JPS6064206A - Two-dimensional and three-dimensional displacement detecting device - Google Patents

Two-dimensional and three-dimensional displacement detecting device

Info

Publication number
JPS6064206A
JPS6064206A JP17378283A JP17378283A JPS6064206A JP S6064206 A JPS6064206 A JP S6064206A JP 17378283 A JP17378283 A JP 17378283A JP 17378283 A JP17378283 A JP 17378283A JP S6064206 A JPS6064206 A JP S6064206A
Authority
JP
Japan
Prior art keywords
dimensional
movable member
displacement
displacement detection
fixed part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17378283A
Other languages
Japanese (ja)
Inventor
Akitoshi Kamei
亀井 明敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP17378283A priority Critical patent/JPS6064206A/en
Publication of JPS6064206A publication Critical patent/JPS6064206A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • B23Q1/34Relative movement obtained by use of deformable elements, e.g. piezoelectric, magnetostrictive, elastic or thermally-dilatable elements
    • B23Q1/36Springs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/004Measuring arrangements characterised by the use of electric or magnetic techniques for measuring coordinates of points
    • G01B7/008Measuring arrangements characterised by the use of electric or magnetic techniques for measuring coordinates of points using coordinate measuring machines
    • G01B7/012Contact-making feeler heads therefor

Abstract

PURPOSE:To make an electric zero point agree with a mechanical original point, to which a contact probe is returned stably, by a simple constitution, wherein the first and second movable members of each detecting unit are supported by a pair of parallel springs, respectively. CONSTITUTION:Each detecting unit comprises three constituent elements, i.e., a fixed part 6, a first movable member 7 and a second movable member 12. The first movable member 7 is suspended by parallel springs 8 and 9 at the lower part of the fixed part 6. The second movable part 12 is suspended from the fixed part 6 by parallel springs 13 and 14. A probe 2 is attached to the second movable member 12. Tensile springs 11 and 16 are stoppers 10 and 15 are provided between the fixed part 6 and the first movable member 7 and between the first and second movable members so that the contact is always secured. A displacement detector 17 is provided between the second movable member 12 and the fixed part 6. The amount of displacement (x) of the probe 2 is detected by the detector 17. When the displacement is released, the probe 2 is automatically returned to the original position without using other driving force.

Description

【発明の詳細な説明】 乙の発明は主として座標測定機に取付けられて、対象物
体の寸法、形状を二次元もしくは三次元に、すなわちX
、、YもしくはX、Y、Zの方向に検出する装置に係る
。づ列えば接触子をその物体の設計された形状に沿って
移動させたとき、物体形状の設計値からの誤差により接
触子が変位する。そのときの変位量を二次元もしくは三
次元に検出ずろ装置である。
[Detailed Description of the Invention] The invention of Party B is mainly attached to a coordinate measuring machine to measure the size and shape of a target object in two or three dimensions, that is,
, , Y, or a device that detects in the X, Y, and Z directions. If the contactor is moved along the designed shape of the object, the contactor will be displaced due to an error in the shape of the object from the designed value. This is a displacement device that detects the amount of displacement at that time two-dimensionally or three-dimensionally.

ここて三次元検出装置について、その必要条件を考える
に、第1に接触子(よ接触により三次元方向に自由に変
位してベクトル変位量X、Y、Z方向における変位量の
成分として検出できること、第2は接触が解除されたと
きには、接触子は高精度に一定位置に復帰できる乙と、
第3に三次元座標測定機の測定範囲を損なわない為に小
型である乙と、第4に座標測定機の移動機構の正誤差を
極力小さくするためにその重量を出来ろだけ軽くするこ
と等である。
Considering the necessary conditions for a three-dimensional detection device, the first is that the contact element can be freely displaced in three-dimensional directions by contact and detected as a component of vector displacement in the X, Y, and Z directions. , the second is that the contact can return to a fixed position with high precision when the contact is released;
Thirdly, the three-dimensional coordinate measuring machine must be small in size so as not to impair its measurement range, and fourthly, the weight must be as light as possible in order to minimize the error in the movement mechanism of the coordinate measuring machine. It is.

