JPS6061649A - Correction of x-ray fluorescence analysis - Google Patents

Correction of x-ray fluorescence analysis

Info

Publication number
JPS6061649A
JPS6061649A JP16934983A JP16934983A JPS6061649A JP S6061649 A JPS6061649 A JP S6061649A JP 16934983 A JP16934983 A JP 16934983A JP 16934983 A JP16934983 A JP 16934983A JP S6061649 A JPS6061649 A JP S6061649A
Authority
JP
Japan
Prior art keywords
temperature
air
detector
ray fluorescence
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16934983A
Other languages
Japanese (ja)
Inventor
Naoki Matsuura
直樹 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Industrial Corp filed Critical Rigaku Industrial Corp
Priority to JP16934983A priority Critical patent/JPS6061649A/en
Publication of JPS6061649A publication Critical patent/JPS6061649A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To compensate for variations in the absorptivity when X-ray fluorescence passes through the atmospheric air by providing temperature, atmospheric pressure and relative humidity detectors near a sample to correct the intensity of the X-ray fluorescence by outputs from these detectors. CONSTITUTION:A sample 2 is irradiated with the primary X-ray from an X-ray tube 1 as shown by the arrow (x) and the X-ray fluorescence generated from the sample 2 is made incident on a proportional counter tube 3 as shown by the arrow (y) to detect the intensity I. As the X-ray fluorescence incident into a detector 3 is absorbed by air and steam in the path, a detector 9 for temperature T deg.K, a detector 10 for atmospheric pressure in Pmm.Hg and a detector 11 for relative humidity phi and outputs of these detectors are applied to a correction circuit 7. The correction circuit 7 performs the correction by the formula ( I ) where, (rho/rho): mass absorption coefficient for X-ray fluorescence of air at 1atm, T0: 273 (absolute temperature of 0 deg.C), P0: 760mm.Hg, rho0air: air density at 1atm at 0 deg.C (1.293X10<-3>g/cm<3>),l: transmission distance of X-ray, Ps: saturated steam pressure at temperature T, a: molecular weight between steam and air (0.6220), Lv: molar evaporation heat of steam (9.1171X10<3>calorie/mol), R: gas constant (1.987 calorie/ deg.K/mol), DELTAT: difference of temperature T from reference temperature, DELTArho: difference of humidity rho from reference humidity, DELTAP: difference of atm. P from reference atm. and a correct analysis value can be obtained irrelevant to changes in the temperature, atmospheric pressure and humidity by adding or subtracting the resultant correction value DELTAI.

Description

【発明の詳細な説明】 例えけ紙(二附着したシリコン(8()の凪、重油亀二
含まれる硫黄(日)の量、電磁鋼板に含まれるりん(P
)ノm、セメント調合原料中のカルシウム<CG>のf
fi痔を螢光xflA分析法によって測定する場合に上
述のような元素の螢光XJlflが大気中を通過すると
、そのときの温度、気圧、並びに湿度等によって大気に
よるX線の吸収率が変化するために誤差を生ずる。不発
1nはこの誤差を補正して正確な分析を行い得るように
したものである。以下これについてf!l”a己する。
[Detailed description of the invention] For example, the amount of sulfur (day) contained in heavy oil, the amount of phosphorus (P) contained in electrical steel sheets, the amount of sulfur (day) contained in heavy oil,
)nom, f of calcium <CG> in cement preparation raw materials
When fi hemorrhoids are measured by the fluorescence xflA analysis method, when the above-mentioned elemental fluorescence XJlfl passes through the atmosphere, the absorption rate of X-rays by the atmosphere changes depending on the temperature, pressure, humidity, etc. Therefore, errors occur. Misfire 1n is designed to correct this error and enable accurate analysis. About this below f! I'll do it myself.

