JPS6066672A - Phase controlling method of thyristor type 3-phase full- wave rectifier - Google Patents

Phase controlling method of thyristor type 3-phase full- wave rectifier

Info

Publication number
JPS6066672A
JPS6066672A JP17317383A JP17317383A JPS6066672A JP S6066672 A JPS6066672 A JP S6066672A JP 17317383 A JP17317383 A JP 17317383A JP 17317383 A JP17317383 A JP 17317383A JP S6066672 A JPS6066672 A JP S6066672A
Authority
JP
Japan
Prior art keywords
phase
voltage
output
signal
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17317383A
Other languages
Japanese (ja)
Other versions
JPH0435992B2 (en
Inventor
Kazuhiro Takechi
武智 主弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Koshuha Netsuren KK
Original Assignee
Neturen Co Ltd
Koshuha Netsuren KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd, Koshuha Netsuren KK filed Critical Neturen Co Ltd
Priority to JP17317383A priority Critical patent/JPS6066672A/en
Publication of JPS6066672A publication Critical patent/JPS6066672A/en
Publication of JPH0435992B2 publication Critical patent/JPH0435992B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Power Conversion In General (AREA)

Abstract

PURPOSE:To prevent a rectifier from operating in the defective phase by generating one phase control pulse between zero phase of a delay voltage to a power source and the zero phase of a leading voltage led at 90 deg. from the delay voltage. CONSTITUTION:Interphase voltages of the respective phases are produced drom a delta-connection detecting transformer 31, led to phase converters 32A-32C for the respective voltages, thereby obtaining 90 deg. leading voltage. The 90 deg. leading voltage and the interphase voltage are supplied to AND elements 35A-35C and NOR elements 36A-36C, inputted to the first and second sawtooth wave generators 38-1, 38-2, the outputs are compared with a phase control signal by the first and second comparators 39-1, 39-2. The pulse synchronized with the output is obtained to generate phase control pulses G1-G6.

Description

【発明の詳細な説明】 本発明は、サイリスク式3相全波整流器の位相制御方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the phase of a thyrisk type three-phase full-wave rectifier.

この種の整流器の主回路は、6111i1のサイリスク
をブリッジ接続して構成されるが、各サイリスクの通電
制御可能な期間は電源電圧率サイクル中の順電圧を受け
る期間即ち電気角で120度の位相範囲(30〜150
.210〜330)となる為、該期間内に位相制御パル
スをサイリスクに供給しなければ欠相運転となる。この
位相制御パルスは、従来、チューロン回路等を用い、こ
れに入力される位相制御信号の大きさに対応した位相で
発生させるようにしているが、その発生位相を電源電圧
の0〜180度の範囲に亘って制御できる為、上記位相
制御信号が所定レベル以下、またはあるレベル以上にな
ると、位相制御パルスの発生位相が上記通電制御可能な
期間から外れ、そのままでは、欠相運転が起こると云う
問題があった。
The main circuit of this type of rectifier is constructed by connecting 6111i1 cyrisks in a bridge, but the period during which the energization of each cyrisk can be controlled is the period during which the forward voltage is received during the power supply voltage ratio cycle, that is, the phase of 120 degrees in electrical angle. Range (30-150
.. 210 to 330), therefore, if the phase control pulse is not supplied to the cyrisk within this period, an open phase operation will occur. Conventionally, this phase control pulse is generated using a Turon circuit or the like with a phase corresponding to the magnitude of the phase control signal input to the circuit. Since it can be controlled over a range, if the phase control signal goes below a predetermined level or above a certain level, the generation phase of the phase control pulse will deviate from the period in which energization can be controlled, and if left as is, open-phase operation will occur. There was a problem.

この為、従来は、上下限リミッタを設りて位相制御信号
のレベル範囲を制限することにより上記欠相運転を防い
でいるが、整流器の機能調整を現場で行う場合に上記上
下限リミッタの調整ミスにより過電流が発生して遮断器
が働いてしまうなどの面倒を惹起していた。
For this reason, conventionally, upper and lower limiters are installed to limit the level range of the phase control signal to prevent the above-mentioned phase loss operation, but when adjusting the rectifier function on site, the upper and lower limiters are adjusted Mistakes caused problems such as overcurrents causing circuit breakers to trip.

本発明は、この問題点に鑑みてなされたもので、位相制
御されるサイリスク式3相全波整流器の交流電源の相間
電圧と同相の電圧をΔ結線検出トランスで取り出し、こ
れら電圧とその90度進み位相の電圧のAND信号及び
N OR信号、該AND信号とNOR信号にそれぞれ基
づく鋸歯状波信号、及び位相制御信号を用いてゲートパ
ルスの発生タイミングを決定する構成とすることにより
、節用な構成であるが、位相制御信号のレベルが過大も
しくは過小になっても、欠相を起こすことなく確実にサ
イリスクを点弧することができるサイリスク式3相全波
整流器の位相制御方法を提供することを目的とする。
The present invention has been made in view of this problem, and uses a delta connection detection transformer to extract voltages in phase with the phase-to-phase voltage of the AC power source of a phase-controlled thyrisk-type three-phase full-wave rectifier, and extracts these voltages and their 90 degrees. The configuration is such that the gate pulse generation timing is determined using an AND signal and a NOR signal of leading phase voltages, a sawtooth wave signal based on the AND signal and the NOR signal, and a phase control signal. However, it is an object of the present invention to provide a phase control method for a thyrisk-type three-phase full-wave rectifier that can reliably ignite the thyrisk without causing phase loss even if the level of the phase control signal becomes too high or too low. purpose.

