JPS6068037A - Production of gas/liquid mixture and apparatus therefor - Google Patents

Production of gas/liquid mixture and apparatus therefor

Info

Publication number
JPS6068037A
JPS6068037A JP58177650A JP17765083A JPS6068037A JP S6068037 A JPS6068037 A JP S6068037A JP 58177650 A JP58177650 A JP 58177650A JP 17765083 A JP17765083 A JP 17765083A JP S6068037 A JPS6068037 A JP S6068037A
Authority
JP
Japan
Prior art keywords
liquid
tank
water
air
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58177650A
Other languages
Japanese (ja)
Inventor
Kenji Fujikake
藤掛 賢司
Yutaka Yokoi
豊 横井
Kazuyuki Nakanishi
和之 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP58177650A priority Critical patent/JPS6068037A/en
Publication of JPS6068037A publication Critical patent/JPS6068037A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/234Surface aerating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/234Surface aerating
    • B01F23/2341Surface aerating by cascading, spraying or projecting a liquid into a gaseous atmosphere
    • B01F23/23413Surface aerating by cascading, spraying or projecting a liquid into a gaseous atmosphere using nozzles for projecting the liquid into the gas atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

PURPOSE:To disperse fine bubbles in liquid by feeding liquid and compressed gas in a gastight tank, circulating the liquid through the tank system by ejecting the liquid in the tank system into the compressed gas. CONSTITUTION:Liquid W and compressed gas A are contained in a gastight tank system comprising at least one gastight tank 1, 2, and a liquid feed pipe 6 is connected to said at least one tank, further a feed pipe 7 for the compressed gas is also connected to said tank. The liquid in the tank system is ejected into the compressed gas in the system by a means comprising a pipe 3, a pump 4, an ejecting nozzle, 5, etc. and the liquid is circulated and then discharged to the outside of the system through an ejecting pipe 8 after reducing the pressure in the tank. As a result, a gas/liquid mixture contg. fine bubbles, particularly those having ca. 100mu bubble size in the liquid is produced.

Description

【発明の詳細な説明】 本発明は、気液混合物特に水に対する空気のように液体
に対して溶解度に限度のある気体と液体との混合物の製
造方法および該方法に使用する装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a gas-liquid mixture, particularly a mixture of a gas and a liquid that has limited solubility in a liquid, such as air in water, and an apparatus used in the method. .

気液混合物の製造方法としては、水と空気との場合を例
として説明すると、従来は通常次の方法によっていた。
As a method for producing a gas-liquid mixture, taking the case of water and air as an example, the following method has conventionally been used.

すなわち。Namely.

1)金網、またはポーラスな焼結金属やセラミックを介
して水中に細分化した空気を噴出させる方法 2)スリットあるいは多数の微小孔のあいた壁面より空
気を水中に噴出させる方法 3)スタティックミキサーのように流nの偏向板を有す
る。水で充満した閉鎖管路中に空気を噴出させ、管路中
を繰り返し水を循環させることによって空気塊を微細化
する方法 。
1) Method of ejecting finely divided air into water through a wire mesh or porous sintered metal or ceramic 2) Method of ejecting air into water from a wall surface with slits or numerous micropores 3) Method of ejecting air into water through a static mixer It has two deflection plates. A method of atomizing air masses by blowing air into a closed pipe filled with water and repeatedly circulating the water through the pipe.

などによっている。etc.

しかしながら上記従来の方法では、いずれも機械的手段
によって空気を細分化するため1例えば1)および2)
の方法では微小孔の孔壁と空気との表面張力によって気
泡径の大きさに限度があり、直径200〜300μm以
上の気泡の分散した水・空気混合液しか得られない。ま
た、同様に上記3)のように偏向板などで空気塊を細分
化する方法でも流速その他に限界があるため、前記とほ
ぼ同様な大きさ以上の気泡を含む水・空気混合液しか得
られない。しかして9このように比較的大きな径の気泡
の場合には、気泡同士の合体が生じたり、また気泡の浮
上速度が50副/秒以上と大きく水との分離が速いなど
のことから長い量水・空気混合状態を保つことができな
いという欠点を有している。
However, in all of the above conventional methods, air is fragmented by mechanical means (1) and 2).
In this method, there is a limit to the size of the bubbles due to the surface tension between the pore walls of the micropores and the air, and only a water/air mixture in which bubbles with a diameter of 200 to 300 μm or more are dispersed can be obtained. Similarly, even with the method described in 3) above, in which the air mass is subdivided using a deflection plate, there are limitations in terms of flow velocity and other factors, so only a water/air mixture containing bubbles of approximately the same size or larger as described above can be obtained. do not have. However, in the case of relatively large bubbles like this, the bubbles may coalesce with each other, and the floating speed of the bubbles is more than 50 sub/sec, so separation from the water is fast, so it is difficult to maintain the bubbles for a long time. It has the disadvantage of not being able to maintain a mixed state of water and air.