これらの点から判断して従来使用された検出装置には欠
点があった。例えば特公昭54−6218号に示された
「多次元電子センサ」は、この目的のために考えられた
もので、第1、第2の上記条件はこれを満している。し
かし第2の条件を満すために[個々の直線案内装置X、
Y1Z3段の中に精密鎖錠装置を設は更に機械的幾何学
的零点が電気的零点に一致するようにする為に電動調整
装置により調整可能な係止m構」 (公告公報の第3図
)を必要としている。そしてこれ等は夫々V型鎖錠溝、
鎖錠味、レバー、板バネ、カム板及びこれらの駆動源で
ある電!1tlJ機等数多くの部品で構成されるため直
線案内装置の内部空間は充満し、更に必要とする付加装
置を内蔵することが不可能なためXYZ3段の」一部に
更に大きなセンシングヘッドを設ける事を余儀な(され
、前述した第3・第4の小型軽量化の条件に反し重く大
型な構造になっている。更に上部に設けた付加装置の作
動には長いリンク機構を必要とし、乙のリンク部材が中
芯部を通過する為精密計測の原理であるアツベの原理に
適した中心線上に変位センサーを設ける事が出来ず精度
上も問題があった。
Judging from these points, conventionally used detection devices have drawbacks. For example, the "multidimensional electronic sensor" disclosed in Japanese Patent Publication No. 54-6218 was devised for this purpose, and satisfies the first and second conditions mentioned above. However, in order to satisfy the second condition [individual linear guide device X,
A precision locking device is installed in the third stage of Y1Z, and the locking mechanism is adjustable by an electric adjustment device to ensure that the mechanical and geometric zero points coincide with the electrical zero points.'' (Figure 3 of the official bulletin) ) is needed. Each of these has a V-shaped locking groove,
The lock, the lever, the leaf spring, the cam plate, and the electricity that drives them! Since it is composed of many parts such as 1tlJ machine, the internal space of the linear guide device is full, and it is impossible to incorporate the necessary additional equipment, so it is necessary to install a larger sensing head in a part of the 3rd stage of XYZ. The structure is heavy and large, contrary to the third and fourth conditions of compactness and weight reduction mentioned above.Furthermore, a long link mechanism is required to operate the additional device installed at the top, and the Since the link member passes through the center core, it is not possible to install the displacement sensor on the center line, which is suitable for Atsube's principle, which is the principle of precision measurement, and there is also a problem in terms of accuracy.

そこで第1、第2の条件を完全に満足させ、かつ第3、
第4の条件をも満すものが要望されている。この発明は
第2の条件の復帰機構に簡単で高精度なものを採用する
と共に、この復帰機構によって得られた安定な機械的原
点に電気的零点を一致させるようにしたものである。
Therefore, the first and second conditions are completely satisfied, and the third condition is
There is a demand for something that also satisfies the fourth condition. This invention employs a simple and highly accurate return mechanism for the second condition, and also makes the electrical zero point coincide with the stable mechanical origin obtained by this return mechanism.

第1図は本発明の実施の一例の概要を示す。FIG. 1 shows an overview of an example of implementation of the invention.

最上部の固定部1は三次元座標測定機の垂直軸に取付け
られ、接触子2の変位はその上のX、YXZ変位検出ユ
ニット3.4.5によって検出される。なおことて各変
位検出ユニットにおいては、次に示すように駆動源を必
要としない自動原点復帰機構を採用する。またx、y、
zの各変位検出ユニットの組合せは、その順序を自由に
変更することが可能である。
The top fixed part 1 is mounted on the vertical axis of the three-dimensional coordinate measuring machine, and the displacement of the contact 2 is detected by the X, YXZ displacement detection unit 3.4.5 above it. In addition, each displacement detection unit employs an automatic origin return mechanism that does not require a driving source, as described below. Also x, y,
The order of the combinations of displacement detection units of z can be freely changed.

第2図は変位検出ユニットの一例を示す。変位検出ユニ
ットは固定部、第1可動部材、第2可動部材の三つの構
成要素からなり、固定部6はL字型をなし、第1可動部
材7が平行ばね8.9によって同定部6の下方に吊され
ている。そして固定部6のL字型の下端と第i nJ動
部材7どの間に第1ストツパ10を設け、このストッパ
が常時接触しているように、引張りスプリング1]を固
定部6と第1可動部材7との間に入れろ。
FIG. 2 shows an example of a displacement detection unit. The displacement detection unit consists of three components: a fixed part, a first movable member, and a second movable member. The fixed part 6 is L-shaped, and the first movable member 7 is connected to the identification part 6 by a parallel spring 8. suspended below. A first stopper 10 is provided between the L-shaped lower end of the fixed part 6 and the i-th movable member 7, and the tension spring 1 is connected between the fixed part 6 and the first movable member so that this stopper is always in contact with the first stopper 10. Insert it between it and member 7.