以下、本発明の一実施例を図面を参照して説明する。Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図において、10は出力側がY結線された電源トラ
ンスあって、+al、(bl及び(C1はそれぞれA相
、B相及びC相の出力端子、+01は中性点を示してい
る。20は位相制御される3相全波整流器であって、6
(1&lのサイリスク21〜26をブリッジ接続して構
成され、その直流出力端子d−e間にはフライボイルダ
イオード27が挿入されている。各サイリスク21〜2
6には位相制御装置30から所定の順序で位相制御パル
スG1〜G6が供給される。
In FIG. 1, 10 is a power transformer whose output side is Y-connected; +al, (bl and (C1) are the output terminals of the A phase, B phase and C phase, respectively, and +01 is the neutral point. 20 is a phase-controlled three-phase full-wave rectifier, and 6
(It is constructed by connecting the cyrisks 21 to 26 of 1&l in a bridge manner, and a flyboil diode 27 is inserted between the DC output terminals d.Each of the cyrisks 21 to 2
6 are supplied with phase control pulses G1 to G6 in a predetermined order from the phase control device 30.

次に、上記位相制御装置30を第1図及び第2図につい
て説明する。該位相制御装置1t30は、その入力部に
位相変換用の検出I・ランス31を有している。該検出
トランス31の入力巻線はΔ結線されて?Tii+7i
iトランス10の出力側に接続されている。X、、Y、
Zは検出I・ランス31の出力巻線であって、出力巻線
Xば電源のΔ相電圧Vaに対して位相が30度遅れた遅
れ電圧Vca、出力巻線Yは電源のB相電圧vbに対し
て位相が30度遅れた遅れ電圧Vab、出力巻線Zは電
源のC相電圧V c、に対して位相が30度遅れた遅れ
電圧vbCをそれぞれ出力する。32Aは位相変換回路
であって、出力巻線Xが送出する遅れ電圧Vcaが供給
され、該遅れ電圧Vcaより90度進み位相の進め電圧
■τ1を出力する。33A及び34Δは波形成形回路で
あって、前者は遅れ電圧Vcaを矩形波に波形成形して
出力し、後者は進み電圧■ττを矩形波に波形成形して
出力する。35AはA N I)素子、36AはNOR
素子であって、共に波形成形された進み電圧Vττと波
形成形された遅れ電圧Vcaとが導かれ、AND素子3
5Aは■τ1とVcaが共に正である場合にANl)信
号Pca(Hレベル)を発生し、NOR素子36Aは■
ττとVcaが共に負である場合にN OR信号tμa
(Hレベル)を発生ずる。32I3は位相変換回路であ
って、出力巻線Yが送出する遅れ電圧Vabが供給され
、該遅れ電圧Vabより90度進み位相の進め電圧Va
丁を出力する。33B及び34Bは波形成形回路であっ
て、前者は遅れ電圧Vabを矩形波に波形成形して出力
し、後者は進み電圧Vabを矩形波に波形成形して出力
する。35BはAND素子、36BはNOIン素子であ
って、共に波形成形された進め電圧vbτと波形成形さ
れた遅れ電圧Vbcとが導かれ、AND−素子35Bは
Vabと■aI)が共ニ正テアル場合にAND信号Pa
b(Hレベル)を発生し、N OR素子36BはWil
とVabが共に負である場合にN OR信号り1立(1
−Iレベル)を発生ずる。32Cは位相変換回路であっ
て、出力巻線Zが送出する遅れ電圧Vbcが供給され、
該遅れ電圧Vbcより90度進み位相の進み電圧Vbc
を出力する。33G及び34Cは波形成形回路であって
、前者は遅れ電圧V b cを矩形波に波形成形して出
力し、後者は進み電圧vb■を矩形波に波形成形して出
力する。35CはAND素子、36CはN OR素子で
あって、共に波形成形された進み電IL’V b cと
波形成形された遅れ電圧Vbcとが導かれ、AND素子
35CはVbcとVbcが共に正である場合にAND信
ql)b c (IIレレベ)を発生し、No)ン素子
36Gは7bcとVbcが共に負である場合にNOR信
号ヱ亙c(1−ルベル)を発生ずる。
Next, the phase control device 30 will be explained with reference to FIGS. 1 and 2. The phase control device 1t30 has a detection lance 31 for phase conversion at its input portion. Is the input winding of the detection transformer 31 connected in Δ? Tii+7i
It is connected to the output side of the i-transformer 10. X,,Y,
Z is the output winding of the detection I/lance 31, the output winding X is the delayed voltage Vca whose phase is delayed by 30 degrees with respect to the Δ phase voltage Va of the power supply, and the output winding Y is the B phase voltage Vb of the power supply. The output winding Z outputs a delayed voltage Vab whose phase is delayed by 30 degrees with respect to the C-phase voltage Vc of the power supply, and a delayed voltage VbC whose phase is delayed by 30 degrees with respect to the C-phase voltage Vc of the power supply. 32A is a phase conversion circuit, which is supplied with the delayed voltage Vca sent out by the output winding X, and outputs an advanced voltage ■τ1 which is 90 degrees ahead of the delayed voltage Vca in phase. 33A and 34Δ are waveform shaping circuits, the former shaping the delayed voltage Vca into a rectangular wave and outputting it, and the latter shaping the leading voltage ■ττ into a rectangular wave and outputting it. 35A is AN I) element, 36A is NOR
An AND element 3 in which both a waveform-shaped lead voltage Vττ and a waveform-shaped lag voltage Vca are guided.
5A generates ■AN1) signal Pca (H level) when both τ1 and Vca are positive, and NOR element 36A generates ■
When ττ and Vca are both negative, the NOR signal tμa
(H level) is generated. 32I3 is a phase conversion circuit, to which the delayed voltage Vab sent out by the output winding Y is supplied, and the phase-advanced voltage Va is 90 degrees ahead of the delayed voltage Vab.
Outputs ding. 33B and 34B are waveform shaping circuits, the former shaping the delayed voltage Vab into a rectangular wave and outputting it, and the latter shaping the leading voltage Vab into a rectangular wave and outputting it. 35B is an AND element, and 36B is an NOI-in element, from which both the waveform-shaped leading voltage vbτ and the waveform-shaped lag voltage Vbc are guided, and the AND-element 35B is such that Vab and ■aI) are both positive. AND signal Pa if
b (H level), and the NOR element 36B
and Vab are both negative, the NOR signal is 1 (1
-I level). 32C is a phase conversion circuit to which the delayed voltage Vbc sent out by the output winding Z is supplied;
A leading voltage Vbc that is 90 degrees ahead of the delayed voltage Vbc and has a phase lead of 90 degrees
Output. 33G and 34C are waveform shaping circuits, the former shaping the delayed voltage Vbc into a rectangular wave and outputting it, and the latter shaping the leading voltage Vb■ into a rectangular wave and outputting it. 35C is an AND element, and 36C is an NOR element, from which both the waveform-shaped leading voltage IL'Vbc and the waveform-shaped lag voltage Vbc are guided, and the AND element 35C has both Vbc and Vbc positive. In a certain case, the AND signal ql)bc (II level) is generated, and when both 7bc and Vbc are negative, the NOR signal ql)bc (1-level) is generated.

