be improved.
It was confirmed that the diffusion coefficient of lithium ions in the positive electrode, the discharge capacity, and the reversibility of lithium ion inflow and outflow accompanying repeated charging and discharging can be significantly improved.

」二記の正極薄膜はWO3−δなる組成を有し、このδ
の値は、X線回折法による結晶性の評価の結果(非晶質
の場合は、類似の条件で作成した結晶質の薄膜について
の値からめた推定値)から、0くδく]の範囲であった
The positive electrode thin film described in ``2'' has a composition of WO3-δ, and this δ
The value of is calculated from the results of crystallinity evaluation by X-ray diffraction method (in the case of amorphous, estimated value based on the values for crystalline thin films prepared under similar conditions). Met.

、酸化タングステンに遷移金属酸化物を加えたものを原
料として、石英管に減圧封入し、それを熱処理すること
により、その結晶構造を変化させ、リチウムイオンが拡
散しやすい形のチャネルを作り、それによって拡散係数
を改善できることが知られている。本発明においても、
正極作成+1fiに、三酸化タングステン中に遷移金属
酸化物、例えば三酸化モリブデン、五酸化バナジウム、
五酸化二オフを含むターゲットを用いスパック法にて作
成した正極を使った電池も、電圧−電流特性、正極中で
のリチウムイオンの拡散係数、放電容量、充放電の繰り
返しに伴うリチウムイオンの出入りの可逆性等、三酸化
タングステンの場合とほぼ同し特性が得られた。
The raw material is tungsten oxide with a transition metal oxide added to it, sealed in a quartz tube under reduced pressure, and heat treated to change its crystal structure and create channels that allow lithium ions to easily diffuse. It is known that the diffusion coefficient can be improved by Also in the present invention,
For positive electrode creation +1fi, transition metal oxides such as molybdenum trioxide, vanadium pentoxide, etc. are added to tungsten trioxide.
Batteries using positive electrodes made by sppacking using targets containing dioffine pentoxide also have voltage-current characteristics, diffusion coefficients of lithium ions in the positive electrode, discharge capacity, and the inflow and outflow of lithium ions during repeated charging and discharging. Almost the same properties as tungsten trioxide, such as reversibility, were obtained.

〔発明の実施例〕[Embodiments of the invention]

本発明による薄膜リチウム電池の実施例を、薄膜圧4+
が酸化タングステンのみのものを実施例1〜14、遷移
金属酸化物を含むものを実施例j5〜2゜として、以下
詳説する。
An example of a thin film lithium battery according to the present invention is shown in FIG.
Examples 1 to 14 are those containing only tungsten oxide, and Examples J5 to 2 are those containing transition metal oxides, and will be explained in detail below.

実施例1〜8: 第1図に薄膜リチウム電池全体の構成を示す。Examples 1-8: Figure 1 shows the overall structure of a thin film lithium battery.

すなわち、ガラス製の基板l上に、それぞれが固体の正
極薄膜2、リチウノ、イオン導電性の固体電解質薄膜3
、リチウム負極薄膜4の順序に順次積層した(11シ造
を有し、リード線5を設けたものである。
That is, a solid positive electrode thin film 2, a solid positive electrode thin film 2, an ion conductive solid electrolyte thin film 3 are placed on a glass substrate l.
, lithium negative electrode thin films 4 were sequentially laminated in this order (having an 11-shield structure, and a lead wire 5 was provided).