また固定部6から平行ばね13.14をもって第2可動
部材12を下げ、これに接触子2を取付ける。
Further, the second movable member 12 is lowered from the fixed part 6 with parallel springs 13, 14, and the contactor 2 is attached thereto.

そして第1可動部材7と第2可動部材12との間に第2
ストッパ15を設け、これが常時接触するようにスプリ
ング16を入れる。そし−(第21+J @J部材12
と固定部6との間に変位検出器17を設ける。なおこの
検出器としては差動変圧器、モアレスケール等の直線変
位検出部が使用できろ。
The second movable member 7 and the second movable member 12
A stopper 15 is provided, and a spring 16 is inserted so that the stopper 15 is always in contact with the stopper 15. Soshi-(21st +J @J member 12
A displacement detector 17 is provided between the fixed part 6 and the fixed part 6. Note that a linear displacement detector such as a differential transformer or a moiré scale can be used as this detector.

このような構造において接触子2に(+X)の変位が加
わると、第2可動部材12はスプリング16を伸はし、
ストッパ15を離して+X量平行に変位して、これが変
位fll+X)として検出部17によって検出される。
In such a structure, when a displacement of (+X) is applied to the contactor 2, the second movable member 12 stretches the spring 16,
When the stopper 15 is released, it is displaced +X amount in parallel, and this is detected by the detection unit 17 as a displacement fll+X).

次に(−Xlの変位が加わると、第2可動部祠12は(
−入)量平行に移動して、第2ストyパ15を介して第
1可動部材7を(−)方向に移動させる。この時スプリ
ング11ば1申ばされ、ストッパ10は離れ、そのとき
の変位量(−XI Iよ検出部17によって検出される
。そして接触イが被測定物より離れ(+X)又は(−X
)の変位が解除されると二組の平行ばね8.9と13.
14及び二つの引張りスプリング11.16によって他
の駆動力を用いる事なく自動的に原点に復帰する。
Next, when a displacement of (-Xl is applied, the second movable part shrine 12 is (
The first movable member 7 is moved in the (-) direction via the second stopper 15. At this time, the spring 11 is released, the stopper 10 is released, and the amount of displacement (-XI) at that time is detected by the detection unit 17.Then, the contact A moves away from the object to be measured (+X) or (-X
) is released, two sets of parallel springs 8.9 and 13.
14 and two tension springs 11 and 16 to automatically return to the origin without using any other driving force.

第3図は変位検出二1.ニットの他の実施例を示す。こ
こては前記の三つの構成要素の連結方法を一部変える。
Figure 3 shows displacement detection 21. Another example of knit is shown. Here, the method of connecting the three components described above is partially changed.

すなわち固定部6に対して第1可動部材20を平行ばね
で関連させ、その間にストッパ21を設け、常時接触す
る方向にスプリングを設け、かつ第1i3JIllJ部
材20に対して第2可動部材22を平行ばねて第1、第
2可動部材を平行に関連させ、その間にストッパ23を
設け、常時接触する方向のスプリングを設は第2 nJ
動部材22と固定部6との間に検出部17を設けろ。ま
た第2可動部材22に接触子2を取付ける1、そして(
+X)方向変位に対してはストッパ21が開き、(−X
)方向変位に対してはストッパ23が開く。なお変位量
の検出、自動原点1に帰については第2図に示した第1
の実施例とまっノこく同様である。
That is, the first movable member 20 is connected to the fixed part 6 by a parallel spring, the stopper 21 is provided between them, the spring is provided in the direction of constant contact, and the second movable member 22 is connected parallel to the 1i3JIllJ member 20. A spring is used to connect the first and second movable members in parallel, a stopper 23 is provided between them, and a spring is provided in the direction of constant contact with the second movable member.
A detection section 17 should be provided between the moving member 22 and the fixed section 6. Further, 1 attaches the contactor 2 to the second movable member 22, and (
The stopper 21 opens for displacement in the (-X) direction, and
) direction, the stopper 23 opens. For detecting the amount of displacement and automatically returning to the origin 1, please refer to the
This is exactly the same as the embodiment.

