JPS606811A - Strain observing device - Google Patents

Strain observing device

Info

Publication number
JPS606811A
JPS606811A JP11377183A JP11377183A JPS606811A JP S606811 A JPS606811 A JP S606811A JP 11377183 A JP11377183 A JP 11377183A JP 11377183 A JP11377183 A JP 11377183A JP S606811 A JPS606811 A JP S606811A
Authority
JP
Japan
Prior art keywords
light
fiber cable
strain
lens
transmitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11377183A
Other languages
Japanese (ja)
Inventor
Toshio Abe
俊雄 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11377183A priority Critical patent/JPS606811A/en
Publication of JPS606811A publication Critical patent/JPS606811A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To perform stable operation without mechanical deterioration against the repeatedly generated strain of an object by separating a light transmitting part and a photodetecting part. CONSTITUTION:Light 14 transmitted from a light source is focused by a lens 10 and is made incident to the 1st fiber cable 7. The light 14 is transmitted from a light transmitting part 9 to the lens 10 and is made incident to a photodetecting part 12 after focusing. When there is no strain in an object 1, the light 14 is made incident to the central part of the photodetecting part 12 but when a strain is generated in the object, the positional relation between a base plate 11 and the part 12 is distorted and therefore the light 14 is displaced on the part 12. The light 14 transmitted from the light projecting part of the 2nd fiber cable 8 appears consequently in the position corresponding to the displacement on the part 12. Such light 14 is photoelectrically converted by a photoelectric transducer and the electric signal is transmitted to a comparator 18.

Description

【発明の詳細な説明】 この発明は全観測装置の改良に関するもので。[Detailed description of the invention] This invention relates to the improvement of all observation equipment.

詳しくは物体の歪を光伝搬路の屈曲による光伝送損失の
変化を利用して歪を検出する。全観測装置を提供するも
のである。
Specifically, distortion in an object is detected using changes in optical transmission loss due to bending of the optical propagation path. It provides all observation equipment.

まず、従来の全観測装置を図を用いて簡単に説明する。First, all conventional observation devices will be briefly explained using diagrams.

第1図は従来の全観測装置の構成図゛で図中、(1)は
物体(例えばアンテナなど)i2)はこの物体(1)に
接着されたストレインゲージ、(3)はこのストレイン
ゲージ(2)へワイヤ(4)Kより接続される処理回路
である。
Figure 1 is a block diagram of the entire conventional observation device. 2) is a processing circuit connected to wire (4) K by wire (4).

この様な構成において、物体(1)K熱が加えられるな
どして歪みが生ずると、ストレインゲージ(2)も。
In such a configuration, if the object (1) becomes strained due to heat being applied to it, the strain gauge (2) will also be strained.

物体(1)に付随して歪むから、その抵抗値が変化する
。この抵抗値の変化を上記処理回路(3)で測定するこ
とによって物体(1)の歪みを測定することができる。
Since the object (1) is distorted, its resistance value changes. By measuring this change in resistance value using the processing circuit (3), the distortion of the object (1) can be measured.

このような全観測装置は人工衛星等の宇宙飛しょう体に
搭載され7 アンテナ等の歪みを観測するために使用さ
れている。
All such observation devices are mounted on spacecraft such as artificial satellites and are used to observe distortions in antennas, etc.

しかしながら従来のこの種装置においては、ストレイン
ゲージ(2)と物体(1)との接着に問題があり。
However, in conventional devices of this type, there is a problem in adhesion between the strain gauge (2) and the object (1).

物体fi+の歪みにストレインゲージ(2)が正しく対
応しない不具合が生じやすい。特に熱的環境の厳しい人
工衛星にストレインゲージ(2)を用いるとき。
A problem is likely to occur in which the strain gauge (2) does not correctly respond to the distortion of the object fi+. Especially when using the strain gauge (2) on an artificial satellite with a harsh thermal environment.

しばしば物体(1)とストレインゲージ(21の接着が
Often the object (1) and the strain gauge (21) are bonded together.

バカれるという不具合が発生した。このためストレイン
ゲージ(2)を薄膜化して接着性を良くするなどの工夫
が行われているがいずれも上記問題を完全に解決するこ
とができず、この種装置の改良が望まれていた。
A problem occurred where I was made a fool of. For this reason, attempts have been made to make the strain gauge (2) thinner to improve its adhesion, but none of these methods has been able to completely solve the above problem, and improvements to this type of device have been desired.