本発明は上記従来の欠点を解決するためのもので、液体
中に微小な気泡特に直径100μm程度の気泡を含有す
る気液混合物を製造する方法を提供することを目的とす
る。
The present invention is intended to solve the above-mentioned conventional drawbacks, and aims to provide a method for producing a gas-liquid mixture containing minute bubbles, particularly bubbles with a diameter of about 100 μm, in a liquid.

また本発明は、上記に関連して液体中に気体が気泡とし
て分散している状態の長い気液混合物を製造する方法を
提供することを目的とする。
In connection with the above, another object of the present invention is to provide a method for producing a gas-liquid mixture in which gas is dispersed as bubbles in a liquid for a long period of time.

更に本発明は、均一な気泡径を有し、かつ気泡数のみを
変えた任意のボイド率(気液混合割合)の均質な気液混
合液の製法を提供するこ々を目的とする。
A further object of the present invention is to provide a method for producing a homogeneous gas-liquid mixture having a uniform bubble diameter and an arbitrary void ratio (gas-liquid mixing ratio) in which only the number of bubbles is changed.

また史に9本発明は上記製造方法に使用する装置を提供
せんとするものである。
The present invention also provides an apparatus for use in the above manufacturing method.

本発明の気液混合物の製造方法は、気密タンク系内に液
体と加圧気体とを供給し、該タンク系内で該タンク系内
の液体を加圧気体中に噴出し循環させたのち、該液体を
タンク系外に減圧吐出して液体中に微小気泡を分散する
ようにしたことを特徴とする。
The method for producing a gas-liquid mixture of the present invention involves supplying a liquid and pressurized gas into an airtight tank system, spouting the liquid in the tank system into the pressurized gas and circulating it, and then The liquid is discharged out of the tank system under reduced pressure to disperse microbubbles in the liquid.

上記において噴出循環させる液体は、効率よく溶解させ
るには気体が完全溶解されていない液体がよいこきから
、好ましくは気体含有量の少い液体とする。
The liquid to be spouted and circulated in the above is preferably a liquid with a low gas content, since it is best to use a liquid in which gas is not completely dissolved in order to dissolve the gas efficiently.

本発明は、気密タンク系内で得らnた気体含有液体をタ
ンク系外に適当な条件下で減圧放出させることによって
気体を所望の大きさの微小気泡の状態で含有する液体を
得ることができる。
The present invention makes it possible to obtain a liquid containing gas in the form of microbubbles of a desired size by releasing the gas-containing liquid obtained in an airtight tank system under reduced pressure outside the tank system under appropriate conditions. can.

本発明の上記方法に使用する装置は、液体と加圧気体と
を収容するための少くとも1個の気密タンクからなる気
密タンク系と、該タンク系の少くとも1個のタンクに接
続された液体供給源と、#タンク系の少くとも1個のタ
ンクに接続された加圧気体供給手段と、該タンク系内の
液体を該タンク系内の加圧気体中に噴出し循環させる手
段と、該液体をタンク系外に減圧吐出する減圧手段とか
らなり液体中に微小気泡を分散するようにしたことを特
徴とする。
The apparatus used in the above method of the present invention includes an airtight tank system comprising at least one airtight tank for containing a liquid and a pressurized gas, and a system connected to at least one tank of the tank system. a liquid supply source, a pressurized gas supply means connected to at least one tank of the tank system, and a means for ejecting and circulating the liquid in the tank system into the pressurized gas in the tank system; It is characterized in that it comprises a pressure reducing means for discharging the liquid out of the tank system under reduced pressure, and is configured to disperse microbubbles in the liquid.

本発明の気密タンク系は1個のタンク75)らなってい
てもよいが、好ましくは互いに連通された第1の気密タ
ンクと第2の気密タンクとの2個のタンクからなり、第
1の気密タンクに液体供給源と加圧気体供給手段とが接
続されており。
The airtight tank system of the present invention may consist of one tank 75), but preferably consists of two tanks, a first airtight tank and a second airtight tank, which are communicated with each other. A liquid supply source and a pressurized gas supply means are connected to the airtight tank.

第2の気密タンク内の液体を第1の気密夕/り内の気体
中に噴霧し循環させる手段を備えてなるようにするとよ
い。
It is preferable to include means for spraying and circulating the liquid in the second airtight tank into the gas in the first airtight tank.

