JPS6064535A - Longitudinal balance adjusting circuit - Google Patents

Longitudinal balance adjusting circuit

Info

Publication number
JPS6064535A
JPS6064535A JP17244683A JP17244683A JPS6064535A JP S6064535 A JPS6064535 A JP S6064535A JP 17244683 A JP17244683 A JP 17244683A JP 17244683 A JP17244683 A JP 17244683A JP S6064535 A JPS6064535 A JP S6064535A
Authority
JP
Japan
Prior art keywords
resistor
resistors
gain
operational amplifier
operational amplifiers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17244683A
Other languages
Japanese (ja)
Inventor
Seiji Kato
誠治 加藤
Kazuhiro Kaneko
和弘 金子
Hiroko Kurosaki
黒崎 裕子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP17244683A priority Critical patent/JPS6064535A/en
Publication of JPS6064535A publication Critical patent/JPS6064535A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M19/00Current supply arrangements for telephone systems
    • H04M19/001Current supply source at the exchanger providing current to substations
    • H04M19/005Feeding arrangements without the use of line transformers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Devices For Supply Of Signal Current (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PURPOSE:To adjust the longitudinal balance of a feeding circuit without losing temperature characteristics by constituting a resistor deciding the gain of an operational amplifier to the inside of an LSI and mounting externally only one adjusting resistor. CONSTITUTION:Resistors R-1, R-3-R-5 are constituted in the inside of the LSI and the resistor R-2 is mounted externally. The resistance value of the resistor R-2 is selected to 8 times the resistance value of the resistor R-1 and the sensitivity of an operational amplifier 8 to the gain is nearly 1/8 of that of the resistor R-1. That is, the gain of the operational amplifiers 8, 9 depends almost on the built-in resistors R-1, R-3-R-5. Even if the temperature coefficient of the adjusting resistor R-2 mounted externally and that of the built-in resistors differ, the effect on the entire gain is hardly caused in this way.

Description

【発明の詳細な説明】 (al 発明の技術分野 本発明は縦バランス調整回路に係り、特に電話器への給
電回路の縦バランス調整回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a vertical balance adjustment circuit, and more particularly to a vertical balance adjustment circuit for a power supply circuit to a telephone.

(b) 従来技術と問題点 第1図は2線−4線変換回路を含む給電回路の一般的構
成図を示す。
(b) Prior Art and Problems FIG. 1 shows a general configuration diagram of a power supply circuit including a 2-wire to 4-wire conversion circuit.

同図に於て、点線内が給電回路を、1は直流帰還回路を
、2は交流帰還回路を、3はハイブリッド回路をそれぞ
れ示す。
In the figure, the dotted line indicates a power supply circuit, 1 indicates a DC feedback circuit, 2 indicates an AC feedback circuit, and 3 indicates a hybrid circuit.

又、端子21及び22の左側が2線側で、電話器(図示
せず)が接続される。一方、41!送信端子23及び4
線受信端子24の右側は4線側で、4線送信端子23は
2線側から送られて来た信号を取出し4線側に送出し、
4線受信端子24は4線側から送られて来た送信信号を
2線側に送出する。
Further, the left side of the terminals 21 and 22 is the two-wire side, to which a telephone (not shown) is connected. On the other hand, 41! Transmission terminals 23 and 4
The right side of the line receiving terminal 24 is the 4-line side, and the 4-line transmitting terminal 23 takes out the signal sent from the 2-line side and sends it to the 4-line side.
The 4-wire receiving terminal 24 sends the transmission signal sent from the 4-wire side to the 2-wire side.

第1図に示した各ブロックの動作は次の様である。The operation of each block shown in FIG. 1 is as follows.