本実施例では、電池の作成は次のようにして行った。す
なわち、まず、両面を鏡面研摩した石英製の基板1上に
、スパッタ法により正極薄膜2を作成した。スパッタの
条件は、ターゲツト材として純度999φの三酸化タン
グステンを用い、放電hスには後記する比率で配合した
ArとH2を使用し、放電ガス圧は3 X 10 ” 
Torrである。この条件で、市販のRFスパッタ装首
を用いてスパッタした。スパッタLl−+i1、基板を
水冷した。ここで、タングステンと酸素の比のコントロ
ールは、放電ガス中の水素含有量を変化させることによ
り、あるいは高周波出力を変えることにより行った。ま
ず、放電カスに90%Ar −1o % H2を用い、
高周波出力2.5.3.8.5.0.6.4.7.6W
/anでスパッタを行い、正極薄膜を作成した(実施例
1〜5)。次に、高周波出力を2.5 W/cl一定と
し、放電カス中の水素含有率を変化させてスパッタを行
った。すなわち、放電カスに954Ar 5 % H2
,90%Ar−]0%H2,70%Ar−3Q%H2の
3種を用いた( 825 %、0230%の場合をそれ
ぞれ実施例6.7oH210%は前記実施例1)。作成
した正極薄膜については、X線回折法を用いて、結晶性
の検討を行った。その後に、」二記正極薄膜−ヒに、0
.6 T−143104Q、4 L、+3P○4固体電
解質薄膜3(厚さ3,5μm)をスパッタ法により形成
し、最後に、金属リチウム負極薄膜4(厚さ4μm)を
真空蒸着法により形成して、薄膜リチウム電池を作成し
た。
In this example, the battery was created as follows. That is, first, a positive electrode thin film 2 was formed by sputtering on a quartz substrate 1 whose both sides were mirror-polished. The sputtering conditions were as follows: Tungsten trioxide with a purity of 999φ was used as the target material, Ar and H2 mixed in the ratio described later were used for the discharge gas, and the discharge gas pressure was 3 x 10''.
Torr. Sputtering was performed under these conditions using a commercially available RF sputtering device. After sputtering Ll-+i1, the substrate was water-cooled. Here, the ratio of tungsten to oxygen was controlled by changing the hydrogen content in the discharge gas or by changing the high frequency output. First, using 90% Ar -1o% H2 as the discharge scum,
High frequency output 2.5.3.8.5.0.6.4.7.6W
/an sputtering was performed to create positive electrode thin films (Examples 1 to 5). Next, sputtering was performed while keeping the high frequency output constant at 2.5 W/cl and varying the hydrogen content in the discharge scum. In other words, 954Ar 5% H2 is added to the discharge scum.
, 90%Ar-]0%H2, and 70%Ar-3Q%H2 (Example 6 for 825% and 0230%, respectively; Example 1 for 7oH210%). The crystallinity of the produced positive electrode thin film was examined using X-ray diffraction. After that, 0
.. 6 T-143104Q, 4 L, +3P○4 A solid electrolyte thin film 3 (3.5 μm thick) was formed by sputtering, and finally, a metal lithium negative electrode thin film 4 (4 μm thick) was formed by vacuum evaporation. , created a thin-film lithium battery.

作成した薄膜電池の評価は、次のようにして行った。ま
ず、初期特性として、電池の電圧−電流特性および正極
中でのリチウムイオンの化学拡散係数について測定を行
った。電圧−電流特性は短絡電流(電池を短絡したとき
に流れる電流)により表わした。そして最後に、充放電
の繰り返し特性について、次のようにして検討した。す
なわち、一定電流で電池を充放電し、そのときの充電あ
るいは放電に要する時間を測定することにより評価した
The produced thin film battery was evaluated as follows. First, as initial characteristics, the voltage-current characteristics of the battery and the chemical diffusion coefficient of lithium ions in the positive electrode were measured. The voltage-current characteristics were expressed by short-circuit current (current that flows when the battery is short-circuited). Finally, the repeated charging and discharging characteristics were examined as follows. That is, evaluation was made by charging and discharging the battery with a constant current and measuring the time required for charging or discharging at that time.