このように構成された第1実施例あるし)は第2実施例
の検出ユニットを90°回転ずればY方向に、横に使用
すればZ方向の検出装置となる。
If the detection unit of the second embodiment is rotated by 90 degrees, it becomes a Y-direction detection device, and if used laterally, it becomes a Z-direction detection device.

そしてこれを第1図に示すように積み重ねるのであるが
、X方向変位ユニット3における固定部6をY方向変位
ユニット4の第2可動部利に、Y方向変位ユニット4の
固定部をZ方向変位ユニシト5の第2可動部材に連結す
る。
These are stacked as shown in Figure 1, with the fixed part 6 of the X-direction displacement unit 3 serving as the second movable part of the Y-direction displacement unit 4, and the fixed part of the Y-direction displacement unit 4 being used as the second movable part of the Y-direction displacement unit 4. It is connected to the second movable member of the unit 5.

以上に示すユニットはそのいずれを使用しても、また混
合使用しても良いが以下の使用例て(よ第2図のユニッ
トを使用した場合を示す。
Any of the units shown above may be used or they may be used in combination, but the following usage example shows a case where the unit shown in FIG. 2 is used.

第4図において最下段のユニット3は第2図に示すもの
とまったく同じでX方向の変位量の検出を行なう。ここ
で乙の平行ばねはそれぞれY方向の力には強い剛性を有
するので、Y方向の変位2よ(図面に対し直角な方向)
はそのまま中段Y方向ユニット4に伝達される。そして
変位がX、Y方向の中間方向であれば、X方向成分j!
けをX方向コニットが検出し、Y方向成分はY方向ユニ
ットが検出する。なお第4図においてY方向ユニット4
は断面を図示している。
In FIG. 4, the lowest unit 3 is exactly the same as that shown in FIG. 2, and detects the amount of displacement in the X direction. Here, each of the parallel springs B has strong rigidity against the force in the Y direction, so the displacement in the Y direction is 2 (direction perpendicular to the drawing).
is transmitted as is to the middle Y-direction unit 4. If the displacement is in an intermediate direction between the X and Y directions, the X direction component j!
The X direction component detects the damage, and the Y direction component is detected by the Y direction unit. In addition, in FIG. 4, the Y direction unit 4
shows a cross section.

そしてその上に重ねられたY方向ユニット−5+よ平行
ばねが水平になるように、X方向ユニツI・3を横にし
た姿勢となる。なおX方向ユニソ)・3の固定部がY方
向ユニット4の第2可動部材に、Y方向ユニット4の固
定部がZ方向ユニット5の第2可動部材26に連結され
る。ここてX、Y方向ユニット3.4及び接触子2の重
量が総てZ方向ユニット5の第2可動部ヰ426にかか
ることになるので、乙の重量のバランスを取り、第2可
動部材26にZ方向の変位量だけが伝達されるように、
スプリング27.28によって吊り、二つのストッパが
常時接触しているように調整する。
Then, the X-direction unit I/3 is placed horizontally so that the parallel springs of the Y-direction unit -5+ superimposed on it are horizontal. Note that the fixed part of the X-direction unit 3 is connected to the second movable member of the Y-direction unit 4, and the fixed part of the Y-direction unit 4 is connected to the second movable member of the Z-direction unit 5. Here, the weight of the X- and Y-direction units 3.4 and the contactor 2 will all be applied to the second movable part 426 of the Z-direction unit 5, so the weight of the second movable member 426 is balanced and so that only the displacement in the Z direction is transmitted to
It is suspended by springs 27 and 28 and adjusted so that the two stoppers are in constant contact.

なお上記においては三つのユニットを重ねる方式を示し
たが、これをX、Y二段とすることも可能である。また
三つのユニット各々を組込むことも可能である。すなわ
ち、例えばX方向ユニットの内部にY方向ユニットを)
It込み、更にその中にZ方向ユニットを入れる。第5
図はこれを示すものであるが、接触子を、1ずZ方向ユ
ニットの第2可動部材に連結し、その固定部をこれを取
巻いて位置しているY方向ユニノ)−に連結(Y方向ユ
ニットは紙面に直角方向なので図示省略)し、更にその
外側をX方向コニノドに連結したものである。なお接触
子の重紙は貫通ずる調整可能のスプリング30によって
吊ってバランスを取る。そしてこの組合せは自由に取る
ことが可能であって、第6図てCよ接触子をZ方向ユニ
ットに取付け、X方向ユニットとY方向ユニットとを組
込んで2方向ユニツトの上に重ねて取付けろ。こうする
と平行ばねの長さを長く取ることが可能となる。
In addition, although the method in which three units are stacked is shown above, it is also possible to make this into two stages, X and Y. It is also possible to incorporate each of the three units. In other words, for example, a Y-direction unit inside an X-direction unit)
It is included, and the Z direction unit is further inserted into it. Fifth
The figure shows this. First, the contactor is connected to the second movable member of the Z-direction unit, and its fixed part is connected to the Y-direction unit located surrounding it (Y The direction unit is perpendicular to the plane of the paper (not shown), and its outer side is connected to the X-direction controller. Note that the heavy paper of the contactor is suspended and balanced by a spring 30 whose penetration is adjustable. This combination can be chosen freely; as shown in Figure 6, the contactor C is attached to the Z-direction unit, the X-direction unit and the Y-direction unit are assembled, and the two-direction unit is stacked and installed on top of it. reactor. This makes it possible to increase the length of the parallel spring.