以下本発明を従来技術の説明のときと同様に。The present invention will be described below in the same manner as in the description of the prior art.

水と空気との気液混合物の場合を例としで説明する。The case of a gas-liquid mixture of water and air will be explained as an example.

本発明の方法は、水中への空気の溶解量が空気に加える
圧力に依存することを利用するもので、加圧を行なうこ
とにより大気中での水よりも多くの空気を含んだ水が得
られ、そnを大気中へ減圧放出させることにより、水中
に溶解していた空気を現出させ、微小気泡の分散した水
・空気混合液を作成するものである。
The method of the present invention utilizes the fact that the amount of air dissolved in water depends on the pressure applied to the air, and by applying pressure, water containing more air than water in the atmosphere can be obtained. By releasing the air into the atmosphere under reduced pressure, the air dissolved in the water is exposed, creating a water/air mixture in which microbubbles are dispersed.

本発明の特徴は、加圧下において水への空気の溶は込み
を促進するために、気密タンク内に適当量の水を供給す
るとともに、該タンク内に加圧空気を印加した後、タン
ク内で水の循珊。
A feature of the present invention is that in order to promote dissolution of air into water under pressure, an appropriate amount of water is supplied into an airtight tank, and after applying pressurized air to the tank, Water circulation in coral.

空気相への水の噴出、混合あるいは撹拌を行なうもので
1本発明の方法により水中への空気の溶解を早く行なう
ことができる。
By jetting, mixing or stirring water into the air phase, the method of the present invention can quickly dissolve air into water.

本発明において、水への空気の溶解を促進するための各
種条件1例えば空気の加圧力、循環水量、水温、空気相
への循環水の噴霧粒径等については、実施例とともに以
−ドに説明する。
In the present invention, various conditions 1 for promoting the dissolution of air in water, such as pressurizing force of air, amount of circulating water, water temperature, spray particle size of circulating water into the air phase, etc. are described below together with examples. explain.

第1図は本発明の一実施例を示す模式図で。FIG. 1 is a schematic diagram showing one embodiment of the present invention.

2タンク方式の装置を示す。この装置は、水を蓄えるタ
ンク1と夕/り2.水を循環させるための水循環管3.
該循環管3に設けらnた送水ボンダ4.循猿水噴出ノズ
ル5.タック1に水を供給する水供給管6.加圧空気を
導入する空気供給管7.そして空気を溶解させた水を大
気中に解放吐出させる絞り弁8′を有する吐出管8およ
び2つのタンク1,2を結ぶ連通管9とから基本的にな
り、更lこ必要に応じ水温調整用熱交換器10.水温制
御用温度センサー11を有する。なお9図中12は排出
ドレン、13は圧力ゲージ、14はバルブを示す。
A two-tank system is shown. This device consists of a tank 1 for storing water and a tank 2 for storing water. Water circulation pipe for circulating water3.
A water supply bonder 4 provided in the circulation pipe 3. Circulating water spout nozzle 5. Water supply pipe that supplies water to tack 16. Air supply pipe for introducing pressurized air7. It basically consists of a discharge pipe 8 having a throttle valve 8' for releasing and discharging the water with dissolved air into the atmosphere, and a communication pipe 9 connecting the two tanks 1 and 2, and further adjusting the water temperature as necessary. Heat exchanger 10. It has a temperature sensor 11 for water temperature control. In Figure 9, 12 is a discharge drain, 13 is a pressure gauge, and 14 is a valve.

この装置において、タンク1は水に空気の溶解を促進さ
せるためのものであり、タンク2は単に水を蓄えるため
のものである。いづnも加圧空気を導入したときの設定
圧力に耐えられるものであわばよい。
In this device, tank 1 is for promoting the dissolution of air in water, and tank 2 is for simply storing water. It is sufficient that the pressure can withstand the set pressure when pressurized air is introduced.

本装置によって空気を水に溶解させるには。To dissolve air in water with this device.

まず水をタンク内が大気圧状態においてタンク1上部側
面の水供給管6より導入する。水は連通管9を通してタ
ンク2へも供給される。タンク1では空気相が必要であ
るこさから満水とせず適当な水位で水′の供給を止める
。このとき。
First, water is introduced from the water supply pipe 6 on the upper side of the tank 1 while the inside of the tank is at atmospheric pressure. Water is also supplied to the tank 2 through the communication pipe 9. Because tank 1 requires an air phase, it is not filled with water, but the supply of water is stopped at an appropriate water level. At this time.