電池の評価の結果とX線回折法による検討結果をまとめ
て、第2図の図表に実施例]〜7として示したが1、以
下訂純に説明する。まず、X線回折法による正極薄膜の
結晶性評価の結果、実施例1〜3の低いスパッタ出力で
作成した薄膜は非晶質であるのに対して、高いスパッタ
出力で作成したもの(実施例4,5)は配向した結晶質
の薄膜であった。すなわち、実施例4のものは(110
)に配向したW2o Ossであり、実施例5のものは
(010)に配向したW18049であった。以上の結
果から、高周波出力を増加させると、薄膜中の酸素欠損
量が増加してゆくことがわかった。また、放電ガス中の
水素含有量を変えてスパッタした結果は、X線による検
討から非晶質であることかわかった。
The results of the evaluation of the battery and the results of the study using the X-ray diffraction method were summarized and shown as Examples 1 to 7 in the diagram of FIG. 2, and will be explained in detail below. First, as a result of the crystallinity evaluation of the positive electrode thin film by X-ray diffraction method, the thin films created with low sputtering power in Examples 1 to 3 are amorphous, whereas the thin films created with high sputtering power (Example 1) are amorphous. 4, 5) were oriented crystalline thin films. That is, in Example 4, (110
) oriented W2o Oss, and that of Example 5 was W18049 oriented (010). From the above results, it was found that increasing the high frequency output increases the amount of oxygen vacancies in the thin film. Moreover, the results of sputtering with different hydrogen contents in the discharge gas were found to be amorphous by X-ray examination.

次に、これらの正極薄膜を用いて電池を作成し、その特
性を検討したが、以下これについて説明する。まず、ス
パッタ出力と電池特性との関係について検討した。すな
わち、三酸化タングステンを出発物質とし、放電ガス中
の水素含有量を一定として、高周波出力を上げてスパッ
タして正極薄膜を作成しく実施例1〜4)、前述の手法
で電池化し、その特性の判定を行った。その結果、電池
の電圧−電流特性および正極中てのリチウムイオンの化
学拡散係数は、いずれも大きな変化は見られなかった。
Next, batteries were created using these positive electrode thin films and their characteristics were investigated, which will be explained below. First, we investigated the relationship between sputtering output and battery characteristics. That is, using tungsten trioxide as a starting material and sputtering with high frequency output while keeping the hydrogen content in the discharge gas constant, a positive electrode thin film was created by sputtering (Examples 1 to 4), which was made into a battery using the method described above, and its characteristics were A judgment was made. As a result, no major changes were observed in either the voltage-current characteristics of the battery or the chemical diffusion coefficient of lithium ions in the positive electrode.

リチウムイオンの化学拡散係数は1.0715〜1O−
16d乙を示し、既知の正極材料中量も優れている二硫
化チタン(拡散係数5 X 10 ” i15 )とほ
ぼ同じ値であった。次に、高周波出力として、先の倹削
のうちから最も大きな短絡電流値および拡散係数が得ら
れた場合の値2.5W/cJを選択し、放電ガス中の水
素含有量を変え(それぞれ5%、10%。
The chemical diffusion coefficient of lithium ions is 1.0715~1O-
16d, which is almost the same value as titanium disulfide (diffusion coefficient: 5 x 10" i15), which is excellent in known positive electrode material content.Next, in terms of high frequency output, it is the most economical of the previous methods. A value of 2.5 W/cJ was selected for obtaining a large short-circuit current value and diffusion coefficient, and the hydrogen content in the discharge gas was varied (5% and 10%, respectively).

30係)で、正極薄膜を作成した(実施例6.1.7)
Section 30), a positive electrode thin film was created (Example 6.1.7)
.

一つまり、放電ガス中の水素含有量と電池特性との関係
について検討した。その結果、先の高周波出力を変えた
場合と同様、電池の電圧−電流特性および正極中のリチ
ウムイオンの化学拡散係数は、いずれも大きな変化は見
られず、これらの値は前述の二硫化チタンの値とほぼ同
等であった。続いて、薄膜の結晶性か電池特性に与える
影響について倹削してみた。まず、基板加熱(300°
C)シた状態で高周波出力3.8W/ciでスパッタす
ることにより結晶化させた試料(実施例8)と、基板を
水冷した状態で同じ高周波出力でスパッタして作成した
非晶質の試料(実施例2)とを比べてみた。両者には、
電池の電圧−電流特性および正極中のリチウムイオンの
拡散係数に大きな違いは見られず、どちらも二イσIC
化チタンの値とほぼ同じ値であった。
First, we investigated the relationship between the hydrogen content in the discharge gas and battery characteristics. As a result, similar to the case where the high frequency output was changed, there were no major changes in the voltage-current characteristics of the battery or the chemical diffusion coefficient of lithium ions in the positive electrode, and these values were similar to those of the titanium disulfide mentioned above. The value was almost the same as that of . Next, I took a closer look at the effect of thin film crystallinity on battery characteristics. First, substrate heating (300°
C) A sample crystallized by sputtering with a high frequency output of 3.8 W/ci in a closed state (Example 8) and an amorphous sample created by sputtering with the same high frequency power while the substrate was water-cooled. (Example 2) was compared. Both have
There were no major differences in the voltage-current characteristics of the battery or the diffusion coefficient of lithium ions in the positive electrode, and both were 2σIC.
The value was almost the same as that of titanium chloride.