端子21及び22に加えられた電話器からの信号は互い
に逆相であるから演算増幅器4で2倍の振幅の信号が検
出された後、4線送信端子23に送られると同時に、低
域ろ波器11.演算増幅器12から構成された直流帰還
回路1及び高域ろ波器10及び演算増幅器13から構成
された交流帰還回路2を通して給電回路6に加えられる
Since the signals from the telephones applied to the terminals 21 and 22 are in opposite phases to each other, a signal with twice the amplitude is detected by the operational amplifier 4, and is sent to the 4-wire transmitting terminal 23, at the same time as the low-frequency filter. Wave device 11. It is applied to the power supply circuit 6 through a DC feedback circuit 1 comprising an operational amplifier 12 and an AC feedback circuit 2 comprising a high-pass filter 10 and an operational amplifier 13.

尚、前記の直流帰還回路は端子21及び22に接続され
る電話器(図示せず)に流す直流電流を決定し、交流帰
還回路は電話器に接続されるインピーダンスを600Ω
になる様にしている。
The DC feedback circuit described above determines the DC current to be passed through the telephone (not shown) connected to the terminals 21 and 22, and the AC feedback circuit sets the impedance connected to the telephone to 600Ω.
I'm trying to make it happen.

又、ハイブリッド回路3は4線受信端子24に加えられ
た4線側からの送信信号が演算増幅器5.8及び4を通
った前記の送信信号と、4線受信端子24に加えられた
送信信号の一部とを加える事に依って4線送信端子23
から4線側に出るのを防ぐ為のものである。
Further, the hybrid circuit 3 receives the transmission signal from the 4-wire side applied to the 4-wire reception terminal 24, the aforementioned transmission signal which has passed through the operational amplifiers 5.8 and 4, and the transmission signal applied to the 4-wire reception terminal 24. By adding a part of the 4-wire transmission terminal 23
This is to prevent it from going out to the 4th line side.

一方、例えば近接した送電線に依って前記の2線に誘導
された同相信号に対して、端子25から演算増幅器8の
方を見た同相インピーダンスと、端子26から演算増幅
器9の方を見た同相インピーダンスがそれぞれ例えば1
50Ωになっていれば演算増幅器4の出力側では互いに
打消され相手側にこの同相信号は送られないが、前記の
同相インピーダンスのバランスが崩れているとそれに対
応する同相信号が増幅器4の出力側に取出され、この同
相信号は相手側と前記2つの帰還回路を通って増幅器5
に加えられる。
On the other hand, for a common-mode signal induced into the two wires by, for example, a nearby power transmission line, the common-mode impedance seen from the terminal 25 toward the operational amplifier 8 and the common-mode impedance seen from the terminal 26 toward the operational amplifier 9 are determined. For example, if the common mode impedance is 1
If it is 50Ω, they will cancel each other out on the output side of the operational amplifier 4 and this in-phase signal will not be sent to the other side, but if the above-mentioned common-mode impedance is unbalanced, the corresponding in-mode signal will be sent to the output side of the amplifier 4. This in-phase signal is taken out to the output side and passes through the other side and the two feedback circuits to the amplifier 5.
added to.

ところで、給電回路6の中の演算増幅器7は端子21及
び22の同相信号を検出して演算増幅器8及び9に帰還
をかけ同相インピーダンスを前記の150Ωに設定する
役目をしているが、この同相インピーダンスの一致の程
度は演算増幅器7と8及び演算増幅器7と9との利得の
一致の程度に依って決まる。
By the way, the operational amplifier 7 in the power supply circuit 6 has the role of detecting the common-mode signal at the terminals 21 and 22 and feeding it back to the operational amplifiers 8 and 9 to set the common-mode impedance to the aforementioned 150Ω. The degree of common-mode impedance matching is determined by the degree of matching of gains between operational amplifiers 7 and 8 and operational amplifiers 7 and 9.

従って、縦バランスを良くする為に(よ2つの同相イン
ピーダンスを出来るだけ一致させる事がa・要であり、
その為には演算増幅器8及び9の利(q決定用の抵抗器
を調整する事が不可欠である。
Therefore, in order to improve the vertical balance, it is important to match the two common mode impedances as much as possible.
For this purpose, it is essential to adjust the resistor for determining the efficiency of operational amplifiers 8 and 9 (q).

第2図は第1図に示した給電回路6のより詳細な回路図
を示す。
FIG. 2 shows a more detailed circuit diagram of the power supply circuit 6 shown in FIG.