AND素子35A、35B及び35CのANDイii 
’r’7 p (’、 ;] 、、 P a l)及び
pbcはOR,4S子37−1を介して鋸歯状波発生回
路38−1に供給される。また、N OR素子36A、
3613及び3ccの出力■且a、pab及びL立上は
OR1子37−2を介して鋸歯状波発生回路38−2に
(l給される。鋸歯状波発生回路38−1はANu)信
号I)ca、Pab及びpbcの立上りに同+1JI 
して負の所定ルベルから零レベルに立上り該零レベルか
ら所定勾配で増大し、AND信号Pca=Pab及びP
 b cの立下りに同期して上記負の所定ルベルまで立
下る波形の出力Qlを発生する。鋸歯状波発生回路38
−2はN OR信号ヱ匹且、P a丸及びp 亙cの立
上りに同期して負の所定ルベルから零レベルに立上り該
零レベルから所定勾配で増大し、N OR信号ヱ互主、
旦支上及び工」しくの立下りに同期して上記負の所定ル
ベルまで立下る波形の出力Q2を発生する。鋸歯状波発
生回路38−1の出力Q1は比較回路39−1で位相制
御信号Xと比較され、また、鋸歯状波発生回路38−2
の出力Q2は比較回路39−2で位相制御信号xと比較
される。比較回路39−1は、Ql >xである場合に
信号Ml(Hレベル)を発生し、比較回路39−2は、
Q2>Xである場合に信号M2(Hルベル)を発生ずる
。40−1はNANDAND素子て、比較回路39−1
の出力Mlの反転信号とOR素子37−1の出力とが導
かれ、信号M1に同期する出力に1を発生ずる。この出
力に1はワンショットマルチ41−1に供給され、該ワ
ンショットマルチ41−1は信号Mlの立上りもしくは
OR素子37−1の出力の立−1・りに同期して所定の
小時間11Jのパルスp1を発生ずる。
AND iii of AND elements 35A, 35B and 35C
'r'7 p (', ;] , , P a l) and pbc are supplied to the sawtooth wave generation circuit 38-1 via the OR, 4S element 37-1. In addition, NOR element 36A,
The outputs of 3613 and 3cc, and the rising edges of a, pab, and L are fed to the sawtooth wave generation circuit 38-2 via the OR1 child 37-2.The sawtooth wave generation circuit 38-1 is an ANu signal. I) +1JI at the rise of ca, Pab and pbc
and rises to zero level from a negative predetermined level, increases from the zero level at a predetermined slope, and AND signal Pca=Pab and P
An output Ql having a waveform falling to the negative predetermined level is generated in synchronization with the falling of bc. Sawtooth wave generation circuit 38
-2 rises from a predetermined negative level to zero level in synchronization with the rise of P a and p c, and increases from the zero level at a predetermined slope, and the N OR signal is mutually independent.
A waveform output Q2 is generated that falls to the above-mentioned negative predetermined level in synchronization with the fall of the mechanical and mechanical signals. The output Q1 of the sawtooth wave generation circuit 38-1 is compared with the phase control signal X in the comparison circuit 39-1, and the output Q1 of the sawtooth wave generation circuit 38-2
The output Q2 of is compared with the phase control signal x in the comparison circuit 39-2. Comparison circuit 39-1 generates signal Ml (H level) when Ql > x, and comparison circuit 39-2 generates signal Ml (H level).
When Q2>X, a signal M2 (H level) is generated. 40-1 is a NAND AND element, and a comparison circuit 39-1
The inverted signal of the output M1 of the circuit and the output of the OR element 37-1 are guided, and 1 is generated at the output synchronized with the signal M1. 1 is supplied to this output to a one-shot multi 41-1, and the one-shot multi 41-1 receives a predetermined short period of 11J in synchronization with the rising edge of the signal Ml or the rising edge of the output of the OR element 37-1. A pulse p1 is generated.