次に各々の変位検出ユニットの直線変位検出器の電気的
零点を機械的原点と一致させる下段について説明する。
Next, the lower stage of aligning the electrical zero point of the linear displacement detector of each displacement detection unit with the mechanical origin will be explained.

一般に電気的零点はミクロン的に見た場合渦電変化等の
外乱により長詩間においては磯城的M点に一致しない事
か知らM’している。本装置では各ユニットの第1、第
2ストツパを本体と電気絶縁して接触により導通状態と
なる電気接点を兼ねて使用′4る。第7図第8図におい
て示ずスイノ:f31.32は第1及び第2のストッパ
を電気(に点としt:ものである。測定の開始時或いは
一定時間経過し、電気的零点の不一致が予測された時、
−L勤スイッチ又は)−ケンス信号に、1.り零点一致
指令信号を加える。
In general, it is known that the electrical zero point does not coincide with the Isoshiro M point in long poems due to disturbances such as eddy electric changes when viewed from a micron perspective. In this device, the first and second stoppers of each unit are electrically insulated from the main body and are used as electrical contacts that become conductive upon contact. (not shown in Fig. 7 and Fig. 8): f31.32 is the one in which the first and second stoppers are electrically connected. At the start of measurement or after a certain period of time, the mismatch of the electrical zero points occurs. When predicted,
-L shift switch or)-to signal, 1. Add a zero point coincidence command signal.

この侶月はストッパ接点侶号3] 、32とのAND回
路33に加又られ、接点がONの状態すなわち接触子が
被測定物体等に触れていない事が確認されたときこの状
態におけろ直線変位検出器(第7図においては差動変圧
器17)の出力電圧Aは誤差信号として記憶回路34に
記憶される。この状態における検出器の出力電圧は、零
である様に作られてはいるが製作時の誤差或いは経時変
化等により零であるとは限らない1、との(flが測定
誤差となる。記憶回934の誤差にうぢは常時Bとして
読み出され、次に設けられ/、: ?1n iF演W器
35に導かれ直線変位検出器17からのイ、1号Aとの
間でA−Bの演算が行なわれ出力4フ;号となる。
This output is added to the AND circuit 33 with the stopper contacts 3] and 32, and is in this state when it is confirmed that the contact is ON, that is, the contact is not touching the object to be measured, etc. The output voltage A of the linear displacement detector (differential transformer 17 in FIG. 7) is stored in the storage circuit 34 as an error signal. Although the output voltage of the detector in this state is made to be zero, it may not always be zero due to manufacturing errors or changes over time (1) (fl is the measurement error. Memory) Due to the error in the rotation 934, the signal is always read as B, and then provided as /,: ?1n. The calculation of B is performed and the output is number 4.

零点一致指令信号が加えられl一時点てIt A= 1
3てありA−B=Oとなり、2つのス1 ツバ3I。
At one point when the zero point coincidence command signal is applied, ItA=1
3 and A-B=O, so there are two S1 Tsuba 3I.