図面は本発明の方法を実施するための非分散僅党X線分
tJ+装置の侮成を示した区で、X線管lから任意の試
料2(−1次X線を矢印Zのようζ二照射し、試料2か
ら発生した各元素の螢光線を矢印νのように比例副゛数
管のようなX線検出器3C二入射させる。この検出器3
の出力を増幅器4で増幅して波高分析<ri ’に加え
ることにより、検出しようとする断部の元素の特性X線
′fc選出してスケ〜う6でその強度を検出する。更に
補正回路7を介し°C上記スケーラ6の出力を表示器8
に加えることにより、検出りようとする元素の特性X 
(id強度を測定するもので、試料2の近傍シ;温度?
(’K)の検出器9と気圧P(yamHf/)の検出器
10および相対湿度デの検出器11を設け、アナログ、
デシ゛タル変換器1Bを介してこれらの検出器の出力を
補正回路りに加えである。すなわち試料2で発生して検
出器3に入射する螢光X13はその通路における空気お
よび水蒸気によって吸収を受けるが、この吸収率は温度
、気圧および湿度の夏化による空気並びに水蒸気の密度
によって変化するから1こtlらの検出器9 、10.
11の出力に応じて、補正回路7てステープ6の出力に
補正を加えることにより、表示器8で正確な螢光X線の
強度を表示することができる◎強度工。のX線が物質中
を通過すると吸収を受けるから、その強度は工に減少す
るが、この場合エーエ。’”p((p/p)、ρ・tl
 ・山・・(1)但し p/PはX線が通過する物質の
質量吸収係数 P は密度 I は物質のX浴!通過距酸 0関係が成立する。また p4−社(p4)シ・−i 山・自・(2)よN・−1
・・・・・・・(3) L ′ 但し←4)ゼ は−元素の質量段収係哉−−は各元素の
含有亭 であって、X線の通過する切質を空気とし、その空気に
含まれる水蒸気の分圧を鮨、。m、raHgとすると上
記第(2)式は p4−(/4) 紺 +(p/ )、皺1.・・・・・
(4)1 a: 帥 l十、° ぺ(’ x+、゛”、、、 (15)但
し)Xけ空気IK7中に含まれる水蒸気のmcKy)と
なり、まre、絶対温度と水蒸気の分圧の関係式但し、
OU空気および水蒸気の分圧の和(全圧力)afま水蒸
気と空気の分子貝の比で、0.6s’aOを用いて1.
2−を水蒸気の分圧PH,o (屏yaHy )で表わ
すと(5)式は となる。かつP)〜>0 ” P//P戸” (’/P
 k’であるから前記(4)式は p4=<〜嘔ンン ・・・・・・・ (7ンとなる。更
に水蒸気全台んだ空気の密度を伶、空気のみの密度を’
ajhとすると1 であるから、前記(1)式はこの(8)式およびボイル
シャールの法則から 10必2,2) TOはo’aの絶対温度(gv:f′x)Tlo は7
 QOmmT1g となる。
The drawing shows the construction of a non-dispersive marginal X-ray segment tJ+ apparatus for carrying out the method of the present invention, in which an arbitrary sample 2 (-1st order The fluorescent rays of each element generated from the sample 2 are made incident on an X-ray detector 3C2, such as a proportional submultiple tube, as shown by the arrow ν.
By amplifying the output with an amplifier 4 and adding it to the pulse height analysis <ri', a characteristic X-ray 'fc of the element in the section to be detected is selected, and its intensity is detected in a scale 6. Furthermore, the output of the °C scaler 6 is displayed on a display 8 via a correction circuit 7.
By adding the characteristic of the element to be detected
(It measures the id intensity; the temperature in the vicinity of sample 2?
('K) detector 9, atmospheric pressure P (yamHf/) detector 10, and relative humidity detector 11,
The outputs of these detectors are added to a correction circuit via a digital converter 1B. That is, the fluorescent light X13 generated in the sample 2 and incident on the detector 3 is absorbed by the air and water vapor in its path, but this absorption rate changes depending on the density of the air and water vapor due to summerization of temperature, pressure, and humidity. Detectors 9, 10.
By correcting the output of the staple tape 6 using the correction circuit 7 according to the output of the tape 11, the display 8 can display an accurate intensity of the fluorescent X-rays. When X-rays pass through a substance, they are absorbed, so their intensity decreases significantly; '”p((p/p), ρ・tl
・Mountain...(1) However, p/P is the mass absorption coefficient P of the substance through which X-rays pass, and density I is the X-bath of the substance! The passing distance relationship is 0. Also p4-sha (p4) Shi・-i Yama・Se・(2) YoN・−1
・・・・・・・・・(3) L ′ However, ← 4) Ze is the mass balance coefficient of each element. Sushi, the partial pressure of water vapor contained in the air. m, raHg, the above equation (2) is p4-(/4) navy + (p/ ), wrinkle 1.・・・・・・
(4) 1 a: x 10, ° pe('x+,゛'',,, (15) However) However, the relational expression of
OU is the sum of the partial pressures of air and water vapor (total pressure) af, which is the molecular weight ratio of water vapor and air, and is 1.0 using 0.6s'aO.
When 2- is expressed by the partial pressure of water vapor PH,o (屏yaHy), equation (5) becomes as follows. and P) ~>0 ``P//P door''('/P
Since k', the above equation (4) becomes p4 = < ~ 7 n.Furthermore, the density of air containing all the water vapor is 2, and the density of only air is 2.
Since 1 if ajh, the above equation (1) is 10 from this equation (8) and Boyleschard's law.TO is the absolute temperature of o'a (gv:f'x)Tlo is 7
QOmmT1g.