さらに、高周波出力を変化させることにより三酸化タン
グステンの還元状態、すなわち薄膜中の酸素欠損量を変
えて結晶質薄膜を作成(実施例1.4.5.8)シ、電
池特性に与える影響について換向した。その結果、結晶
質薄膜においても、還元状態の違いによる電池特性の違
いはほとんど見られなかった。ここで、結晶質薄膜と非
晶質薄膜との電池特性の違いは、結晶質薄膜の方が短絡
電流、拡散係数共に小さいことであるが、他の材料より
遥かに良好であった。以上の倹dJから、三酸化タング
ステンWO3を出発物質として、放電カス中の水素含有
量一定の還元雰囲気中で高周波出力を変化させるか、あ
るいは高周波出カ一定で放′屯カス中の水素含有量を増
加させてスパッタすることにより、タングステン酸化物
WO3−δにおけるδの値を、零から徐々に上げて還元
することができた。
Furthermore, by changing the high-frequency output, we created a crystalline thin film by changing the reduction state of tungsten trioxide, that is, the amount of oxygen vacancies in the thin film (Example 1.4.5.8), and the effect on battery characteristics. I turned. As a result, even in the case of crystalline thin films, there were almost no differences in battery characteristics due to differences in reduction state. Here, the difference in battery characteristics between the crystalline thin film and the amorphous thin film is that the crystalline thin film had a smaller short circuit current and diffusion coefficient, but was much better than the other materials. From the above dJ, using tungsten trioxide WO3 as a starting material, either change the high frequency output in a reducing atmosphere with a constant hydrogen content in the discharge scum, or change the high frequency output and change the hydrogen content in the discharge scum with a constant high frequency output. By sputtering with increasing tungsten oxide, the value of δ in tungsten oxide WO3-δ could be gradually increased from zero and reduced.

そして、その薄膜特性にりいて倹削した結果、この組成
範囲では、短絡電流および正極中のリチウムイオンの化
学拡散係数は、還元か進むにつれて若干小さくなる傾向
が見られるが、10″′15〜+o−1fiイ4と大き
な値を示した。
As a result of making frugal adjustments based on the thin film properties, in this composition range, the short circuit current and the chemical diffusion coefficient of lithium ions in the positive electrode tend to decrease slightly as the reduction progresses, but from 10'''15 to It showed a large value of +o-1fi-4.

次に、これらの正極薄膜を用いた薄膜リチウム電池の、
充放電に伴うリチウムイオンの出入りの可逆性について
検討した。その結果、充放電の繰り返しに伴う劣化は、
実施例のいずれの電池においても小さく、約10回の繰
り返しで10係であった。
Next, we will discuss thin film lithium batteries using these positive electrode thin films.
We investigated the reversibility of lithium ion inflow and outflow during charging and discharging. As a result, deterioration due to repeated charging and discharging,
In all of the batteries of Examples, the size was small, and it was 10 times after about 10 repetitions.

その後も、充放電の繰り返しにより徐々に放電容量の減
少は見られるが、約100回以上では容量の減少はまっ
た(見られず、良好な充放電が行えることを確認した。
After that, a gradual decrease in discharge capacity was observed due to repeated charging and discharging, but after about 100 times or more, the capacity did not decrease significantly (no significant decrease was observed, confirming that good charging and discharging could be performed).