40−2はNANDAND素子て、比較回路39−2の
出力M2の反転信号とOR素子37−2の出力とが導か
れ、信号M2に同期する出力に2を発生ずる。この出力
に2はワンショットマルチ・41−2に供給され、該ワ
ンショットマルチ4I−2は13号M2の立」ニリもし
くはOR素子37−2の出力の立下りに同期して所定の
小時間中のパルスp2を発生する。42A、42B、4
2CはANu)素子であって、それぞれにはAND素子
35A、35B、35Gの出力P c a % P a
 b 、、PbCが遅延素子43八、43B、43Cを
それぞれ介し゛(供給されると共にパルスp1が供給さ
れる。11人、土1且、土叢旦はAND素子であって、
それぞれにはN OR素子36A、3613.36Cの
出力tμ主、丑土上、上±土が遅延素子43八、土主旦
、↓1旦をそれぞれ介して供給されると共にパルスp2
が供給される。44はリングカウンクであって、AND
素子42A〜土1旦の出力Na−凡且にそれぞれ間19
1する位相制御パルスG1〜G 6をダブルパルス化し
て発生ずる。
Reference numeral 40-2 denotes a NAND AND element, to which the inverted signal of the output M2 of the comparator circuit 39-2 and the output of the OR element 37-2 are guided, and generates 2 at the output synchronized with the signal M2. This output 2 is supplied to the one-shot multi 41-2, and the one-shot multi 4I-2 waits for a predetermined short period of time in synchronization with the rise of No. 13 M2 or the fall of the output of the OR element 37-2. The middle pulse p2 is generated. 42A, 42B, 4
2C is an ANu) element, and each of them has an output P c a % P a of AND elements 35A, 35B, and 35G.
b, , PbC are supplied through the delay elements 438, 43B, and 43C, and the pulse p1 is also supplied.
The outputs tμ main, Ushido top, and top±Sat of NOR elements 36A and 3613.36C are supplied to each of them through delay elements 438, Tatsudo, and ↓1, respectively, and the pulse p2
is supplied. 44 is a ring counter, AND
Output Na of element 42A to Saturday 1-approximately 19 respectively
The phase control pulses G1 to G6, which are equal to 1, are generated as double pulses.

次に、この装置の動作について、第3図の波形タイムヂ
ャ−1・を参照して説明する。
Next, the operation of this device will be explained with reference to waveform timer 1 in FIG.