同図に於て、演算増幅器8の利得ば抵抗器17−3とR
−1の値の比で、演算増幅器9の利得は同しく抵抗器R
−5とR−4の値の比でそれぞれ決まる。
In the same figure, the gain of operational amplifier 8 is determined by resistor 17-3 and R.
-1 value, the gain of operational amplifier 9 is also equal to resistor R
Each is determined by the ratio of the values of -5 and R-4.

一方、給電回路6をLSI化する場合調整を要する抵抗
器は外付けにする必要があるので、LSI内の抵抗器と
外付けの抵抗器の温度特性を揃えなければならない。し
かし、この様な、ことは一般には不可能なので、利得を
決める抵抗器はすべて外イ1けにせざるを得ない。
On the other hand, when the power supply circuit 6 is integrated into an LSI, the resistors that require adjustment must be externally attached, so the temperature characteristics of the resistors inside the LSI and the external resistors must be made the same. However, since this is generally impossible, all the resistors that determine the gain have to be used externally.

即ち抵抗器R−1を外付けにすると、それと対をなす抵
抗器R−3も、又演算増幅器8と9の利得特性を揃える
為に抵抗器R−4及びR−5も外付けにせざるを得なか
った。
In other words, if resistor R-1 is externally connected, the paired resistor R-3 must also be externally connected, and in order to match the gain characteristics of operational amplifiers 8 and 9, resistors R-4 and R-5 must also be externally connected. I didn't get it.

その為に給電回路をLSI化する場合、外付は部品が増
えると云う問題があった。
Therefore, when converting the power supply circuit into an LSI, there is a problem in that the number of external components increases.

(C) 発明の目的 本発明は上記従来技術の問題に鑑みなされたものであっ
て、調整用抵抗器1本のみを外付けにしたLSI化され
た縦バランス調整回路を提供する事を目的としている。
(C) Purpose of the Invention The present invention has been made in view of the problems of the prior art described above, and its purpose is to provide an LSI-based vertical balance adjustment circuit in which only one adjustment resistor is externally attached. There is.

(d) 発明の構成 上記発明の目的は、2線の同相信号を検出する検出手段
と該検出手段からの出力を2つの演算増幅器に帰還して
同相インピーダンスを設定する手段を含むLSI化され
た給電回路に於て、該2つの演算増幅器の何れか1つの
演算増幅器の帰還利得を決定する第1及び第2の抵抗器
のうち第2の抵抗器に該抵抗器の値の約10倍の値を持
つ抵抗器を外部から並列接続した事を特徴とする縦バラ
ンス調整回路を提供する事に依り達成される。
(d) Structure of the Invention The object of the invention is to provide an LSI which includes a detection means for detecting a two-wire in-phase signal and a means for feeding back the output from the detection means to two operational amplifiers to set a common-mode impedance. In the power supply circuit, the second resistor of the first and second resistors that determines the feedback gain of one of the two operational amplifiers has a value approximately 10 times that of the resistor. This is achieved by providing a vertical balance adjustment circuit characterized by externally connecting resistors having a value of .

+141 発明の実施例 第3図は本発明の一実施例の概略の接続図である。+141 Examples of the invention FIG. 3 is a schematic connection diagram of an embodiment of the present invention.

図中1.7,8及び9はそれぞれ演算増幅器を、25〜
29はそれぞれ端子を、R−1〜R−12はそれぞれ抵
抗器を示す。
In the figure, 1.7, 8, and 9 are operational amplifiers, and 25 to 9 are respectively operational amplifiers.
29 each represents a terminal, and R-1 to R-12 each represent a resistor.

尚、第2図と同一の記号は同一の部分を示し、本発明の
部分は点線で囲った部分である。
Note that the same symbols as in FIG. 2 indicate the same parts, and the parts of the present invention are surrounded by dotted lines.

これらの部品は概路次の様に接続されている。These parts are connected as shown below.

