JPS6068330A - Optical logical circuit element - Google Patents

Optical logical circuit element

Info

Publication number
JPS6068330A
JPS6068330A JP17649183A JP17649183A JPS6068330A JP S6068330 A JPS6068330 A JP S6068330A JP 17649183 A JP17649183 A JP 17649183A JP 17649183 A JP17649183 A JP 17649183A JP S6068330 A JPS6068330 A JP S6068330A
Authority
JP
Japan
Prior art keywords
optical waveguide
refractive index
light
input
guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17649183A
Other languages
Japanese (ja)
Other versions
JPS6151306B2 (en
Inventor
Hitoshi Kawaguchi
仁司 河口
Kenjiyu Otsuka
建樹 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP17649183A priority Critical patent/JPS6068330A/en
Publication of JPS6068330A publication Critical patent/JPS6068330A/en
Publication of JPS6151306B2 publication Critical patent/JPS6151306B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F3/00Optical logic elements; Optical bistable devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To operate totally the principal part of logical arithmetic with light and to perform extremely fast operation at room temperature by employing specific constitution for an input and an output optical wave guide, etc. CONSTITUTION:Two arms 3 and 4 have the same nonlinear refractive index. One-side terminals of arms 3 and 4 are connected to a guide 1 for input so that an Y-shaped branching path 5 is formed together with the input guide 1, and the otherside terminals are connected to a guide 2 for output so that an Y-shaped coupling part 6 is formed together with the optical wave guide 2. Consequently, the power of light from the guide 1 is divided into two through the branching part 5 and coupled completely through the coupling part 6. All the light guides are single-mode optical wave guides having cores and clads covering the clads and made of materials which vary in refractive index with the intensity of propagating light. In this case, only either of the core and clad as constituent parts of the optical wave guide may have a nonlinear refractive index. An electrode 7 applies an electric field into one arm 4.

Description

【発明の詳細な説明】 [技術分野] 本発明は、超小型に構成することができ、光パルス信号
により制御でき、しかも超高速処理かできる光論理回路
素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an optical logic circuit element that can be constructed in an ultra-small size, can be controlled by optical pulse signals, and can perform ultra-high-speed processing.

[従来技術] 従来、論理演算および信号処理用素子としては、シリコ
ン(Si)−LSIが用いられていたが。
[Prior Art] Conventionally, silicon (Si)-LSIs have been used as logic operation and signal processing elements.

実現される演算速度がほぼ物理的限界に近づいてきたた
め、さらに高速の演算処理をめざして、ガリウムヒ素(
GaAs) −LSIやジョセフソン接合を用いるLS
Iが検討されている。
As the computational speed that can be achieved is approaching its physical limit, we are aiming for even faster computational processing using gallium arsenide (
GaAs) -LS using LSI or Josephson junction
I is being considered.

しかしながら、GaAs−LSIでは演算速度の限界が
5pS程度であること、ジョセフソン接合LSIではそ
の動作原理l−,極低温が必要なことなどの問題がある
However, GaAs-LSIs have problems such that the limit of calculation speed is about 5 pS, and Josephson junction LSIs require operating principles l- and extremely low temperatures.

[目的] 本発明の目的は1以上のような欠点を除去し、論理演算
の主要部分を全て光により行い、しかも室温で超高速動
作が可能な光論理回路素子を提供することにある。
[Objective] An object of the present invention is to provide an optical logic circuit element which eliminates one or more of the above drawbacks, performs all the main parts of logical operations using light, and is capable of ultrahigh-speed operation at room temperature.

[発明の構成] 本発明は、入力用光導波路と、出力用光導波路と、光強
度に依存する非線形屈折率を持つ2木の単一モード光導
波路とを有し、2木の単一モード光導波路の各々に同一
パワーの光が入射されるように、2木のiiM−モード
光導波路の各一端を、入力用光導波路の一端に接続し、
2木の単一モード先導波路の各他端を出力月光導波路の
一端に接続し、下記関係 文、・ N、生立20 Nま ただし、 文8 ニ一方の単一モード光導波路の長さ文。:他方の
単一モード光導波路の長さN1ニ一方の単一モード光導
波路の屈折率N2:他方の弔−モード光導波路の屈折率
を満たすように構成する。
[Structure of the Invention] The present invention has an input optical waveguide, an output optical waveguide, and two single-mode optical waveguides having a nonlinear refractive index that depends on the light intensity. Connecting one end of each of the two iiM-mode optical waveguides to one end of the input optical waveguide so that light of the same power is incident on each of the optical waveguides,
Connect each other end of the two single-mode leading waveguides to one end of the output moonlight waveguide, and form the following relational statement: ・ N, standing 20 N, but, sentence 8 D. The length of one single-mode optical waveguide. Sentence. : length N1 of the other single mode optical waveguide; refractive index N2 of one single mode optical waveguide; refractive index of the other single mode optical waveguide.