り/り2では水の備蓄のみであるから満水状態トスると
よく、タンク2はタンク1に適当な水位が得らn、るよ
うに夕/り1より下位に設置するとよい。水の供給後、
タンク1,2に連通した空気供給管7により加圧空気A
をタンク内に導入する。加圧空気は設定圧力が一定とな
るように保持する。この状態でも空気はタンク1,2の
水面を通して水中へ溶は込むが、その速度は非常に遅い
。例えば、タンク1,2内の水合計601に対して51
のゲージ圧で空気を加圧した場合でも、1日保持した後
この水を大気中に開放しても空気泡の現出は殆んど苓で
ある。
Since R/R2 only stores water, it is best to leave it full, and tank 2 should be installed below T/R1 so that an appropriate water level can be obtained in tank 1. After supplying water,
Pressurized air A is supplied by air supply pipe 7 communicating with tanks 1 and 2.
into the tank. The pressurized air is maintained at a constant set pressure. Even in this state, air dissolves into the water through the water surface of tanks 1 and 2, but at a very slow rate. For example, for a total of 601 waters in tanks 1 and 2, 51
Even when air is pressurized to a gauge pressure of 100 ml, air bubbles hardly appear even if the water is released into the atmosphere after being held for one day.

水の循環系は、水供給管6より供給された水が連通管9
を通りタンク2に導かれ、夕/り2下部からの水循環管
3内をポンプ4によって吸引され通過してタンク1上部
に設けられたノズル5から噴出さnてタンク!内にもど
るように構成さ21.でいる。循環水はノズル5から噴
出させると粒径が小さな液滴となり、空気との接触面積
が大きくなるため、空気の水への溶は込みが促進され、
溶解飽和する時間が短かくなる。
In the water circulation system, water supplied from the water supply pipe 6 passes through the communication pipe 9.
The water passes through the water circulation pipe 3 from the bottom of the tank 2, is sucked by the pump 4, and is ejected from the nozzle 5 provided at the top of the tank 1. 21. I'm here. When the circulating water is ejected from the nozzle 5, it becomes droplets with a small particle size, and the contact area with the air becomes large, so that the dissolution of the air into the water is promoted.
The time for dissolution saturation is shortened.

また、水を循環させることにより均一な溶は込み液とす
ることができる。
Moreover, by circulating water, a uniform solution can be obtained.

空気を溶は込み飽和させた後、タンク2の下部に設けた
吐出絞り弁8′をあけて吐出管8より溶解液を大気中へ
放出させれば、水中に微小空気泡の分散した水−空気混
合液が得らnる。
After air is introduced into the solution and saturated, the discharge throttle valve 8' provided at the bottom of the tank 2 is opened and the dissolved solution is discharged into the atmosphere from the discharge pipe 8, resulting in water with micro air bubbles dispersed in the water. An air mixture is obtained.

なお、水−空気混合液は、必要に応じ、フィルターやイ
オン交換層を通して水を、またフィルターを介して空気
をタンク内に供給して水−空気の混合を計れば不純物の
混入をさけることができる。
In addition, if necessary, water and air can be mixed into the water-air mixture by supplying water through a filter or ion exchange layer into the tank, and air through the filter to avoid contamination with impurities. can.

水−空気混合液の温度は、水循環回路中に熱交換器10
を設け、タンク中に設置した温度センサ11により制御
すれば任意に設定することができる。
The temperature of the water-air mixture is controlled by a heat exchanger 10 in the water circulation circuit.
The temperature can be set arbitrarily by controlling the temperature sensor 11 installed in the tank.

水中への空気の溶解を促進させる因子は、圧力、水温な
どがあげられ特に圧力に比例することが知られているが
、これらのほかζこ不発明方法において重要な因子は水
の循猿針である。
Factors that promote the dissolution of air into water include pressure and water temperature, and it is known that they are particularly proportional to pressure. In addition to these factors, an important factor in this uninvented method is the water circulation needle. It is.

第2図は、圧力、水温一定において、水循環量が大気開
放後現出する気泡量の増加に影響を与える状態を示すグ
ラフである。なおボイド率は次式で表わされる。
FIG. 2 is a graph showing how the amount of water circulation affects the increase in the amount of bubbles that appear after being exposed to the atmosphere when the pressure and water temperature are constant. Note that the void ratio is expressed by the following formula.

第2図の結果かられかるように、タンク1.2内の水総
fi 60tに対して水循環流量を19〜9btA+と
変化させても、溶は込み飽和する時間が反比例するのみ
で総循環量でみれば同じである。
As can be seen from the results in Figure 2, even if the water circulation flow rate is changed from 19 to 9 btA+ for the total water fi in tank 1.2 of 60 tons, the time for melt penetration and saturation is only inversely proportional to the total circulation amount. It looks the same.