端子25は抵抗器R−6.演算増幅器8.抵抗器R−7
を介して端子27と、端子26は同じく抵抗器R−8.
演算増幅器9.抵抗器R−9を介して端子28と接続さ
れる。
Terminal 25 is connected to resistor R-6. Operational amplifier8. Resistor R-7
via terminal 27, and terminal 26 is also connected to resistor R-8.
Operational amplifier9. It is connected to terminal 28 via resistor R-9.

又、端子25と26を接続する2本の直列抵抗器R−1
0及びR−11の共通の接続点は、演算増幅器7を介し
て抵抗器R−iとR−2との並列接続抵抗を介して演算
増幅器8の一端子及び抵抗器R−4を介して演算増幅器
9の一端子にそれぞれ接続される。
Also, two series resistors R-1 connect terminals 25 and 26.
The common connection point of 0 and R-11 is connected to one terminal of the operational amplifier 8 through the parallel connection of resistors R-i and R-2 through the operational amplifier 7 and through the resistor R-4. Each is connected to one terminal of the operational amplifier 9.

尚、演算増幅器7の一端子は抵抗器R−12を介して端
子29に接続される。
Note that one terminal of the operational amplifier 7 is connected to a terminal 29 via a resistor R-12.

同図に於て、抵抗器1?−1,R−3,R−4,R−5
はLSI内部に構成され抵抗器R−2を外付けとする。
In the same figure, resistor 1? -1, R-3, R-4, R-5
is configured inside the LSI, and the resistor R-2 is attached externally.

この時、抵抗器R−2は抵抗器R−1の8倍に選んであ
り、演算増幅器8の利得に対する感度は抵抗器11−1
の約1/8である。つまり、演算増幅器8と9の利得は
殆ど内蔵の抵抗器R11,R−3,R−4,R−5で決
まる。
At this time, resistor R-2 is selected to be eight times as large as resistor R-1, and the sensitivity to the gain of operational amplifier 8 is determined by resistor 11-1.
It is about 1/8 of that. That is, the gains of the operational amplifiers 8 and 9 are mostly determined by the built-in resistors R11, R-3, R-4, and R-5.

従って外付けの調整抵抗器R−2と内蔵の抵抗器の温度
係数が違ったとしても、全体の利得への影響は殆どない
Therefore, even if the temperature coefficients of the external adjusting resistor R-2 and the built-in resistor are different, this has almost no effect on the overall gain.

第4図は具体例を示す。FIG. 4 shows a concrete example.

今抵抗器R−1が22.5にΩ、11−2が180にΩ
の時その並列抵抗器Rtの値は20 KΩで抵抗器R−
4と同じ値になる様にしである。この時抵抗器R−2の
値を変化させた時の並列抵抗器Rtの値の変化を示した
ものが第4図である。同図から判る様に並列抵抗器R1
の値の変化は約l/10になっている。
Now resistor R-1 is 22.5Ω, and resistor 11-2 is 180Ω.
When the value of the parallel resistor Rt is 20 KΩ, the value of the resistor R-
The value is set to be the same as 4. FIG. 4 shows the change in the value of the parallel resistor Rt when the value of the resistor R-2 is changed at this time. As you can see from the figure, parallel resistor R1
The change in value is approximately 1/10.

(f) 発明の詳細 な説明した様に本発明によれば、演算増幅器の利得を決
定する抵抗器をLSI内部に構成し、調整抵抗器を一本
だけ外付けにする事により給電回路の縦バランスを温度
特性を損なう事なく調整する事が出来る。
(f) As described in detail, according to the present invention, the resistor that determines the gain of the operational amplifier is configured inside the LSI, and only one adjustment resistor is attached externally, thereby reducing the vertical Balance can be adjusted without impairing temperature characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は2線/4線変換機能を含んだ給電回路の一般的
構成例を、第2図は給電回路図の従来例を、第3図は本
発明の一実施例を、第4図は本発明の詳細な説明する為
の図をそれぞれ示す。 図中、7.8及び9はそれぞれ演算増幅器を、R−1〜
R−12はそれぞれ抵抗器を、25〜29はそれぞれ端
子を示す。 菓2図 第3図 第4区 /lρ /7ρ /8ρ /yρ 2ρρA?z KΩ
Fig. 1 shows a general configuration example of a power supply circuit including a 2-wire/4-wire conversion function, Fig. 2 shows a conventional example of a power supply circuit diagram, Fig. 3 shows an embodiment of the present invention, and Fig. 4 2A and 2B respectively show diagrams for explaining the present invention in detail. In the figure, 7.8 and 9 indicate operational amplifiers, R-1 to
R-12 each represents a resistor, and 25 to 29 each represent a terminal. Figure 2 Figure 3 District 4 /lρ /7ρ /8ρ /yρ 2ρρA? z KΩ