[実施例] 以下に図面を参照して本発明の詳細な説明する。[Example] The present invention will be described in detail below with reference to the drawings.

第1図は本発明にかかる光論理回路素子の一実施例を示
す構成図であって、ここに、lは申−モードの入力用光
導波路、2は単一 モードの出力用光導波路、3は単一
モードの光導波路からなる長さ文1の一方のアーム、4
は単一モードの光導波路からなる長さfL2の他方のア
ームである。2本のアーム3および4には、同一の非線
形屈折率を持たせる。両アーム3および4の 各一端を
、入力用光導波路1と共に、Y形の分岐部分5が形成さ
れるように入力用光導波路lに接続し、各他端したがっ
て、入力用光導波路lからの光のパワーを、分岐部分5
において、 1/2ずつ分離し、分離された光のパワー
を結合部分8において完全に結合することができる。
FIG. 1 is a block diagram showing an embodiment of an optical logic circuit element according to the present invention, where l is a single-mode input optical waveguide, 2 is a single-mode output optical waveguide, and 3 is a single-mode output optical waveguide. is one arm of length 1 consisting of a single mode optical waveguide, 4
is the other arm of length fL2 consisting of a single mode optical waveguide. The two arms 3 and 4 are made to have the same nonlinear refractive index. One end of each of the arms 3 and 4 is connected to the input optical waveguide l together with the input optical waveguide 1 so that a Y-shaped branch part 5 is formed, and each other end is connected to the input optical waveguide l so that a Y-shaped branch part 5 is formed. Branching part 5 of the power of light
, the power of the separated lights can be completely combined at the coupling part 8.

−上述した全ての先導波路は、コアおよびコアを被覆す
るクラッドを有する単一モード導波路であり、伝搬する
光の強度によってその屈折率が変化する材料により構成
する。もちろん、光導波路の構成部分であるコアまたは
クラッドの少なくとも一方が、非線形屈折率をもてばよ
い。7は一方のアーム4中に電界を印加するための電極
である。
- All the guide waveguides mentioned above are single mode waveguides with a core and a cladding covering the core, and are constructed of a material whose refractive index changes depending on the intensity of the propagating light. Of course, at least one of the core and the cladding, which are the constituent parts of the optical waveguide, may have a nonlinear refractive index. Reference numeral 7 denotes an electrode for applying an electric field to one arm 4.

以」−のような構成において、入力用光導波路1から入
射された光の強度を ■6とすると、入力用光導波路l
からの光が分岐部分5において、1/2ずつに分離され
て、2木のアーム3および4の各々に導かれ、両アーム
3および4内を伝搬して、結合部分6において、完全に
結合される場合には、出力用光導波路2から出射される
光の強度■、は、 となる。ここで、 N2は先導波路内における光の強度
I8に対応した屈折率変化である。なお、先導波路の屈
折率nは、 n=n、+n、*I、。
In the configuration shown below, if the intensity of the light incident from the input optical waveguide 1 is 6, then the input optical waveguide l
At the branching part 5, light from In this case, the intensity of light emitted from the output optical waveguide 2 is as follows. Here, N2 is the refractive index change corresponding to the light intensity I8 in the leading waveguide. Note that the refractive index n of the leading waveguide is n=n, +n, *I.

により表される。noは光の入射強度に依存しないh屈
折率である。6文は、1文、−1,l、すなわち、2つ
のアーム3および4の長さの差、a= 2π/ε。cn
入。は定数であり、ε。は真空の誘電率、Cは真空中の
光速、入、は光の真空中での波長である。δは伝搬光が
屈折率の非線形性を生じない程度に弱い条件のもとての
、2つのアーム3および4内を伝搬してきた光のY形の
結合部分4における位相差である。
Represented by no is the h refractive index that does not depend on the incident light intensity. 6 sentences is 1 sentence, -1,l, i.e. the difference in length of the two arms 3 and 4, a = 2π/ε. cn
Enter. is a constant and ε. is the dielectric constant of vacuum, C is the speed of light in vacuum, and C is the wavelength of light in vacuum. δ is the phase difference in the Y-shaped coupling portion 4 of the light that has propagated within the two arms 3 and 4 under conditions that are weak enough that the propagating light does not cause nonlinearity in the refractive index.