すなわち。Namely.

総循環量=循環流量×循環時間 の関係にある。Total circulation amount = circulation flow rate x circulation time There is a relationship between

この場合、ノズル5からの噴霧粒径は200〜1000
μmの間で変化させたが差異はみられなかった。しかし
、ノズルにより噴霧する必要はあり、単にタンク2の水
をタンク1へ回帰させるのみでは空気の溶解は促進され
ない。
In this case, the spray particle size from the nozzle 5 is 200 to 1000.
Although it was varied between micrometers, no difference was observed. However, it is necessary to spray with a nozzle, and simply returning the water from tank 2 to tank 1 does not promote the dissolution of air.

次に9本発明方法により空気を水中に溶解。Next, air is dissolved in water using the method of the present invention.

飽和させたときのボイド率を決定する因子である加圧力
および温度について説明する。
The pressing force and temperature, which are factors that determine the void ratio when saturated, will be explained.

第3図は空気の加圧力、水温が溶解飽和溶液を大気開放
したとき水中に現出する気泡竜に影響を与える様子を示
すグラフである。ボイド率は加圧力に比して正比例し、
6 Kg/c、i、28℃で約4%である。空気の水へ
の溶解度は水温の上昇と共に減少するが、空気溶解液の
大気開放時における空気の現出し易さは逆に増加する。
FIG. 3 is a graph showing how air pressure and water temperature affect the bubbles that appear in water when a dissolved saturated solution is exposed to the atmosphere. The void ratio is directly proportional to the applied force,
6 Kg/c, i, about 4% at 28°C. The solubility of air in water decreases as the water temperature increases, but the ease with which air appears when the air-dissolved solution is exposed to the atmosphere increases.

また。Also.

水温の上昇と共に大気開放直後出する気泡の体積は温度
の増加分だけ体積膨張し、増加する。
As the water temperature rises, the volume of the bubbles released immediately after being exposed to the atmosphere expands and increases by the amount of increase in temperature.

第4図は、大気開放時に現出する気泡の平均粒径とボイ
ド率との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the average particle size of bubbles that appear when exposed to the atmosphere and the void ratio.

図かられかるように、気泡径は夕/り内の圧力が約6 
Kg/c!lまでは80μmφの粒径が基調で平均11
0μmφと一定である。こnは加圧力、水温に依存しな
い。加圧力をさらに増加すると、大気開放直後に1〜3
ffl+φ程度の合体気泡がすぐ現わ几9体積ボイド率
は増力口するが微細な空気泡の分散した水−空気混合状
態を保つことができない。
As can be seen from the figure, the bubble diameter is approximately 6
Kg/c! Up to l, the particle size is 80μmφ and the average is 11
It is constant at 0 μmφ. This n does not depend on pressurizing force or water temperature. When the pressurizing force is further increased, 1 to 3
Although coalesced air bubbles of approximately ffl+φ appear immediately and the volumetric void ratio increases, it is not possible to maintain a water-air mixed state in which fine air bubbles are dispersed.

以上説明したように不発明方法によれば、平均粒径11
0μmφ、ボイド率5%までの任意量で微小気泡の分散
した均質な水−空気混合液を得ることができる。
As explained above, according to the uninvented method, the average particle size is 11
It is possible to obtain a homogeneous water-air mixture in which microbubbles are dispersed in an arbitrary amount with a diameter of 0 μm and a void rate of up to 5%.

次に本発明の他の実施例について説明する。Next, other embodiments of the present invention will be described.

第5図は不発明の第2実施例を示す図で、第1図で示し
た装置が回分式であるとすると本図に示すものは連続式
の装置で、タンク1への水の供給を加圧送水ボンダ15
によりタンク2の吐出管8からの吐出流量に見合った流
量で供給し。
FIG. 5 is a diagram showing a second embodiment of the invention. If the device shown in FIG. Pressurized water bonder 15
By this, a flow rate commensurate with the discharge flow rate from the discharge pipe 8 of the tank 2 is supplied.