Claims (1)

【特許請求の範囲】[Claims] 2線の同相信号を検出、する検出手段と該検出手段から
の出力を2つの演算増幅器に帰還して同相インピーダン
スを設定する手段を含むLSI化された給電回路に於て
、slつの演算増幅器の何れか1つの演算増幅器の帰還
利得を決定する第1及び第2の抵抗器のうち第2の抵抗
器に該第2の抵抗器の値の約10倍の値を持つ抵抗器を
外部から並列接続した事を特徴とする縦バランス調整回
路。
In an LSI power supply circuit including a detection means for detecting a two-wire common-mode signal and a means for feeding back the output from the detection means to two operational amplifiers to set a common-mode impedance, sl operational amplifiers are used. A resistor having a value approximately 10 times the value of the second resistor is externally connected to the second resistor of the first and second resistors that determine the feedback gain of any one of the operational amplifiers. A vertical balance adjustment circuit characterized by parallel connection.
JP17244683A 1983-09-19 1983-09-19 Longitudinal balance adjusting circuit Pending JPS6064535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17244683A JPS6064535A (en) 1983-09-19 1983-09-19 Longitudinal balance adjusting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17244683A JPS6064535A (en) 1983-09-19 1983-09-19 Longitudinal balance adjusting circuit

Publications (1)

Publication Number Publication Date
JPS6064535A true JPS6064535A (en) 1985-04-13

Family

ID=15942128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17244683A Pending JPS6064535A (en) 1983-09-19 1983-09-19 Longitudinal balance adjusting circuit

Country Status (1)

Country Link
JP (1) JPS6064535A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202972A (en) * 1988-02-09 1989-08-15 Oki Electric Ind Co Ltd Transmission characteristic temperature compensation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202972A (en) * 1988-02-09 1989-08-15 Oki Electric Ind Co Ltd Transmission characteristic temperature compensation method

Similar Documents

Publication Publication Date Title
JP2898165B2 (en) Hybrid circuit
US6218872B1 (en) Line driver with output impedance synthesis
JPH0669834A (en) Two-wire/four-wire converter
JPS5816782B2 (en) Telephone transmitter/receiver circuit
JPS6041909B2 (en) Telephone communication network
JPS6064535A (en) Longitudinal balance adjusting circuit
CA1078536A (en) Bilateral voice-signal controller for use in the two-wire portion of the telephone circuit
US6795495B2 (en) Line driver with output impedance synthesis
US4500755A (en) Electric hybrid circuits
JPS59135961A (en) Speech signal suppressing circuit for telephone set
EP1089450B1 (en) Telephone line interface circuit
JPS5912638A (en) Impedance synthesis type line circuit
JPH07288577A (en) Telephone set
KR20040032781A (en) Bridge circuit to suppress echoes in communication devices
JPH0736196B2 (en) Summing amplifier with complex weighting factors and interface with such summing amplifier
JPS63200623A (en) Automatic hybrid circuit
JPH033009Y2 (en)
AU681169B2 (en) Line termination circuit
JPS60112348A (en) Anti-side tone circuit
JPS6160021A (en) Electronic hybrid circuit
RU1803983C (en) Device for suppressing local effect of telephone set
JP3031518B2 (en) Sidetone circuit
JP2646669B2 (en) Electronic hybrid circuit
JPS6146629A (en) Ac inducing noise eliminating circuit
JPH03231520A (en) Two-wire/four-wire conversion circuit