2木のアーム3および4の長さ、あるいは電極7に印加
する電圧の値を適当に選ぶことによって、2木のアーム
3および4内を伝搬してきた光の結合部分6における位
相差δを例えば180度とすることができる。このとき
の先入−出力特性を第2図に示す。第2図中、直線はI
工= I、の状態を示している。第2図に示すように、
位相差δ=180度の条件下で、 ■2はI□の変化に
対応して周期的に変化する。また、この曲線と直線との
差に対応するパワーの光は、結合部分6から非導波モー
ドとして散乱される。なお、上述のように、本実施例に
おいては、同一の非線形屈折率n2 を持ち、長さの異
なる2木のアーム3および4を備えた構成にした。しか
し、このような2木のアーム3および4の代りに、長さ
か同じでN2の異なる2本のアーム、および6文とN2
の両名が異なる2本のアームを用いても一ヒ述したのと
同様の効果が得られる。すなわち、 1、 − N、 #1. @Nま ただし、 文、ニ一方の中−モード光導波路の長さ文、:他方の単
一モード光導波路の長さN1ニ一方の単−モード光導波
路の屈折率N2:他方の弔−モード光導波路の屈折率を
満たすようにすればよい。
By appropriately selecting the lengths of the arms 3 and 4 of the two-tree tree or the value of the voltage applied to the electrode 7, the phase difference δ at the coupling portion 6 of the light propagating within the arms 3 and 4 of the two-tree tree can be determined, for example. It can be 180 degrees. The pre-input-output characteristics at this time are shown in FIG. In Figure 2, the straight line is I
The state of ENG = I is shown. As shown in Figure 2,
Under the condition of phase difference δ=180 degrees, (2) changes periodically in response to changes in I□. Furthermore, light having a power corresponding to the difference between this curve and the straight line is scattered from the coupling portion 6 as a non-guided mode. As described above, this embodiment has two arms 3 and 4 having the same nonlinear refractive index n2 and different lengths. However, instead of such two-tree arms 3 and 4, two arms with the same length but different N2, and 6 sentences and N2
Even if two arms with different names are used, the same effect as described above can be obtained. That is, 1, -N, #1. @N However, 2) Length of one medium-mode optical waveguide 2) Length of the other single-mode optical waveguide N1 2) Refractive index of one single-mode optical waveguide N2: The other medium-mode optical waveguide It is sufficient to satisfy the refractive index of the optical waveguide.

したがって1本発明−実施例の光論理回路素子は反射光
を生ぜず、第3図に示すように、アイソレータを中間に
入れることなく、本発明一実施例の光論理回路素子8を
多段に縦続接続することが力きる。
Therefore, the optical logic circuit element 8 according to the embodiment of the present invention does not generate reflected light, and as shown in FIG. It's powerful to connect.

第4図に、本発明一実施例の光論理回路素子8を、1段
、2段および3段に縦続接続した場合の1、− I、、
、特性を、光論理回路素子8の縦続接続個数Nをパラメ
ータとして示す。
FIG. 4 shows the optical logic circuit elements 8 according to an embodiment of the present invention connected in cascade in 1st, 2nd and 3rd stages, 1, -I, .
, the characteristics are shown using the number N of cascaded optical logic circuit elements 8 as a parameter.

なお、電極7は位相差δを調整するためのものであって
、本発明素子の動作自体には関係しない。
Note that the electrode 7 is for adjusting the phase difference δ and is not related to the operation itself of the device of the present invention.

第5図は、光論理回路素子8を、3段に縦続接続した論
理回路素子8の構成図であり、この論理回路素子8に適
当な光バイアス !、をかけることによて、2つの入力
光パルス信号Ipに関して、アンド(AND) 、オア
(OR)、ナンド(NAND)およびノア(N OR)
の各論理回路を構成することができる。
FIG. 5 is a block diagram of a logic circuit element 8 in which optical logic circuit elements 8 are connected in cascade in three stages. , for the two input optical pulse signals Ip, AND, OR, NAND, and NOR.
Each logic circuit can be constructed.