また同様に加圧空気を空気供給管7ζこよって所定のゲ
ージ圧が保持さnるように供給することによって連続的
に水−空気混合液を得ることができる。なお1図中第1
図に示したものと同じものには同一符号を付して説明を
省略した。図中、17はレベルゲージでタンク1内の水
Wが一定の水位以下または以上になるとそれぞn信号を
発し、信号は比較器16を径てポンダ14を作動させる
。なお、この装置ではタンク2内にバッフル板18を設
けて仕切り、空気溶解量の多い液からタンク2外へ放出
されるようになっている。
Similarly, a water-air mixture can be obtained continuously by supplying pressurized air through the air supply pipe 7ζ so that a predetermined gauge pressure is maintained. Note that the 1st figure in the figure
Components that are the same as those shown in the figures are given the same reference numerals, and explanations thereof are omitted. In the figure, reference numeral 17 denotes a level gauge which emits an n signal when the water W in the tank 1 becomes below or above a certain water level, and the signal passes through a comparator 16 to operate the ponder 14. In this device, a baffle plate 18 is provided inside the tank 2 to partition the tank 2, so that the liquid with a larger amount of dissolved air is discharged to the outside of the tank 2.

第6図は本発明の第3実施例を示す図で、上記第1およ
び第2実施例が2タンク方式であるのに対し1タンク方
式の例である。図に示すようにタンク1′には水供給管
6.空気供給管7が接続さnており、タンク1′内の水
は水循環撹拌用ボン121によって循環するようになっ
ている。
FIG. 6 is a diagram showing a third embodiment of the present invention, which is an example of a one-tank system, whereas the first and second embodiments are two-tank systems. As shown in the figure, the tank 1' has a water supply pipe 6. An air supply pipe 7 is connected to the tank 1', and water in the tank 1' is circulated by a water circulation stirring bong 121.

ボンダ21は、モータ19によって先端に撹拌羽根を有
する撹拌棒2oが回転するとタンク内の水はボンダ21
内に吸上げられボンダ上部のノズル22より噴出される
。タンク1′内の水は下端に流通孔18′を有するバッ
クル板18によって仕切られていて、夕/り底部の空気
溶解量の少い水が循環するようになっている。
When the stirring rod 2o having a stirring blade at the tip is rotated by the motor 19, the water in the tank flows into the bonder 21.
The liquid is sucked up inside and ejected from the nozzle 22 at the top of the bonder. The water in the tank 1' is partitioned by a buckle plate 18 having a circulation hole 18' at the lower end, so that water with a small amount of dissolved air at the bottom is circulated.

第7図は9本発明の第4実施例を示す図で。FIG. 7 is a diagram showing a fourth embodiment of the present invention.

タンク101.タンク102.用タンク10nとタンク
をn個連結した装置で、中央のメインタンク101から
溶液を放出して水−空気混合液を得ると共に、タンク1
02〜10n中の水をメインタンク1旧へ圧送噴霧し、
水の補給を順次行なうようにしたもので、連続的に効率
よく水−空気混合液を得ることができる。なお、第7図
Aはタンクの配置を示す平面図で、同図Bは立体的配置
を示す断面図である。図中Aは空気の供給。
Tank 101. Tank 102. This is a device in which a water tank 10n and n tanks are connected, and the solution is discharged from the main tank 101 in the center to obtain a water-air mixture, and the tank 1
02 to 10n of water was sprayed under pressure to the main tank 1,
By replenishing water in sequence, a water-air mixture can be obtained continuously and efficiently. Note that FIG. 7A is a plan view showing the arrangement of the tanks, and FIG. 7B is a sectional view showing the three-dimensional arrangement. A in the figure is the air supply.

Wは水の供給を示す。W indicates water supply.

不発明方法にょnば、水中への空気の溶解が容易に行な
わイt、そして水中への空気の分散を非常に容易にかつ
安定して行なうこきができる。
By using the uninvented method, air can be easily dissolved into water, and air can be dispersed into water very easily and stably.

また、従来法と比較して得らnた水−空気混合液は、微
小径の均一な気泡が均質に分散しているため、気泡の合
体、気水の分離が生じがたく。
Furthermore, compared to the conventional method, the obtained water-air mixture has uniformly dispersed micro-sized bubbles, so that coalescence of bubbles and separation of air and water are less likely to occur.

比較的長い時間例えば3分間程度まで気液混合状態を保
つことができる。
The gas-liquid mixed state can be maintained for a relatively long time, for example, for about 3 minutes.

以上、不発明を水−空気の混合液の場合を例として説明
したが、不発明はこれに限定さnることなく、液体に気
体を分散させる方法として。
Although the invention has been described above using the case of a mixed liquid of water and air as an example, the invention is not limited to this, but is also applicable to a method of dispersing gas in a liquid.

液体中に無制限に溶解するような気体を除き。Except for gases that can dissolve indefinitely in liquids.

気液の種類を問わず行なうことができる。また。This can be done regardless of the type of gas or liquid. Also.