さらに、この中で、実施例1.2の電池は、放電容量も
大きく、薄膜の膜厚25μm、直径2喘で、2.5V二
1.5Vの繰り返しで、約0.15 mAh/7であっ
た。
Furthermore, among these, the battery of Example 1.2 has a large discharge capacity, with a thin film thickness of 25 μm, a diameter of 2 mm, and a cycle of 2.5 V to 1.5 V, with a discharge capacity of approximately 0.15 mAh/7. there were.

以」二の検討から、スパッタ法により三酸化タングステ
ンをターゲットに用い、水素含有の還元雰囲気中で作成
した本発明による正極薄膜は、グラファイトのような導
電性添加物を加えることなく、電圧−電流特性およびリ
チウムイオンの化学拡散係数を大きく改善することが確
認された。さらに、充放電の繰り返しに伴うリチウムイ
オンの出入りの可逆性について検討した結果、これらは
良好な可逆性を有し、かつ0.15 m AhArlと
いう大きな放電容量を有する薄膜リチウム二次電池を得
ることができた。
From the above two studies, it has been found that the positive electrode thin film of the present invention, which is created by sputtering using tungsten trioxide as a target in a hydrogen-containing reducing atmosphere, can maintain voltage-current characteristics without adding conductive additives such as graphite. It was confirmed that the properties and chemical diffusion coefficient of lithium ions were significantly improved. Furthermore, as a result of examining the reversibility of lithium ion inflow and outflow during repeated charging and discharging, it was possible to obtain a thin film lithium secondary battery that has good reversibility and a large discharge capacity of 0.15 m AhArl. was completed.

以上の各実施例において、δの値は、正極薄膜が結晶質
の場合は、X線回折法による結晶性の評価の結果からめ
た。また、非晶質の場合は、類似の条件で作成した結晶
質の薄膜のδの値を基にした推定値で示した。いずれも
、0〈δ〈]の範囲の値である。
In each of the above Examples, when the positive electrode thin film is crystalline, the value of δ was determined based on the results of crystallinity evaluation by X-ray diffraction method. In addition, in the case of an amorphous film, an estimated value is shown based on the value of δ of a crystalline thin film prepared under similar conditions. All values are in the range of 0<δ<].

実施例9〜14: 放電カスとして、前述の実施例の場合よりも水素含有率
の高い50φAr−50%H2を用い、高周波出力を5
.0.6.4.7.6 W肩と変化させ、それぞれの高
周波出力に対し基板水冷、基板300 ”C加の2通り
のスパッタ条件で正極薄膜を作成した。その結果を、第
2図の実施例9〜14として示す。その結果、前述の実
施例1〜8の場合と同様な傾向であり、拡散係数、短絡
電流とも前の実施例と同等の値であった。
Examples 9 to 14: As the discharge scum, 50φAr-50%H2 with a higher hydrogen content than in the previous example was used, and the high frequency output was increased to 5.
.. 0.6.4.7.6 A positive electrode thin film was created under two sputtering conditions: substrate water cooling and substrate addition at 300"C for each high frequency output. The results are shown in Figure 2. These are shown as Examples 9 to 14. As a result, the trends were similar to those of Examples 1 to 8 described above, and both the diffusion coefficient and short circuit current were the same as those of the previous examples.