電源トランスlOが出力する3相交流の電源電圧(相電
圧)Va、vb、Vcは検出トランス31を介して位相
制御装置30に取り込まれるが、該検出トランスばΔ結
線である為、その出力電圧は前記した通り上記電源電圧
より30度位相遅れの電圧となる。出力巻線Xの電圧に
ついて説明すれば、該出力巻線Xは電源電圧のA相電圧
Vaより30度だけ位相が遅れた電圧Vcaを出力する
。位相変換された遅れ電圧Vcaは、位相変換回路32
Aで90度進み位相の電圧■τ]に変換される。この遅
れ電圧Vcaと進み電圧■τ1はAND素子35Δに供
給され、該A N I)素子35Aは遅れ電圧Vcaの
零位相、即ち電源電圧Vaの30度位相に立上り、進み
電圧の180度位相、即ら電源電圧Vaの120度位相
に立下るAND信号Pcaを送出する。同様にし−C,
AN+)素子35Bからは、電源電圧vbの30度位相
に立上り120度位相で立下るAND信号P;1bが送
出され、AND素子35Gからは、電源電圧Vcの30
度位相に立上り120度位相で立下る出力P b cが
送出される。鋸歯状波発生回路38−1はAND信号P
ca、Pab、Pbcを受けてそれぞれの立上り時点か
ら所定の勾配でレベル上昇し立−トリ時点に同期して立
下る30度間隔の鋸歯状波の信号Q1を発生ずる。
Three-phase AC power supply voltages (phase voltages) Va, vb, and Vc output by the power transformer IO are taken into the phase control device 30 via the detection transformer 31, but since the detection transformer is Δ-connected, its output voltage As described above, is a voltage with a phase delay of 30 degrees from the above power supply voltage. To explain the voltage of the output winding X, the output winding X outputs a voltage Vca whose phase is delayed by 30 degrees from the A-phase voltage Va of the power supply voltage. The phase-converted delayed voltage Vca is transferred to the phase conversion circuit 32.
It is converted into a voltage ■τ] with a phase lead of 90 degrees at A. The lagging voltage Vca and the leading voltage ■τ1 are supplied to the AND element 35Δ, and the AN I) element 35A rises at the zero phase of the lagging voltage Vca, that is, at the 30-degree phase of the power supply voltage Va, and at the 180-degree phase of the leading voltage. That is, an AND signal Pca falling at a 120 degree phase of the power supply voltage Va is sent out. Similarly -C,
AN+) element 35B sends out an AND signal P;1b that rises at a 30-degree phase of power supply voltage vb and falls at a 120-degree phase, and AND element 35G sends an AND signal P;
An output P b c that rises and falls at a 120 degree phase is sent out. The sawtooth wave generating circuit 38-1 receives the AND signal P.
In response to ca, Pab, and Pbc, a sawtooth wave signal Q1 is generated at 30 degree intervals whose level rises at a predetermined slope from the respective rising points and falls in synchronization with the rising and falling points.

この信号Q1は比62回路39−1で位相制御信号Xと
比較されるが、位相制御信号Xのレベルが信号Qlの最
大値Q1maxと零レベルの間にある場合は両レベルは
交差するので、比較回路39−1の出力M1は、信号Q
1が位相制御信号Xのレベルまで上昇した時点で立上り
、信4jQ1の立下り時点で立下る断続信号となり、こ
の立」ニリに同期して発生ずるNAND素子40−1の
出力Klによりワンショットマルチ41−1が駆動され
てパルスp1を発生ずる。この時AND素子42Aには
遅延素子43Aを介してAND素子35Aの出力Pca
が入力されているので、該ANl)素子42Aばパルス
p1を受L3ると同時に(Q 1 = xの時点)パル
スNaを発生ずる。A N I)素子42B、42Cか
らは、同様に、それぞれAND信号Pbc、Pcaの発
生中にパルスpiに同期するパルスNb、Ncを発生ず
る。逆に、位相制御信号Xが上昇して信号Q ’lの最
大値QLmaxを超えた時には、上記反転信号は14レ
ベルのままであるが、OR素子37−1の出力の立下り
時点にNAND素子40−1の出力が立上るのでパルス
pi、#l<発生し、この時、進み電圧■τ]が零レベ
ルになってA N I)信号1) caは消滅するが、
遅延素子43Aがある為、AND素子42八はAND信
号Pcaの消滅時点にパルスNaを発生ずる。このよう
に、位相制御信号Xのレベルが信号Q1の最大値Q1m
axを超えた場合には、進み電圧■τ1の零点降下時に
同期してAND素子42AがパルスNaを発生ずる。A
ND素子42B、42Cの出力Nb、Ncについても同
様である。
This signal Q1 is compared with the phase control signal X in the ratio 62 circuit 39-1, but if the level of the phase control signal X is between the maximum value Q1max of the signal Q1 and the zero level, the two levels cross. The output M1 of the comparison circuit 39-1 is the signal Q
It becomes an intermittent signal that rises when signal 1 rises to the level of phase control signal 41-1 is driven to generate a pulse p1. At this time, the AND element 42A is connected to the output Pca of the AND element 35A via the delay element 43A.
is input, the AN1) element 42A receives the pulse p1 and simultaneously generates the pulse Na (at the time of Q 1 =x). A N I) Elements 42B and 42C similarly generate pulses Nb and Nc that are synchronized with pulse pi while generating AND signals Pbc and Pca, respectively. Conversely, when the phase control signal Since the output of 40-1 rises, a pulse pi, #l is generated, and at this time, the leading voltage ■τ] becomes zero level and the ANI) signal 1) ca disappears, but
Since the delay element 43A is provided, the AND element 428 generates the pulse Na at the time when the AND signal Pca disappears. In this way, the level of the phase control signal X reaches the maximum value Q1m of the signal Q1.
When the voltage exceeds ax, the AND element 42A generates a pulse Na in synchronization with the zero point drop of the lead voltage ■τ1. A
The same applies to the outputs Nb and Nc of the ND elements 42B and 42C.

このように、パルスNa、Nb、Ncの発生時点は位相
制御信号Xのレベル上昇に伴ってAND信’信置31〕
c % P a b % P b cの立上り時点から
立下り時点に向かって移動するが、信号Qlの最大値Q
 l rn a xを超えた後は該立下り時点に固定さ
れてしまうので、位相制御パルスG1、G2、G3ば電
源電圧Va、Vb、Vcの30度位相から120度位相
の間に必ず1回発生ずる。
In this way, the generation points of the pulses Na, Nb, and Nc are determined by the AND signal 31 as the level of the phase control signal X increases.
c % P a b % P b Moves from the rising point of c to the falling point, but the maximum value Q of the signal Ql
After exceeding lrn a x, it is fixed at the falling point, so the phase control pulses G1, G2, and G3 are always applied once between the 30-degree phase and the 120-degree phase of the power supply voltages Va, Vb, and Vc. Occurs.