32が接触してし)る暗部ら機械的原点て(よ電気的出
力は常に零となり一致ずろ。被測定物の測定時に於ても
記憶回路出力Bは出力されているので誤差量は常に補正
演算され正しい測定(Inが得られる。第7図に示すも
のは−1−記した直線変位検出器の電気的零点を機械的
原点と一致させる方法としてアナログメモリによるアナ
ログ出力回路による実施例でありまた第8図に示すもの
はAD変換したディジタル回路によるものである。ディ
ジタル回路による補止は検出部がモアレスケール等のデ
ィノタルスケール方式とその読取装置を使用する場合に
は同様てあ−、て、第9図にその回路を示す。
From the dark area where 32 is in contact with the mechanical origin, the electrical output is always zero and does not match. Even when measuring the object to be measured, the memory circuit output B is output, so the error amount is always corrected. The correct measurement (In) is obtained by calculation.The one shown in Fig. 7 is an example using an analog output circuit using an analog memory as a method of aligning the electrical zero point of the linear displacement detector marked -1- with the mechanical origin. The one shown in Fig. 8 is based on a digital circuit that performs AD conversion.The correction using a digital circuit is the same when the detection section uses a dinotal scale method such as a moiré scale and its reading device. The circuit is shown in FIG.

零点一致指令(g号を発生ずるシーケンス信号にはタイ
マー等に、Lろ定時間毎の方式の他に第10図に示す様
にスhソバ接点31.32がONの時、A−Bの補正演
算器35の出力信号を零電圧検出回路36に加え予しめ
設定した許容電圧値以−1−になった時零点一致指令信
号を自動的に発生させろ方ン去もある。
The sequence signal that generates the zero point coincidence command (g) is sent to a timer, etc., in addition to the method for every L filter time, as shown in Figure 10, when the contacts 31 and 32 are ON, the A- It is also possible to add the output signal of the correction calculator 35 of B to the zero voltage detection circuit 36 and automatically generate a zero point coincidence command signal when the voltage becomes -1- below a preset allowable voltage value.

以上訂述した。Lうに本発明によれば各検出ユニソ)・
の第1’rrJ !FI+部イイおよび第2可動部材を
それぞれ一対の平行ばねて支持するという簡単な構造で
接触子が?IQ i!!Q定物に接触した瞬間を検出す
ることかてき、かつその接触が解除されたときはその接
触子は、!−&精度に原点位置に復帰し、さらにこの高
精度に14帰した供城的昂点に電気的零点を容易に一致
させることかできるという種々の省れた効果を炎するこ
とがCきた。
I have elaborated above. According to the present invention, each detection unit)
The 1st 'rrJ! A simple structure in which the FI+ part II and the second movable member are each supported by a pair of parallel springs allows the contactor to be fixed. IQ i! ! Q: It is possible to detect the moment of contact with a fixed object, and when the contact is released, the contact is ! The electric zero point can be returned to the original position with high precision, and the electric zero point can be easily made to coincide with the high point resulting from this high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の概要を示す説明図、第2図
は本発明を構成する変位検出ユニットの構造説明図、第
3図は変位検出ユニソ1−の他の実施例を示す説明図、
第4図は本発明の一実施例における構造説明図、第5図
は他の実施例を示す構造説明図、第6図は他の実施例の
概要を示す説明図、第7図はアナログ方式に、Lる機械
的原点と電気的零点を一致させる為の回路図、第8図は
ディジタル方式における機械的原点と電気的零点を一致
させる為の回路図、第9図はスケール読取方式におけろ
機械的19点と電気的零点を一致さゼる為の回路図、第
1O図はアナログ方式における機織的原点と電気的零点
を一致させるだめの自動シーケンスを;Iくず回路図3
゜2=接触子 3.4、s :x、 y、 z方向変位検出ユニット6
:固定部 7.20:第1可動部オイ10.15.21
.23:ストソバ 11.16:引張りスプリング12
.22:第2可動部材 27.28.30:調整スフリ
レグ31.32:ストツバ兼電気接点 特許出願人 株式会社 東京vP(密 零占−=秒指1デ信号 零点一致指令信号
FIG. 1 is an explanatory diagram showing an outline of one embodiment of the present invention, FIG. 2 is a structural explanatory diagram of a displacement detection unit constituting the present invention, and FIG. 3 is a diagram showing another embodiment of the displacement detection unit 1-. Explanatory diagram,
Fig. 4 is a structural explanatory diagram of one embodiment of the present invention, Fig. 5 is a structural explanatory diagram showing another embodiment, Fig. 6 is an explanatory diagram showing an outline of another embodiment, and Fig. 7 is an analog system. Figure 8 is a circuit diagram for matching the mechanical origin and electrical zero point in the digital system, and Figure 9 is a circuit diagram for matching the mechanical origin and electrical zero point in the digital system. The circuit diagram for matching the 19 mechanical points and the electrical zero point, Figure 1O shows the automatic sequence for matching the mechanical origin and the electrical zero point in the analog system; I scrap circuit diagram 3
゜2=contact 3.4, s: x, y, z direction displacement detection unit 6
:Fixed part 7.20:First movable part 10.15.21
.. 23: Stosoba 11.16: Tension spring 12
.. 22: Second movable member 27.28.30: Adjustment souffling leg 31.32: Stopper and electric contact patent applicant Tokyo vP (close zero count - = second finger 1 de signal zero point coincidence command signal