液体に溶解する固体であわば、不発明方法によって気−
液一固の混合も可能である。
A solid that dissolves in a liquid can be converted into a gas by an uninvented method.
Mixing of liquid and solid is also possible.

本発明方法によって得らnた混合物は、均一どご曜ご1
イロ?7=5ゴ、ボタ↓・Cツヒl’) てハ、ぞ7七
二二と4=シイ・ン一”) r 12ン。(#ξzt「
ど−23コ一〉λリフ処理液として、また洗浄液などと
して使用することもでき、また汚水処理などのバクテリ
ヤに空気を供給するのlこ利用することもできる。また
更(乙気体と液体との反応などに利用することもできる
など種々の用途を有する。
The mixture obtained by the method of the present invention has a uniform texture.
Iro? 7=5 go, button ↓・Ctsuhi l') teha, zo 7722 and 4=shii n1") r 12 n. (#ξᄑt"
It can be used as a ref treatment liquid, a cleaning liquid, etc., and it can also be used to supply air to bacteria in sewage treatment, etc. It also has various uses, such as being able to be used for reactions between gas and liquid.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を示す装置の断面模式図。 第2図は、水循環量・とボイド率との関係を示すグラフ
。 第3図は加圧力とボイド率との関係を示すグラフ。 第4図はボイド率と気泡の平均粒径との関係を示すグラ
フ。 第5図は本発明の第2実施例を示す装置の断面模式図。 第6図は本発明の第3実施例を示す断面図。 第7図は本発明の第4実施例を示す図で、第7図Aは平
面配置図、第7図Bは立体配置図を示す。 図中。 u 1.2.101.102.103.104. to
s −、夕y り3・・・水循環管、 4・・・送水ポ
ンプ5・・・水噴出ノズル、 6・・・水供給管7・・
・空気供給管、 8・・・吐出管9・・・夕/り連通管
、10・・・熱交換器]1・・・温度セ/す、 12・
・・排出ドレン13・・・圧力ゲージ、14・・・バ/
l/、7’15・・・水供給ポンプ、18・・・バッフ
ル板特許出願人 株式会社豊田中央研究所 ?6 図 13 矛7 図A オフ 図B Δ
FIG. 1 is a schematic cross-sectional view of an apparatus showing a first embodiment of the present invention. Figure 2 is a graph showing the relationship between water circulation amount and void ratio. FIG. 3 is a graph showing the relationship between pressurizing force and void ratio. FIG. 4 is a graph showing the relationship between void ratio and average particle size of bubbles. FIG. 5 is a schematic cross-sectional view of an apparatus showing a second embodiment of the present invention. FIG. 6 is a sectional view showing a third embodiment of the present invention. FIG. 7 is a diagram showing a fourth embodiment of the present invention, in which FIG. 7A shows a plan layout and FIG. 7B shows a three-dimensional layout. In the figure. u 1.2.101.102.103.104. to
s-, evening 3...Water circulation pipe, 4...Water pump 5...Water jet nozzle, 6...Water supply pipe 7...
・Air supply pipe, 8...Discharge pipe 9...Inner/return communication pipe, 10...Heat exchanger] 1...Temperature control pipe, 12.
...Discharge drain 13...Pressure gauge, 14...Bar/
l/, 7'15...Water supply pump, 18...Baffle plate Patent applicant Toyota Central Research Institute Co., Ltd.? 6 Figure 13 Spear 7 Figure A Off Figure B Δ

Claims (4)