第6図に、論理回路素子8の入射光の強度I。FIG. 6 shows the intensity I of the incident light on the logic circuit element 8.

と出射光の強度1.との関係を示すI、−10特性と、
アンド、オア、ナンドおよびノアの各回路における光バ
イアスI、および入力光パルス信号■、の強度との関係
の一例を示す。第6図において、(a)がアンド、(b
)がオア、(C)がナンドおよび(d)がノアの各回路
の場合を示す。なお、入力光パルス信号■2に関するア
ンド、オア、ナンドおよびノアの各回路の真理値表は次
の第1表の通りである。
and the intensity of the emitted light 1. I, -10 characteristic showing the relationship between
An example of the relationship between the optical bias I and the intensity of the input optical pulse signal (2) in each of the AND, OR, NAND, and NOR circuits is shown. In Figure 6, (a) is AND, (b
) is an OR circuit, (C) is a NAND circuit, and (d) is a NOR circuit. The truth table of AND, OR, NAND, and NOR circuits regarding input optical pulse signal 2 is as shown in Table 1 below.

第7図に示すように、第5図に示した論理回路素子によ
って構成したナンド回路9を2つ用いてR979777
077回路を構成することができる。
As shown in FIG. 7, by using two NAND circuits 9 constructed from the logic circuit elements shown in FIG.
077 circuit can be configured.

第7図に示すように、このR979777077回路は
、2つのナンド(NAND)回路9の出力を、Iにいに
相手の一方の入力に帰還する。このフリップフロップ回
路の真理値表を第2表に21べす。
As shown in FIG. 7, this R979777077 circuit instantly feeds back the outputs of two NAND circuits 9 to the input of one of the other circuits. The truth table for this flip-flop circuit is shown in Table 2.

この表かられかるように、RおよびSが論理゛θ゛にあ
るかぎり、このフリップフロップ回路の状態は安定に保
たれる。もし、Sが″^゛hレベル゛°になれは、フリ
ップフロップ回路の出力Oは論理”i’になり、一方、
Rが゛′高レしル°′になれば同出力は論理“0′とな
る。なお、SおよびRの両方が同時にl゛になると、フ
リップフロップ回路の出力は不確定となる。
As can be seen from this table, as long as R and S are at logic θ, the state of this flip-flop circuit remains stable. If S becomes ``^゛h level゛°, the output O of the flip-flop circuit becomes logic ``i'', while
If R goes to a high level, the output becomes logic 0. If both S and R go to l at the same time, the output of the flip-flop circuit becomes indeterminate.

以北に述べた動作原理に基つく本発明光論理回路素子を
構成する材料としては、光非線形屈折率12をもついか
なる物質をも用いることができる。−例として、非線形
屈折率をもつ代表的な′47−導体月料についての、吸
収線に非共11Rなnoおよびn2の値を第3表に示す
Any material having an optically nonlinear refractive index of 12 can be used as a material constituting the optical logic circuit element of the present invention based on the operating principle described above. - As an example, Table 3 shows the values of no and n2 that are non-coincident with the absorption line for a typical '47 conductor with a nonlinear refractive index.

第3表 なお、吠収線に非共鳴なn2の■6に対する応答時間は
、pSオーダ以下であるごとか知られている。
Table 3 Note that it is known that the response time of n2, which is non-resonant to the convergence line, to ■6 is less than the pS order.

GaAsを構成材料として用い、光が十分に閉じ込めら
れるような光導波路幅0.08 p、 mを持ち、かつ
Δu−IQO7pmを持つ光論理回路素子を試作したと
ころ、2.3Wの入力パワーによってこの光論理回路素
子をスイッチングすることができた。すなわち、第2図
における1周期分の変化が得られた。一つの素子長しく
第1図参照)が200 gmの光論理回路素子を3段縦
続接続したものを用いて時間応答を測定したところ、実
効的スイッチング速度はlゲート当り6.4pSであっ
た。この実験条件よりもさらに大きな光入力9例えば2
3Wを用いればサブピコ秒オーダのスイッチングが可能
となること勿論である。第3表に示した半導体以外の半
導体や強誘電体等も光導波路の構成材料として用いるこ
とができる。さらにまた、ブロスf:B]oss)氏ら
の文献(Applied Physics Lette
rs紙41巻1023頁(1982年))に示されてい
るように、GaAs/ A文GaAsの超格子はGaA
sよりもさらに大きなn2を持ち、より高速にスイッチ
ングが可能な材料として用いることができる。
Using GaAs as a constituent material, we prototyped an optical logic circuit element with optical waveguide widths of 0.08 p and m to sufficiently confine light, and a Δu-IQO of 7 pm. It was possible to switch optical logic circuit elements. That is, a change for one period in FIG. 2 was obtained. When the time response was measured using three stages of cascaded optical logic circuit elements each having a length of 200 gm (see FIG. 1), the effective switching speed was 6.4 pS per gate. Even larger optical input 9 than this experimental condition, e.g. 2
Of course, if 3W is used, switching on the sub-picosecond order becomes possible. Semiconductors, ferroelectric materials, etc. other than the semiconductors shown in Table 3 can also be used as constituent materials of the optical waveguide. Furthermore, the literature by Bross f: B]oss et al. (Applied Physics Letter
rs paper, Vol. 41, p. 1023 (1982)), the superlattice of GaAs/A-texture GaAs is GaAs
It has an even larger n2 than s, and can be used as a material capable of faster switching.