Claims (8)

【特許請求の範囲】[Claims] (1)固定部、第1可動部材、第2可動部材の相互間を
2絹の平行ばねをもって相互に平行に連結し、上記圧つ
の主要構成部月間に常に接触状態に付勢されている第1
、第2のストッパを設け、第2可動部材に接触子を設け
、第2可動部材と固定部との間に変位検出部を設けてな
る変位検出ユニν1・の固定部を他の変位検出ユニット
の第2可動部材に順次連結ずろことにより、X、Y、も
しく1.lX、Y、Zの三方向に組合せてなる二次元お
よび三次元変位検出装置。
(1) The fixed part, the first movable member, and the second movable member are connected in parallel to each other by two silk parallel springs, and the main components of the above-mentioned pressure parts are always urged to be in contact with each other. 1
, a second stopper is provided, a contact is provided on the second movable member, and a displacement detection unit is provided between the second movable member and the fixed part.The fixed part of the displacement detection unit ν1 is connected to another displacement detection unit. X, Y, or 1. A two-dimensional and three-dimensional displacement detection device that is combined in three directions: lX, Y, and Z.
(2)請求のFu囲井筒項におい−(、固定部に対して
第1可動部祠及び第2可動部材を連結し、第1可動部ヰ
」と第2 ijJ動部材との間及び固定部と第1 nJ
動部材との間にストッパを設けてなる変位検出ユニット
を使用した二次元及び三次元変位検出装置。
(2) In the Fu enclosure clause of the claim - (, the first movable part and the second movable member are connected to the fixed part, and between the first movable part and the second moving member and the fixed part and the first nJ
A two-dimensional and three-dimensional displacement detection device using a displacement detection unit provided with a stopper between the moving member and the moving member.
(3)請求の@井筒1項において、固定部に対して第1
可動部材、第1可動部材に対して第2可動部材を連結し
、固定部と第1可動部材、第1可動部材と第2可動部材
との間にストンパを設けてなる二次元及び三次元変位検
出装置。
(3) In @Izutsu Clause 1 of the claim, the first
A movable member, a two-dimensional and three-dimensional displacement device in which a second movable member is connected to the first movable member, and a stopper is provided between the fixed part and the first movable member, and between the first movable member and the second movable member. Detection device.
(4)請求の範囲第1項、第2項、第3項において、変
位検出ユニットを混合して組合せた二次元及び三次元変
位検出装置。
(4) A two-dimensional and three-dimensional displacement detection device according to claims 1, 2, and 3, in which displacement detection units are mixed and combined.
(5)請求の範囲第1項において、変位検出ユニットを
直列に組立ててなる二次元及び三次元変位検出装置。
(5) A two-dimensional and three-dimensional displacement detection device according to claim 1, which is formed by assembling displacement detection units in series.
(6)H求の範囲第1項において、変位検出ユニットを
、一つのユニットの内に他を組込みI’4 Hする関係
に組合せてなる二次元及び三次元変位検出装置。
(6) A two-dimensional and three-dimensional displacement detecting device in which displacement detecting units are combined in a relationship such that one unit incorporates another in the first term of the H range.
(7)請求の範囲第1項において、変位検出ユニットの
一つを他の中に組込み、更に残りの一つを直列に組合せ
てなる二次元及び三次元変位検出装置。
(7) A two-dimensional and three-dimensional displacement detection device according to claim 1, in which one of the displacement detection units is incorporated into the other, and the remaining one is further combined in series.
(8)請求の範囲第1項において、変位検出ユニットの
第1、第2のストッパを電気接点とし、この二つの接点
の導通状態のときの変位検出器の出力を記憶し、この信
号を用いて電気的零点を機械的原点と一致させる乙とを
特徴とした二次元及び三次元変位検出装置。
(8) In claim 1, the first and second stoppers of the displacement detection unit are electrical contacts, the output of the displacement detector when these two contacts are in a conductive state is stored, and this signal is used. A two-dimensional and three-dimensional displacement detection device characterized by (B) which aligns an electrical zero point with a mechanical origin.
JP17378283A 1983-09-19 1983-09-19 Two-dimensional and three-dimensional displacement detecting device Pending JPS6064206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17378283A JPS6064206A (en) 1983-09-19 1983-09-19 Two-dimensional and three-dimensional displacement detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17378283A JPS6064206A (en) 1983-09-19 1983-09-19 Two-dimensional and three-dimensional displacement detecting device