上記遅れ電圧Vcaと進み電圧■τiは、また、NOR
素子36Aに供給され、該NOI?素子36Aからは遅
れ電圧Vcaの180度位相、即ち電源電圧Vcの21
0度位相に立上り、進み電圧の360度位相、即ち電源
電圧Vaの300度位相に立下るNOR信号Pcaが送
出される。同様にして、NOR素子36Bからは、電源
電圧vbの210度位相に立上り300度位相で立下る
NOR信号Pabが送出され、NOR素子36Cからは
、電源電圧Vcの210度位相に立上り300度位相で
立下るNOR信号ヱbcが送出される。鋸歯状波発生回
路38−2はNOROR信号上土工ユコ+、Pbcを受
けてそれぞれの立上り時点から所定の勾配でレベル上昇
し立下り時点に同期して立下る30度間隔の鋸歯状波の
信号Q2を発生する。
The above lagging voltage Vca and leading voltage ■τi are also NOR
is supplied to element 36A, and the NOI? From the element 36A, there is a 180 degree phase of the delayed voltage Vca, that is, 21 degrees of the power supply voltage Vc.
A NOR signal Pca that rises at a 0 degree phase and falls at a 360 degree phase of the leading voltage, that is, a 300 degree phase of the power supply voltage Va, is sent out. Similarly, the NOR element 36B sends out a NOR signal Pab that rises at a 210-degree phase and falls at a 300-degree phase of the power supply voltage vb, and the NOR signal Pab rises at a 210-degree phase and falls at a 300-degree phase of the power supply voltage Vc. A NOR signal ebc that falls at this point is sent out. The sawtooth wave generation circuit 38-2 receives the NOROR signals UDOKU YUKO+ and Pbc, and generates a sawtooth wave signal at 30 degree intervals, which rises in level at a predetermined slope from the respective rising points and falls in synchronization with the falling points. Generates Q2.

この信号Q2は比較回路39−2で位相制御信号Xと比
較されるが、位相制御信号Xのレベルが信号Q2の最大
値Q 2 m a xと零レベルの間にある場合は両し
ベルは交差するので、比較回路39−2の出力M2は、
信号Q2が位相制御信号Xのレベルまで上昇した時点で
立上り信号Q2の立下り時点で立下る断続信号となり、
この立上りに同期して発生ずるNAND素子40−2の
出力に2によりワンショットマルチ41−2が駆動され
てパルスp2を発生する。この時AND素子↓1人には
遅延素子土主人を介してN Ol’?素子36への出力
Peaが入力されているので、該AND素子42Aはパ
ルスp2を受けると1111時に(Q2=xの時点)パ
ルスNaを発生する。AND素子土叢旦、土1旦からは
、同様に、それぞれN OR信号ヱab、Pbcの発生
中にパルスp2に同期するパルス−Nb−1Ncを発生
ずる。逆に、位相制御信号Xが上昇して信号Q2の最大
値Q2ma xを超えた時には、上記反転信号はHレベ
ルのままであるが、OR素子37−2の出力が立下り時
点にNへNl)素子40−2の出力が立上るのでパルス
p2が発生し、この時、遅れ電圧■Caが零しベルにあ
ってNOR信号pcaは消滅するが遅延素子43Aがあ
る為、AND素子11人はN OR信号上−[」2の消
滅時点にパルスpJaを発生ずる。
This signal Q2 is compared with the phase control signal X in the comparison circuit 39-2, but if the level of the phase control signal Since they intersect, the output M2 of the comparator circuit 39-2 is
When the signal Q2 rises to the level of the phase control signal X, it becomes an intermittent signal that falls when the rising signal Q2 falls,
The one-shot multi 41-2 is driven by the output 2 of the NAND element 40-2 which is generated in synchronization with this rising edge, and generates a pulse p2. At this time, the AND element↓1 person is N Ol'? through the delay element. Since the output Pea to the element 36 is input, when the AND element 42A receives the pulse p2, it generates the pulse Na at 1111 (at the time of Q2=x). Similarly, the AND elements 1 and 1 generate a pulse -Nb-1Nc synchronized with the pulse p2 while the NOR signals ab and Pbc are being generated, respectively. Conversely, when the phase control signal ) Since the output of the element 40-2 rises, a pulse p2 is generated, and at this time, the delay voltage ■Ca drops and reaches the bell, and the NOR signal pca disappears, but because of the delay element 43A, the 11 AND elements A pulse pJa is generated at the time of disappearance of NOR signal -[''2.

A N l)素子(ユニし土り旦の出力凡を、凡旦につ
いても同様である。
The same is true for the output of the A N l) element (uniform and uncircumcised).