[効果] 以」−説明したように、本発明によれば、室温で動作し
、しかもまた、その動作曲度が非常に関連であるから信
−ン処理、論理演算等の基本−も子として広く用いるこ
とができる光論理回路素子を提供することができる。
[Effects] As explained above, according to the present invention, it operates at room temperature, and its operating curvature is very relevant, so that the basics of signal processing, logical operations, etc. can also be used as a child. It is possible to provide an optical logic circuit element that can be used widely.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる光論理回路素子の一実施例を示
す構成図、 第2図は同回路素子における先入−出力特性の一例を示
す図、 第3図は同回路素子を多段に縦続接続した構成例を示す
線図、 第4図は同多段構成例の先入−出力特性の一例を示す図
、 第5図は光論理回路素子を3段に縦続接続した論理回路
素子の構成を示す図、 第6図は同論理回路素子を用いて構成したアンド(AN
D) 、オア(OR) 、ナンドCNAND)およびノ
ア(NOR)の各回路の動作に必要な光/<イアスと光
パルス信号との関係を説明する説明図、 第7図は光論理回路素子によって構成したナンド(NA
ND)回路2個により構成したフリップフロップ回路の
一例を示す線図である。 1・・・入力用中−モード光導波路、 2・・・出力用単−千−ド光導波路、 3.4・・・弔−モード光導波路(アーム)、5・・・
Y形の分岐部分、 6・・・Y形の結合部分、 7・・・電極。 特許出願人 日本電信電話公社 し 8
Fig. 1 is a block diagram showing an example of an optical logic circuit element according to the present invention, Fig. 2 is a diagram showing an example of first input-output characteristics of the same circuit element, and Fig. 3 is a diagram showing an example of the first input-output characteristics of the same circuit element. A diagram showing an example of a connected configuration; Figure 4 is a diagram showing an example of the first input-output characteristics of the same multi-stage configuration; Figure 5 is a diagram showing the configuration of a logic circuit element in which optical logic circuit elements are connected in cascade in three stages. Figure 6 shows an AND (AN) constructed using the same logic circuit element.
D) An explanatory diagram explaining the relationship between the light/<IAS and the optical pulse signal necessary for the operation of the OR (CNAND) and NOR (NOR) circuits. The configured Nando (NA
ND) is a diagram showing an example of a flip-flop circuit configured with two circuits. DESCRIPTION OF SYMBOLS 1... Medium-mode optical waveguide for input, 2... Single-thousand-mode optical waveguide for output, 3.4... Funeral-mode optical waveguide (arm), 5...
Y-shaped branch part, 6... Y-shaped coupling part, 7... Electrode. Patent applicant Nippon Telegraph and Telephone Corporation Shi8

Claims (1)