この発明はこの様な従来の歪観測装置における問題点を
改善するもので、以下図を用いて詳述する。第2図はこ
の発明の一実施例の構成図、第3図は歪検出器の構成図
、第4図は光信号処理機構の構成図である。
The present invention is intended to improve the problems with such conventional strain observation devices, and will be described in detail below with reference to the drawings. FIG. 2 is a block diagram of an embodiment of the present invention, FIG. 3 is a block diagram of a distortion detector, and FIG. 4 is a block diagram of an optical signal processing mechanism.

図中(1)は物体(例えばアンテナの反射鏡)i51は
物体(1)に固着された歪検出器、(6)は光信号処理
機構で第1のファイバケーブル(7)及び複数のファイ
バを集束した第2のファイバケーブル(8)経由上記歪
検出器(5)へ接続される。(9)は上記第1のファイ
バケーブル(7)の一端の送光部で、その端面から光測
が放射される。QOIは送光部(9)の光軸上に置かれ
たレンズ(例えばロンドレンズ)、(111は上記送光
部(9)とレンズOωを固定し、物体11)に固着され
た基板、αのは上記第2のファイバケーブル(8)の末
端を2次元アレイに配列した受光部で物体(1)に固着
され上記レンズ(101に対向して置かれる。(13)
は光源(例えば半導体レーザ)で光(141を発生する
。(15)は上記第2のファイバケーブル(8)の他の
末端部をアレイ状に配列した投光部、06)はこの投光
部(19から送出される光Oaをレンズ0(1経由受光
して電気信号に変換する光電変換素子(例えばCCD)
i181はこの光電変換素子(1G+の出力信号をワイ
ヤ(1り経由受信しである一定のレベルで比較し、その
結果をワイヤαη経由送出するコンパレータである。
In the figure, (1) is an object (for example, an antenna reflector), i51 is a strain detector fixed to the object (1), and (6) is an optical signal processing mechanism that connects the first fiber cable (7) and a plurality of fibers. It is connected to the strain detector (5) via a focused second fiber cable (8). (9) is a light transmitting section at one end of the first fiber cable (7), from which light is emitted. QOI is a lens placed on the optical axis of the light transmitting section (9) (for example, a Rondo lens), (111 is a substrate fixed to the object 11 which fixes the light transmitting section (9) and the lens Oω, and α This is a light receiving section in which the ends of the second fiber cable (8) are arranged in a two-dimensional array, which is fixed to the object (1) and placed opposite the lens (101).(13)
A light source (for example, a semiconductor laser) generates light (141). (15) is a light projecting section in which the other end of the second fiber cable (8) is arranged in an array, and 06 is this light projecting section. (A photoelectric conversion element (e.g. CCD) that receives the light Oa sent out from 19 via lens 0 (1) and converts it into an electrical signal.
i181 is a comparator that receives the output signal of this photoelectric conversion element (1G+) via a wire (1), compares it at a certain level, and sends the result via a wire αη.

なお、上記第1のファイバケーブル(7)、送光部(9
)。
Note that the first fiber cable (7) and the light transmitting section (9
).

レンズaω、基板O1)、第2のファイバケーブル(8
)及び受光部(121で歪検出器(5)を構成し、上記
光源(131゜投光部(15)、光電変換素子Oυ、レ
ンズ00)、ワイヤa′71及びコンパレータ(181
とで光信号処理機構(6)を構成している。
lens aω, substrate O1), second fiber cable (8
) and light receiving section (121) constitute a distortion detector (5), the light source (131° light projecting section (15), photoelectric conversion element Oυ, lens 00), wire a'71 and comparator (181
and constitute an optical signal processing mechanism (6).

次にこの発明の詳細な説明する。第2図において歪検出
器(5)が物体(1)に固着しているから第1図のスト
レインゲージ(2)と同じように物体(1)の歪みが歪
検出器(5)に伝達される。
Next, this invention will be explained in detail. In Figure 2, the strain detector (5) is fixed to the object (1), so the strain of the object (1) is transmitted to the strain detector (5) in the same way as the strain gauge (2) in Figure 1. Ru.