このように、パルスNa、Nb、Σ工の発生時点は位相
制御信号Xのレベル上昇に伴ってN OR信号旦旦土、
且土工、l瓦旦の立上り時点から立下り時点に向かって
移動するが、信号Q2の最大値Q2maxを超えた後は
該立下り肋点に固定されてしまうので、位相制御パルス
G4、G5、G6は電源電圧Va、Vb、Vcの210
度位相から300度位相の間に必ず1回発生ずる。
In this way, the time points at which pulses Na, Nb, and Σ are generated are determined by the NOR signal
In addition, the earthwork moves from the rising point to the falling point of the signal Q2, but after exceeding the maximum value Q2max of the signal Q2, it is fixed at the falling point, so the phase control pulses G4, G5, G6 is 210 of the power supply voltages Va, Vb, and Vc.
It always occurs once between the degree phase and the 300 degree phase.

従って、電源電圧Va、vb、Vcの30〜120度、
210度〜300度の間に発生ずる位相制御パルスGl
、G2、G3及びG4、G5、G6は対応するサイリス
タ21.22.23及び24.25.26に供給される
と共にサイリスタ25.26.24.22.23.21
に供給される。
Therefore, 30 to 120 degrees of power supply voltage Va, vb, Vc,
Phase control pulse Gl generated between 210 degrees and 300 degrees
, G2, G3 and G4, G5, G6 are supplied to the corresponding thyristors 21.22.23 and 24.25.26 as well as thyristor 25.26.24.22.23.21
supplied to

以上の如く、本発明によれば、電源電圧をΔ結線トラン
スを用いて取出した」二記電源電圧に対する遅れ電圧の
零点位相を基準とし、該零点位相とこの遅れ電圧を90
度進ませた進み電圧の零点位相との間で1つの位相制御
パルスが発生ずる構成点したことにより、節用な回路構
成であるが、位相制御信号が過大レベルになっても、過
小レベルになっても、サイリスクが順電圧を受りている
間に確実に位相制御パルスが発生ずるので、整流器の欠
相運転を確実に防止し′ζ該整流器の位相11−制御を
行うことができ、前記した」二]・限リミッタが不要で
あるので、現場据付聞整作業時の操作員の負111を軽
減することができる利点がある。
As described above, according to the present invention, the zero point phase of the delayed voltage with respect to the power source voltage obtained by using the Δ connection transformer is taken as the reference, and the zero point phase and this delayed voltage are
Since one phase control pulse is generated between the zero point phase of the advanced voltage and the phase of the advanced voltage, the circuit configuration is economical, but even if the phase control signal reaches an excessive level, it will not become an However, since the phase control pulse is reliably generated while the SIRIS is receiving the forward voltage, it is possible to reliably prevent open phase operation of the rectifier and perform phase 11-control of the rectifier. Since a limiter is not required, there is an advantage that the burden on the operator during on-site installation work can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるサイリスク式3相全波整流器の位
相制御方法の実施例の回路図、第2図は第1図における
位相制御装置の詳細ブロック図、第3図は上記実施例に
おける波形タイムチャーI・である。 l〇−電源トランス、20−・3相全波整流器、21〜
26−サイリスク、3〇−位相制御装置、31−検出ト
ランス、32A〜32 C−位相変換回路、33A〜3
3C,34A〜34 C−波形成形回路、35A〜35
C・・・AND素子、36A〜3(iC−NOR素子、
37−1.37−2−・OR素子、38−1.3B−2
−鋸歯状波発生回路、39−L39−2−−・比較回路
、40−1.40−2−N A N D素子、41−1
.41−2−ワンショットマルチ、42A−↓1旦−・
AND素子、43A〜土主旦−遅延素子、44− リン
グカウンタ。 特許出願人 高周波熱錬株式会社 代理人 弁理士 小林 傅
Fig. 1 is a circuit diagram of an embodiment of the phase control method for a thyrisk type three-phase full-wave rectifier according to the present invention, Fig. 2 is a detailed block diagram of the phase control device in Fig. 1, and Fig. 3 is a waveform in the above embodiment. Time chart I. l〇-Power transformer, 20-・3-phase full-wave rectifier, 21-
26-Sirisk, 30-Phase control device, 31-Detection transformer, 32A-32 C-Phase conversion circuit, 33A-3
3C, 34A~34 C-Waveform shaping circuit, 35A~35
C...AND element, 36A-3 (iC-NOR element,
37-1.37-2-OR element, 38-1.3B-2
- Sawtooth wave generation circuit, 39-L39-2-- Comparison circuit, 40-1.40-2-NAND element, 41-1
.. 41-2-One shot multi, 42A-↓1dan-・
AND element, 43A~Doshudan-delay element, 44- Ring counter. Patent applicant Koshuha Netsuren Co., Ltd. Representative patent attorney Fu Kobayashi

Claims (1)