【特許請求の範囲】 l)入力用光導波路と、 出力用光導波路と、 光強度に依存する非線形屈折率を持つ2木の中−モード
先導波路とを有し、 該2木の中−モード光導波路の各々に同一パワーの光が
入射されるように、前記2木の単一モード光導波路の各
一端を、前記入力用光導波路の一端に接続し、前記2木
の単一モード光導波路の各他端を、前記出力用光導波路
の一端に接続し、下記関係 文、−N、#文。−Nま ただし、 文1 :−力の単一モード光導波路の長さ文。:他方の
単一モード光導波路の長さN1:−力の単一モード光導
波路の屈折率N2:他方の単一モード光導波路の屈折率
を満たすようにしたことを特徴とする光論理回路素子。 2、特許請求の範囲第1項記載の光論理回路素子におい
て、 前記2本の単−モード光導波路の少なくとも一方は、そ
の屈折率を制御するための電界印加用電極を有すること
を特徴とする光論理回路素子。 (リ 下 余 白 )
[Scope of Claims] l) An input optical waveguide, an output optical waveguide, and a two-tree middle-mode leading waveguide having a nonlinear refractive index dependent on light intensity, the two-tree middle mode One end of each of the two single mode optical waveguides is connected to one end of the input optical waveguide so that light of the same power is incident on each of the optical waveguides, and the two single mode optical waveguides are connected to one end of the input optical waveguide. The other ends of each are connected to one end of the output optical waveguide, and the following relational sentences, -N, # sentences. -N However, Sentence 1: -Length statement of single mode optical waveguide of force. : Length N1 of the other single mode optical waveguide: -Refractive index N2 of the single mode optical waveguide: Optical logic circuit element characterized in that the refractive index of the other single mode optical waveguide is satisfied. . 2. The optical logic circuit element according to claim 1, wherein at least one of the two single-mode optical waveguides has an electric field applying electrode for controlling its refractive index. Optical logic circuit element. (bottom margin)
JP17649183A 1983-09-26 1983-09-26 Optical logical circuit element Granted JPS6068330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17649183A JPS6068330A (en) 1983-09-26 1983-09-26 Optical logical circuit element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17649183A JPS6068330A (en) 1983-09-26 1983-09-26 Optical logical circuit element

Publications (2)

Publication Number Publication Date
JPS6068330A true JPS6068330A (en) 1985-04-18
JPS6151306B2 JPS6151306B2 (en) 1986-11-08

Family

ID=16014593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17649183A Granted JPS6068330A (en) 1983-09-26 1983-09-26 Optical logical circuit element

Country Status (1)

Country Link
JP (1) JPS6068330A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5416338A (en) * 1992-02-29 1995-05-16 Nippondenso Co., Ltd. Semiconductor device with quantum well resonance states
US5999284A (en) * 1997-06-05 1999-12-07 Northern Telecom Limited Optical detection and logic devices with latching function

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0191711U (en) * 1987-12-09 1989-06-15

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5416338A (en) * 1992-02-29 1995-05-16 Nippondenso Co., Ltd. Semiconductor device with quantum well resonance states
US5999284A (en) * 1997-06-05 1999-12-07 Northern Telecom Limited Optical detection and logic devices with latching function

Also Published As

Publication number Publication date
JPS6151306B2 (en) 1986-11-08

Similar Documents

Publication Publication Date Title
CA1298113C (en) Optical device
US4070094A (en) Optical waveguide interferometer modulator-switch
Ranganath et al. Ti-diffused LiNbO 3 branched-waveguide modulators: performance and design
CN111399118B (en) Integrated polarization beam splitter based on thin-film lithium niobate waveguide
JPS6068321A (en) Optical switch
JPH01248142A (en) Optical switch
JP3023878B2 (en) Waveguide type optical branching device
EP0821263B1 (en) Optical non-linear branching element
JPS6068330A (en) Optical logical circuit element
CN105676370B (en) A kind of all-optical packet switching switch based on micro-ring resonant cavity
US4998791A (en) Integrated optical switches with very high extinction ratios
CN109240019B (en) Binary all-optical comparator
CN113189708B (en) Polarization insensitive directional coupler structure and method
JPH05313109A (en) Waveguide type polarization controller
US20230185155A1 (en) Programmable optical chip and terminal
JP2000081534A (en) Multi-mode interference optical coupler
WO2018192021A1 (en) Electrically-controlled magneto-optical switch chip
CN112904479A (en) Optical switch based on reverse Fano coupling micro-ring
JPH09178967A (en) Waveguide type optical branching element
Singh et al. Design of polarization switch in a single micro-ring resonator and its application to design all-optical logic OR/NOR gates using FDTD
MIKAMI et al. Directional coupler type light modulator using LiNbO 3 waveguides
Hassan et al. Design and performance analysis of MMI based all optical logic gates on SOI substrate
US7167609B2 (en) Optical switch
Lin et al. Polarization-transparent Microphotonic Device Based on Thin-film Lithium Niobate Platform
JPH09281350A (en) Waveguide type optical branching element