さて、第4図の光源03)から送出された光+141は
レンズ101で集束されて第1のファイバケーブル(7
)へ入射する。そして第3図の送光部(9)から光(1
4)をレンズ(則へ送出し、レンズ(10)で集束した
後、受光部(12+へ入射させる。物体(1)に歪みの
無いとき上記光測は受光部07Jの中央部に入射してい
るが、物体(1)に歪みが生じたとき基板(11)と受
光部07Jの位置関係が歪むから光(1躬ま受光部02
土で変位する。
Now, the light +141 sent out from the light source 03) in Fig. 4 is focused by the lens 101 and sent to the first fiber cable (7).
). Then, the light (1
4) is sent to the lens (10), and after being focused by the lens (10), it enters the light receiving section (12+).When the object (1) is not distorted, the above photometer enters the central part of the light receiving section 07J. However, when the object (1) is distorted, the positional relationship between the substrate (11) and the light receiving section 07J is distorted, so the light (1) is distorted.
Displaced by soil.

したがって、第4図において上記第2のファイバケーブ
ル(8)の投光部(19から送出される光04)は上記
受光部12)上の変位に相当する位置に現われる。この
光(1句を光電変換素子によって光電変換し電気信号を
コンパレータ08)に送出する。このコンパレータ(旧
において複数の光電変換素子Q61の上記電気信号を調
らべ、信号を出力している光電変換素子00)を特定す
れば上記物体(1)の歪みによる送光部(9)と受光部
az相互間の変位を検出することができる。
Therefore, in FIG. 4, the light 04 transmitted from the light projecting section (19) of the second fiber cable (8) appears at a position corresponding to the displacement on the light receiving section 12). This light (one phrase) is photoelectrically converted by a photoelectric conversion element and an electric signal is sent to a comparator 08. If this comparator (in the old model, the photoelectric conversion element 00 that outputs the signal by examining the electrical signals of the plurality of photoelectric conversion elements Q61) is identified, it is the light transmitting part (9) caused by the distortion of the object (1). Displacement between the light receiving parts az can be detected.

以上説明したようにこの発明によれば送光部(9)と受
光部(12+が分離されているため、繰り返し発生する
物体(1)の歪みに対し9機械的に劣化することなく安
定した動作を行う事ができる。さらに送光部(9)と物
体(1)及び受光部Oりと物体(1)との固着部分に機
械的応力が加わらないから、はがれるという不具合が発
生しにくいという利点が生ずる。
As explained above, according to the present invention, since the light transmitting section (9) and the light receiving section (12+) are separated, stable operation is achieved without mechanical deterioration even when the object (1) is repeatedly distorted. Furthermore, since no mechanical stress is applied to the fixed parts between the light transmitting section (9) and the object (1) and between the light receiving section and the object (1), problems such as peeling are less likely to occur. occurs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の歪観測装置を示す構成図、第2図はこの
発明の一実施例を示す構成図、第3図はこの発明による
歪検出器の構成図、第4図はこの発明による光信号処理
機構の構成図である。図中(1)は物体、(2)はスト
レインゲージ、(3)は処理回路。 (4)はワイヤ、(5)は歪検出器、(6)は光信号処
理機構。 (7)は第1のファイバケーブル、(8)は第2のファ
イバケーブル、(9)は送光部、00)はレンズ、 f
ll+は基板。 Q2+は受光部、囮は光源、圓は光、 Q51は投光部
、06)は光電変換素子、αηはワイヤ、 f18+は
コンパレータである。 なお1図中同一または相当部分には同一符号を付して示
しである。 代理人大岩増雄 第1図 1 第21閃
Fig. 1 is a block diagram showing a conventional strain observation device, Fig. 2 is a block diagram showing an embodiment of the present invention, Fig. 3 is a block diagram of a strain detector according to the present invention, and Fig. 4 is a block diagram showing the structure of a strain detector according to the present invention. FIG. 3 is a configuration diagram of an optical signal processing mechanism. In the figure, (1) is the object, (2) is the strain gauge, and (3) is the processing circuit. (4) is a wire, (5) is a strain detector, and (6) is an optical signal processing mechanism. (7) is the first fiber cable, (8) is the second fiber cable, (9) is the light transmitting section, 00) is the lens, f
ll+ is the board. Q2+ is a light receiving section, a decoy is a light source, a circle is a light, Q51 is a light projecting section, 06) is a photoelectric conversion element, αη is a wire, and f18+ is a comparator. Note that the same or corresponding parts in FIG. 1 are designated by the same reference numerals. Agent Masuo Oiwa Figure 1 21st flash