【特許請求の範囲】[Claims] (1) 気密タンク系内に液体と加圧気体とを供給し、
該タンク系内で該タンク系内の液体を加圧気体中に噴出
し循環させたのち該液体をタンク系外に減圧吐出し液体
中に微小気泡を分散するようにしたこ々を特徴とする気
液混合物の製造方法。
(1) Supplying liquid and pressurized gas into an airtight tank system,
The liquid in the tank system is jetted into pressurized gas and circulated within the tank system, and then the liquid is discharged outside the tank system under reduced pressure to disperse microbubbles in the liquid. Method for producing gas-liquid mixture.
(2)噴出循環させる液体が気体含有量の少い液体であ
る特許請求の範囲第1項記載の製造方法。
(2) The manufacturing method according to claim 1, wherein the liquid to be spouted and circulated is a liquid with a low gas content.
(3)液体と加圧気体とを収容するための少くとも1個
の気密タンクからなる気密タンク系と。 該タンク系の少くとも1個の夕/りに接続さnた液体供
給源と、該タンク系の少くとも1個のタンクに接続され
た加圧気体供給手段と。 該タンク系内の液体を該タンク系内の加圧気体中に噴出
し循環させる手段と、該液体をタンク系外に減圧吐出す
る減圧手段とからなり液体中に微小気泡を分散するよう
にしたことを特徴とする気液混合物の製造装置。
(3) An airtight tank system consisting of at least one airtight tank for containing liquid and pressurized gas. a liquid supply source connected to at least one tank of the tank system; and a pressurized gas supply means connected to at least one tank of the tank system. The device comprises a means for ejecting and circulating the liquid in the tank system into the pressurized gas in the tank system, and a depressurizing means for discharging the liquid under reduced pressure outside the tank system, so as to disperse microbubbles in the liquid. An apparatus for producing a gas-liquid mixture, characterized in that:
(4)気密タンク系が互いに連通さnた第1の気密タン
クと第2の気密タンクとからなり、第1の気密タンクに
液体供給源と加圧気体供給手段とが接続されており、第
2の気密タンク内の液体を第1の気密夕/り内の加圧気
体中に噴霧し循環させる手段を備えてなる特許請求の範
囲第3項記載の製造装置。
(4) The airtight tank system consists of a first airtight tank and a second airtight tank that communicate with each other, the first airtight tank is connected to a liquid supply source and a pressurized gas supply means, and the first airtight tank is connected to a liquid supply source and a pressurized gas supply means. 4. The manufacturing apparatus according to claim 3, further comprising means for spraying and circulating the liquid in the second airtight tank into the pressurized gas in the first airtight tank.
JP58177650A 1983-09-26 1983-09-26 Production of gas/liquid mixture and apparatus therefor Pending JPS6068037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58177650A JPS6068037A (en) 1983-09-26 1983-09-26 Production of gas/liquid mixture and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58177650A JPS6068037A (en) 1983-09-26 1983-09-26 Production of gas/liquid mixture and apparatus therefor

Publications (1)

Publication Number Publication Date
JPS6068037A true JPS6068037A (en) 1985-04-18

Family

ID=16034698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58177650A Pending JPS6068037A (en) 1983-09-26 1983-09-26 Production of gas/liquid mixture and apparatus therefor

Country Status (1)

Country Link
JP (1) JPS6068037A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999033552A1 (en) * 1997-12-25 1999-07-08 Yoshiyuki Sawada Vapor/liquid mixer and polluted water purification apparatus using the mixer
CN1130248C (en) * 1997-12-25 2003-12-10 泽田善行 Vapor-liquid mixer and polluted water purification apparatus using mixer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999033552A1 (en) * 1997-12-25 1999-07-08 Yoshiyuki Sawada Vapor/liquid mixer and polluted water purification apparatus using the mixer
KR20010033596A (en) * 1997-12-25 2001-04-25 사와다 요시유끼 Vapor/liquid mixer and polluted water purification apparatus using the mixer
US6315893B1 (en) 1997-12-25 2001-11-13 Yoshiyuki Sawada Gas/liquid mixer with degasifier
CN1130248C (en) * 1997-12-25 2003-12-10 泽田善行 Vapor-liquid mixer and polluted water purification apparatus using mixer

Similar Documents

Publication Publication Date Title
US3970219A (en) Aerosol containers for foaming and delivering aerosols and process
KR960040436A (en) A carbonated water producing device
KR0173996B1 (en) Apparatus for dissolving a gas into and mixing the same with a liquid
US4318443A (en) Foam generating fire fighting device
JPH084731B2 (en) Gas-liquid mixing device
US4105725A (en) Saturated liquid/vapor generating and dispensing
US4051886A (en) Saturated liquid/vapor generating and dispensing
JPH08323130A (en) Waste gas desulfurizing method
JP4558868B2 (en) Gas-liquid mixing and dissolving device
JPH0747264A (en) Method for foaming and apparatus therefor
JPS6068037A (en) Production of gas/liquid mixture and apparatus therefor
JP2007014506A (en) Foam generator
US1583141A (en) Apparatus for treating liquid with gas
US4961882A (en) Fine bubble generator and method
WO1991015287A1 (en) Apparatus and method for sparging a gas into a liquid
JP2573095B2 (en) Carbonated water production method
US2798794A (en) Device for carrying out oxidations with gases containing oxygen in liquid phase
US2497741A (en) Carbonator apparatus
JPS62226801A (en) Method for dissolving ozone
JP3387190B2 (en) Biological sludge ozonation equipment
EP3480170B1 (en) Multi-stage aeration generator and wastewater treatment method
JPS6130827B2 (en)
JPH0463121A (en) Vessel for mixing powder with water
JPH06335690A (en) Ozone catalytic reaction tank
JPS6130826B2 (en)