実施例15〜20: 遷移金属酸化物を含む三酸化タングステン系の正極薄膜
を用いた実施例を説明する。すなわち、三酸化タングス
テンに、三酸化モリブデン、五酸化バナジウム、五酸化
ニオブをペレットとして添−加したものをターゲツト材
として用い、高周波出力2.5W/a&、放電ガス圧3
 X 10 ” Torr、放電ガス90 % Ar−
1oφH2で、2時間スパッタして正極薄膜を作成した
。電池の作成方法および電池の評価は、前述の三酸化タ
ングステンの場合と同じ手法により行った。その結果を
第3図の図表にまとめて示す。その結果、特性的には遷
移金属酸化物の添加により電圧−電流特性、リチウムイ
オンの拡散係数には大きな差は見られなかった。一方、
放電容量は添加によって0.08 mAh/alとわず
かに小さくなるか、充放電の繰り返しに伴うリチウムイ
オンの出入りの可逆性はわずかに改善された。
Examples 15 to 20: Examples using a tungsten trioxide-based positive electrode thin film containing a transition metal oxide will be described. That is, tungsten trioxide to which molybdenum trioxide, vanadium pentoxide, and niobium pentoxide were added as pellets was used as the target material, and the high frequency output was 2.5 W/a and the discharge gas pressure was 3.
X 10” Torr, discharge gas 90% Ar-
A positive electrode thin film was prepared by sputtering at 10H2 for 2 hours. The method for producing the battery and the evaluation of the battery were performed using the same method as in the case of tungsten trioxide described above. The results are summarized in the chart in Figure 3. As a result, no significant difference in voltage-current characteristics or lithium ion diffusion coefficient was observed due to the addition of transition metal oxides. on the other hand,
Due to the addition, the discharge capacity was slightly reduced to 0.08 mAh/al, and the reversibility of lithium ion inflow and outflow with repeated charging and discharging was slightly improved.

以上の各実施例で説明したように、本発明によると、薄
膜リチウム電池用正極材料として、三次元網1」構造を
有し、リチウムイオンの拡散に対して異方性が存在しな
い三酸化タングステンを出発物質として選び、水素含有
の還元雰囲気中でスパック法により正極薄膜を作成した
。そして、この薄膜を用いることにより、正極中に電子
導電性材料を添加することなしに、電池の電圧−電流特
性およびリチウムイオンの拡散係数を大幅に改善するこ
とができた。また、充放電の繰り返し特性を改善するこ
とができ、可逆性に優れたリチウム二次電池を得た。さ
らに、放電容量は、2喘径正極膜厚25μm放電深度7
0係で、0.15 mAh/cr!と大きな値を得るこ
とができた。そして、これらの効果が顕著に現われる正
極薄膜のタングステンと酸表の組成範囲は、タングステ
ン酸化物WO3−δにおけるδの値としてOくδ〈lの
範囲が有効であることがわかった。
As explained in the above embodiments, according to the present invention, tungium trioxide, which has a three-dimensional network structure and has no anisotropy with respect to lithium ion diffusion, can be used as a positive electrode material for thin-film lithium batteries. was selected as the starting material, and a positive electrode thin film was prepared by the spackle method in a hydrogen-containing reducing atmosphere. By using this thin film, it was possible to significantly improve the voltage-current characteristics and lithium ion diffusion coefficient of the battery without adding an electronically conductive material to the positive electrode. Furthermore, a lithium secondary battery with improved charge/discharge repeatability and excellent reversibility was obtained. Furthermore, the discharge capacity is 2 mm diameter positive electrode film thickness 25 μm discharge depth 7
0 section, 0.15 mAh/cr! I was able to get a great value. It has been found that the composition range of the tungsten and acid surface of the positive electrode thin film in which these effects are noticeable is effective within the range of O x δ<l as the value of δ in the tungsten oxide WO3-δ.