Claims (1)

【特許請求の範囲】[Claims] 物体の歪みを、この物体に固着した歪検出器の変形に置
換して観測する全観測装置において、光を伝送する第1
のファイバケーブルと、この第1のファイバケーブルの
送光部の光軸上に置かれたレンズと、上記送光部とレン
ズを固定しかつ上記物体に固着された基板と、上記レン
ズに対向しかつ上記物体に固着され上記送光部からの光
を受光する第2のファイバケーブルとで上記歪検出器を
構成し、この歪検出器に上記光を上記第1のファイバケ
ーブル経由送出し、上記第2のファイバケーブルの受光
部で受光した光信号を処理する光信号処理部を備えたこ
とを特徴とする全観測装置。
In all observation devices that observe the distortion of an object by replacing it with the deformation of a strain detector fixed to the object, the first
a fiber cable, a lens placed on the optical axis of the light transmitting section of the first fiber cable, a substrate that fixes the light transmitting section and the lens and is fixed to the object, and a substrate facing the lens. and a second fiber cable fixed to the object and configured to receive light from the light transmitting section, the strain detector is configured to transmit the light to the strain detector via the first fiber cable, A total observation device characterized by comprising an optical signal processing section that processes an optical signal received by a light receiving section of a second fiber cable.
JP11377183A 1983-06-24 1983-06-24 Strain observing device Pending JPS606811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11377183A JPS606811A (en) 1983-06-24 1983-06-24 Strain observing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11377183A JPS606811A (en) 1983-06-24 1983-06-24 Strain observing device

Publications (1)

Publication Number Publication Date
JPS606811A true JPS606811A (en) 1985-01-14

Family

ID=14620713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11377183A Pending JPS606811A (en) 1983-06-24 1983-06-24 Strain observing device

Country Status (1)

Country Link
JP (1) JPS606811A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004088285A3 (en) * 2003-03-07 2004-12-23 Boxboro Systems Llc Optical determination of changes in the shape of an object and of the fluid flow around an object

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5690487A (en) * 1979-12-03 1981-07-22 Western Electric Co Magnetic bubble memory
JPS5740791A (en) * 1980-08-25 1982-03-06 Fujitsu Ltd High-density bubble memory element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5690487A (en) * 1979-12-03 1981-07-22 Western Electric Co Magnetic bubble memory
JPS5740791A (en) * 1980-08-25 1982-03-06 Fujitsu Ltd High-density bubble memory element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004088285A3 (en) * 2003-03-07 2004-12-23 Boxboro Systems Llc Optical determination of changes in the shape of an object and of the fluid flow around an object
US7403294B2 (en) 2003-03-07 2008-07-22 Boxboro Systems, Llc Optical measurement device and method

Similar Documents

Publication Publication Date Title
US4657339A (en) Fiber optic switch
US3663822A (en) Multi-terminal optical cable utilizing a flexible graded optical fiber
US4904043A (en) Optical data link dual wavelength coupler
KR920001216A (en) Multi-beam optical and electromagnetic hemispherical / spherical sensors
EP1154269A3 (en) Ultrasonic probe, ultrasonic receiver and ultrasonic diagnostic apparatus
US4717229A (en) Bi-directional optical fiber coupler
CN108873193A (en) Light-receiving secondary module and optical module
JPS606811A (en) Strain observing device
EP0042158A2 (en) Optical coupler for transmission and reception over optical fibre
JP3163446B2 (en) Rotary optical connector
US4987305A (en) Infra-red sensing system
JPS60115806A (en) Attitude detecting sensor consisting of optical fiber and two-dimensional solid-state image pickup element
JPH1048039A (en) Method and device for ultrasonic detection, and ultrasonic image pick-up device
JPS5838904A (en) Optical detector
JP2001224590A (en) Ultrasonic probe
JPS61142871A (en) Picture image pickup device
JPH0332335Y2 (en)
EP1406435A1 (en) Optical fiber array camera
JPS63260400A (en) Microphone
JPS5920300B2 (en) optical communication system
JPS6050117B2 (en) Stereoscopic imaging method
JPS6058789A (en) Steroescopic image pickup system
JPS5851637A (en) Transmission system for short distance signal
JP2655720B2 (en) Light receiving device for coherent optical communication
US5255667A (en) Endoscope with compact scope end section