【特許請求の範囲】[Claims] +11 位相制御されるサイリスク式3相全波整流器の
電源トランス出力端子にΔ結線検出トランスを接続して
各相の相間電圧を取り出し、各電圧について、位相変換
回路に導いて90度進み電圧を生ぜしめ、該90度進み
電圧と上記相聞電圧をAND素子に入力すると共にN 
OR素子に供給し、上記AND素子の出力を第1の鋸歯
状波発生回路に、上記NOR素子の出力を第2の鋸歯状
波発生回路にそれぞれ入力し、第1の鋸歯状波発生回路
の出力を第1の比較回路で位相制御信号と比較して該位
相制御信号より大である場合に該比較回路から出力を生
ぜしめ、該出力の立上り時点もしくは上記AND素子の
出力の立下り時点に同期するパルスを発生せしめ、該パ
ルスに同期して位相制御パルスを発生させ、また、上記
第2の鋸歯状波発生回路の出力を第2の比較回路で上記
位相制御信号と比較して位相制御信号より大である場合
に該比較回路から出力を生ぜしめ、該出力の立上り時点
及び上記NOR素子の出力の立下り時点にそれぞれ同期
するパルスを発生せしめ、該パルスに同期して位相制御
パルスを発生させることを特徴とするサイリスク式3相
全波整流器の位相制御方法。
+11 A delta connection detection transformer is connected to the power transformer output terminal of a phase-controlled thyrisk type three-phase full-wave rectifier to extract the phase-to-phase voltage of each phase, and each voltage is led to a phase conversion circuit to generate a 90 degree lead voltage. Then input the 90 degree lead voltage and the phase voltage to the AND element, and
The output of the AND element is inputted to the first sawtooth wave generation circuit, and the output of the NOR element is inputted to the second sawtooth wave generation circuit. The output is compared with a phase control signal in a first comparator circuit, and if the output is larger than the phase control signal, an output is generated from the comparator circuit, and at the time of the rising edge of the output or the falling edge of the output of the AND element. A synchronized pulse is generated, a phase control pulse is generated in synchronization with the pulse, and the output of the second sawtooth wave generation circuit is compared with the phase control signal in a second comparison circuit to control the phase. generates an output from the comparison circuit when the signal is larger than the signal, generates a pulse that is synchronized with the rising edge of the output and the falling edge of the output of the NOR element, and generates a phase control pulse in synchronization with the pulse; A phase control method for a thyrisk type three-phase full-wave rectifier, characterized in that:
JP17317383A 1983-09-21 1983-09-21 Phase controlling method of thyristor type 3-phase full- wave rectifier Granted JPS6066672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17317383A JPS6066672A (en) 1983-09-21 1983-09-21 Phase controlling method of thyristor type 3-phase full- wave rectifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17317383A JPS6066672A (en) 1983-09-21 1983-09-21 Phase controlling method of thyristor type 3-phase full- wave rectifier

Publications (2)

Publication Number Publication Date
JPS6066672A true JPS6066672A (en) 1985-04-16
JPH0435992B2 JPH0435992B2 (en) 1992-06-12

Family

ID=15955441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17317383A Granted JPS6066672A (en) 1983-09-21 1983-09-21 Phase controlling method of thyristor type 3-phase full- wave rectifier

Country Status (1)

Country Link
JP (1) JPS6066672A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797802A (en) * 1987-12-03 1989-01-10 Sundstrand Corp. Multiple phase rectifier with active filter for removing noise in triggering signals and digital phase shift compensator for phase shifting signal passed through

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797802A (en) * 1987-12-03 1989-01-10 Sundstrand Corp. Multiple phase rectifier with active filter for removing noise in triggering signals and digital phase shift compensator for phase shifting signal passed through
WO1989005541A1 (en) * 1987-12-03 1989-06-15 Sundstrand Corporation Converter for converting a multiple phase variable frequency ac voltage into dc

Also Published As

Publication number Publication date
JPH0435992B2 (en) 1992-06-12

Similar Documents

Publication Publication Date Title
EP0114274B1 (en) Control and stabilizing system for damperless synchronous motor
US4499534A (en) Control system for controlling an SCR network to regulate three-phase A-C power flow
US5239252A (en) Method and apparatus for controlling single or multiphase a.c. power controllers
CA1233509A (en) Twelve pulse ac motor drive
US3538412A (en) Motor control system with three phase conversion
JPS6066672A (en) Phase controlling method of thyristor type 3-phase full- wave rectifier
EP0160310B1 (en) Load-commutated inverter for operating synchronous motor
US3605006A (en) Compound excitation system of ac generator by thyristor control
US4122516A (en) Inverter control apparatus
US2929941A (en) Phase and frequency matching regulator for generators
US3678369A (en) Cycloconverters
CN110943493B (en) Three-phase direct current high voltage power supply intermittent power supply circuit for electric precipitation
Vovos et al. Transient stability of ac-dc systems
JPS5930035B2 (en) Output waveform synthesis method
JPH0640742B2 (en) Converter device
US3099785A (en) Means for controlling valve-action rectifiers
JPH0435991B2 (en)
JPH0816258A (en) Ac power controller
US2864991A (en) Mechanical current converter
US3416061A (en) Polyphase pulse generation circuit with variable phase shift controllable twice per cycle
JPS581809B2 (en) Smooth DC generator
SU1750009A1 (en) Method of control of off-line current inverter switch diodes
SU1003293A1 (en) Bridge converter control device
JPH0534225Y2 (en)
RU1777216C (en) Multichannel control device for valve-type converter