また、本発明によるタングステン酸化物を用いた正極薄
膜は、リチウムイオンの拡散に対して異方性が存在せず
、二次元層状化合物の場合に見られるようなリチウムイ
オンの拡散の大きな方向へ結晶を配向させるという技術
課題を解決することができる。
In addition, the positive electrode thin film using tungsten oxide according to the present invention has no anisotropy with respect to lithium ion diffusion, and crystals are directed in the direction of large lithium ion diffusion as seen in the case of two-dimensional layered compounds. The technical problem of orienting can be solved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、リチウムイオン
の拡散に対して異方性が存在せずかつ拡散係数が大きく
、充放電に伴うリチウムイオンの出入りの可逆性に優れ
、放電容量の大きな薄膜リチウム二次電池用の正極が得
られるので、薄膜リチウム負極薄膜の分野における効果
は顕著である。
As explained above, according to the present invention, there is no anisotropy in the diffusion of lithium ions, the diffusion coefficient is large, the reversibility of lithium ions in and out during charging and discharging is excellent, and the discharge capacity is large. Since a positive electrode for a thin film lithium secondary battery can be obtained, the effect in the field of thin film lithium negative electrode thin film is significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は薄膜リチウム電池全体の構成を示す断面図、第
2図は正極に酸化タングステンを用いた本発明の実施例
のデータをまとめた図表、第3図は正極に遷移金属酸化
物を含む酸化タングステンを主体とする物質を用いた本
発明の実施例のデータをまとめた図表である。 符号の説明 1・・・基板 2・・・正極薄膜 3・・・固体電解質薄膜 4・・・リチウム負極薄膜5
・・・リード線 代理人弁理士 中村純之助 オ 1 k ら 第1頁の続き ■発明者 工藤 徹− 国分寺市東恋ケ窪1丁目28幡地 株式会社日立製作所
中央研究所内
Fig. 1 is a cross-sectional view showing the overall structure of a thin-film lithium battery, Fig. 2 is a chart summarizing data of an example of the present invention using tungsten oxide as the positive electrode, and Fig. 3 contains a transition metal oxide in the positive electrode. 1 is a chart summarizing data of an example of the present invention using a substance mainly composed of tungsten oxide. Explanation of symbols 1... Substrate 2... Positive electrode thin film 3... Solid electrolyte thin film 4... Lithium negative electrode thin film 5
...Lead line agent Patent attorney Junnosuke Nakamura 1k et al.Continued from page 1 ■Inventor Toru Kudo- 1-28 Hata, Higashikoigakubo, Kokubunji City, Hitachi, Ltd. Central Research Laboratory

Claims (1)

【特許請求の範囲】[Claims] リチウムを活物質とする負極と、リチウムイオン導電性
電解質層と、酸化タングステンを活物質とする正極とを
積層してなる薄膜リチウム電池であって、前記正極が、
WO3−δ<0<δ<1)なる組成の酸化タングステン
、または遷移金属酸化物をぼむWO3−δ<0<δ〈1
)なる組成の酸化タングステンを主体とする物質からな
る酸化タングステン薄膜であることを特徴とする薄膜リ
チウム電池。
A thin film lithium battery comprising a negative electrode made of lithium as an active material, a lithium ion conductive electrolyte layer, and a positive electrode made of tungsten oxide as an active material, the positive electrode comprising:
Tungsten oxide with a composition of WO3-δ<0<δ<1) or WO3-δ<0<δ<1 containing a transition metal oxide
) A thin film lithium battery characterized in that it is a tungsten oxide thin film made of a substance mainly composed of tungsten oxide.
JP58176412A 1983-09-26 1983-09-26 Thin film lithium battery Granted JPS6068558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58176412A JPS6068558A (en) 1983-09-26 1983-09-26 Thin film lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58176412A JPS6068558A (en) 1983-09-26 1983-09-26 Thin film lithium battery

Publications (2)

Publication Number Publication Date
JPS6068558A true JPS6068558A (en) 1985-04-19
JPH0547943B2 JPH0547943B2 (en) 1993-07-20

Family

ID=16013229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58176412A Granted JPS6068558A (en) 1983-09-26 1983-09-26 Thin film lithium battery

Country Status (1)