Publications (1)

Publication Number Publication Date
JPS6064206A true JPS6064206A (en) 1985-04-12

Family

ID=15967046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17378283A Pending JPS6064206A (en) 1983-09-19 1983-09-19 Two-dimensional and three-dimensional displacement detecting device

Country Status (1)

Country Link
JP (1) JPS6064206A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0243766A2 (en) * 1986-04-24 1987-11-04 Renishaw plc Probe for measuring workpieces
JPH01501969A (en) * 1987-01-15 1989-07-06 フィディーア・ソシエタ・ペル・アチオーニ Feeler device especially for copying machines
JPH05332766A (en) * 1992-05-28 1993-12-14 Mitsutoyo Corp Copying probe
EP0628785A3 (en) * 1993-06-05 1995-06-14 Heidenhain Gmbh Dr Johannes Multi-coordinates feeler head.
JP2007114106A (en) * 2005-10-21 2007-05-10 Mitsutoyo Corp Displacement sensor and surface property measuring instrument
CN102155896A (en) * 2011-03-11 2011-08-17 天津大学 Single-sensor two-dimensional contact type measuring probe based on gear measurement

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0243766A2 (en) * 1986-04-24 1987-11-04 Renishaw plc Probe for measuring workpieces
US4813151A (en) * 1986-04-24 1989-03-21 Renishaw Plc Probe for measuring workpieces
US4934065A (en) * 1986-04-24 1990-06-19 Renishaw Plc Probe for measuring workpieces
JPH01501969A (en) * 1987-01-15 1989-07-06 フィディーア・ソシエタ・ペル・アチオーニ Feeler device especially for copying machines
JPH05332766A (en) * 1992-05-28 1993-12-14 Mitsutoyo Corp Copying probe
EP0628785A3 (en) * 1993-06-05 1995-06-14 Heidenhain Gmbh Dr Johannes Multi-coordinates feeler head.
JP2007114106A (en) * 2005-10-21 2007-05-10 Mitsutoyo Corp Displacement sensor and surface property measuring instrument
CN102155896A (en) * 2011-03-11 2011-08-17 天津大学 Single-sensor two-dimensional contact type measuring probe based on gear measurement

Similar Documents

Publication Publication Date Title
US5832416A (en) Calibration system for coordinate measuring machine
EP0386115B1 (en) Calibration system for coordinate measuring machine
US4939678A (en) Method for calibration of coordinate measuring machine
US4798004A (en) Displacement detecting apparatus
CN101377414B (en) Apparatus and method for measuring two-dimensional small angle based on light beam angle drift dynamic compensation
CN105823422A (en) Two-degree-of-freedom heterodyne grating interferometer displacement measurement system and method
US3631603A (en) Method and apparatus for measuring profile and lead errors in gear teeth
JPS6064206A (en) Two-dimensional and three-dimensional displacement detecting device
EP0179935A1 (en) Interferometric thickness analyzer and measuring method
US3068743A (en) Optical apparatus for measuring small distances
JPH0359364B2 (en)
US7581326B1 (en) Optical solid-state heading sensor
US3916528A (en) Apparatus for compensation of dimensional position changes
US5142146A (en) High-accuracy position comparator using 2 dimensional grating
CN103412405B (en) Light beam coupler
US3305931A (en) Measuring apparatus
Schneider Testing The Mann Type 4800DSWTM Wafer Steppertm
US20230304830A1 (en) Low-cost compact micro-displacement sensor
WO2016032156A1 (en) Weight compensation device and method
Podoloff et al. An accuracy test procedure for robotic manipulators utilizing a vision based, 3-D position sensing system
JPH07270723A (en) Fixed point detecting device
JPS60177239A (en) Detector for axis shift of optical system
JPH04204106A (en) Optical displacement gage camera
WO2017122979A1 (en) Weight measuring device
SU1696862A1 (en) Optronic device for contact-free measuring of polished surface profile