Country Link
JP (1) JPS6068558A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073684A (en) * 1988-10-27 1991-12-17 Brother Kogyo Kabushiki Kaisha Sheet type storage battery and printed wiring board containing the same
US5707556A (en) * 1995-12-21 1998-01-13 The Dow Chemical Company Tungsten oxide for reversible alkali metal intercalation reactions
US6916679B2 (en) 2002-08-09 2005-07-12 Infinite Power Solutions, Inc. Methods of and device for encapsulation and termination of electronic devices
US9786873B2 (en) 2008-01-11 2017-10-10 Sapurast Research Llc Thin film encapsulation for thin film batteries and other devices
US9793523B2 (en) 2002-08-09 2017-10-17 Sapurast Research Llc Electrochemical apparatus with barrier layer protected substrate
US10680277B2 (en) 2010-06-07 2020-06-09 Sapurast Research Llc Rechargeable, high-density electrochemical device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073684A (en) * 1988-10-27 1991-12-17 Brother Kogyo Kabushiki Kaisha Sheet type storage battery and printed wiring board containing the same
US5147482A (en) * 1988-10-27 1992-09-15 Brother Kogyo Kabushiki Kaisha Method of forming a throughhole in a sheet type storage battery
US5707556A (en) * 1995-12-21 1998-01-13 The Dow Chemical Company Tungsten oxide for reversible alkali metal intercalation reactions
US6916679B2 (en) 2002-08-09 2005-07-12 Infinite Power Solutions, Inc. Methods of and device for encapsulation and termination of electronic devices
US9793523B2 (en) 2002-08-09 2017-10-17 Sapurast Research Llc Electrochemical apparatus with barrier layer protected substrate
US9786873B2 (en) 2008-01-11 2017-10-10 Sapurast Research Llc Thin film encapsulation for thin film batteries and other devices
US10680277B2 (en) 2010-06-07 2020-06-09 Sapurast Research Llc Rechargeable, high-density electrochemical device

Also Published As

Publication number Publication date
JPH0547943B2 (en) 1993-07-20

Similar Documents

Publication Publication Date Title
Sakurai et al. V2O5-P2O5 glasses as cathode for lithium secondary battery
US6824922B2 (en) Thin film for anode of lithium secondary battery and manufacturing method thereof
Rao et al. Synthesis and electrochemical properties of Ti doped LiCoO2 thin film cathodes
Hwang et al. Fabrication and characterization of an Li Mn O thin-film cathode for rechargeable lithium microbatteries
WO2003085758A1 (en) Improved lithium-based rechargeable batteries
Nishio et al. Low resistance at LiNi1/3Mn1/3Co1/3O2 and Li3PO4 interfaces
JPH1125980A (en) Positive electrode active material for non-aqueous electrolyte secondary battery and evaluating method thereof
Wang et al. Preparation and characterization of thin film Li4Ti5O12 electrodes by magnetron sputtering
JP2810013B2 (en) Method of forming oxide thin film and oxide thin film
Shembel et al. Electrolytic molybdenum oxides in lithium batteries
Lakshmi-Narayana et al. Pulsed laser–deposited Li 2 TiO 3 thin film electrodes for energy storage
Daramalla et al. Superior electrochemical performance of amorphous titanium niobium oxide thin films for Li-ion thin film batteries
Hayashi et al. Preparation of positive LiCoO2 films by electron cyclotron resonance (ECR) plasma sputtering method and its application to all-solid-state thin-film lithium batteries
JPS6068558A (en) Thin film lithium battery
JP2006156284A (en) Lithium-ion conductor and secondary battery using it
Matsumura et al. Electrochemical performances for preferred oriented PLD thin-film electrodes of LiNi0. 8Co0. 2O2, LiFePO4 and LiMn2O4
JP3237394B2 (en) Electrochemical element
Chiu et al. The electrochemical performance of bias-sputter-deposited nanocrystalline nickel oxide thin films toward lithium
KR100495674B1 (en) A cathode thin film for all solid state battery, preparation method thereof, and lithium thin film battery using the same
JP2003217580A (en) Electrode for lithium secondary battery and its manufacturing method
US11031581B1 (en) Sputtering deposition of an anode material and cathode material from a single target source that are nanostructured and electrochemically coupled for manufacturing of lithium ion batteries
Ramana et al. Pulsed-laser deposited LiNi0. 8Co0. 15Al0. 05O2 thin films for application in microbatteries
Nayak et al. Structural and electrochemical kinetics of Na–Fe–Mn–O thin-film cathode: a synergistic effect of deposition conditions
Nichelson et al. Electrical, electrochemical, and cycling studies of high-power layered Li (Li 0.05 Ni 0.7− x Mn 0.25 Co x) O 2 (x= 0, 0.1, 0.3, 0.5, and 0.7) cathode materials for rechargeable lithium ion batteries
JPH03271365A (en) Electrode material