空気と水蒸気との混合気体は、こ!″Lを理想気体とみ
なすことができるから、水蒸気の分圧PH1oと相対湿
度ψとの同には Pる0 ル ・・・・・・・(”O) ラウジウスの法則から一鵜的に ムP7−−−千−十”C T オヶゎあP −e−灯悌 ! ・・・・・・・(11) 但し、階はモル黒夕す熱(9,lユヮl;<10カロリ
奉)Rは気体定数(1,Q8ワカロリA−)Cは定数 として定まる。
This is a gas mixture of air and water vapor! Since ``L can be regarded as an ideal gas, the partial pressure of water vapor PH1o and the relative humidity ψ are the same as Pru0. P7----1000-10"C T OgawaaP-e-Light! ・・・・・・・・・(11) However, the floor is black and the heat (9,100 calories; <10 calories) ) R is a gas constant (1, Q8 Wakarori A-) C is determined as a constant.

従って(9)式に(10)(111式を代入するとψで
偏分してx、俳強度工に対する補正量Δ工をめるど、 oP ’1−一(u/Pシ’−i−” ’p−J” p ’ム
t −xとなる。すなわち基量温度T、基準気圧Pおよ
び基準湿度rと測定時(二おける温度、気圧および湿度
の差JT、JPおよびΔF(=応じてx 5強度の7(
11定値工に上記(13)式で与えられる補正量ΔIを
加減することによって試料から放出された真の螢ツl(
、X線強度をめることができるものである。
Therefore, by substituting equations (10) and (111) into equation (9), by dividing by ψ and adding the correction amount Δfactor for the force force factor, oP'1-1(u/Pshi'-i- ``'p-J''p'mut-x.In other words, the difference between base temperature T, reference pressure P, reference humidity r, and temperature, pressure, and humidity at the time of measurement (JT, JP, and ΔF (= depending on x 5 strength of 7 (
11 By adjusting the correction amount ΔI given by the above equation (13) to the constant value, the true firefly l released from the sample (
, which can increase the X-ray intensity.

例えばシリコンのKa IN <波長?、12A)を検
出する場合につき、基準状態の温度T、気圧Pおよび湿
K t”i: ソ創、 ソt1.2o8°K (215
’O) 、 750 ybmFIy J3 ヨヒ6os
トシ・贅771.X線が空気中を通過するlL!Pff
ligを1.5C擲、飽和無気1123.76μ篇■■
9とすると、温度の変化量JTが例えば+3°の場合の
補正量l工(よ前記(13)式より1.1憾となる。ま
た気圧の変化量ΔPを7.6m5H9とすると、これに
対する補正量は−1,36憾となり一更にが凹の変化量
Δψを+30%とするtlこれ(二対する補正量は−0
,49優となる。
For example, Ka IN of silicon <wavelength? , 12A), the reference state temperature T, atmospheric pressure P, and humidity K t"i: Sore, Sot1.2o8°K (215
'O), 750 ybmFIy J3 Yohi 6os
Toshi Wataru 771. X-rays pass through the air! Pff
lig 1.5C, saturated airless 1123.76μ ■■
9, the correction amount when the temperature change JT is, for example, +3° is 1.1 from equation (13). Also, if the atmospheric pressure change ΔP is 7.6m5H9, then The correction amount is -1,36, and the first one makes the concave change amount Δψ +30%.
, 49 wins.

以上詳細に説明したように本発明は、例えば図1ωg−
示したような補止回路9を段けて、前記13式C二もと
づく補正を行わせることにより、試料から発生して検出
器に入射する螢光X MAの通路における吸収率の於動
を補償することができるー。従って気温、気圧および湿
度等の変化に関係なく正確な分析を行い得るものである
As explained in detail above, the present invention can be applied, for example, to FIG.
By setting up the compensation circuit 9 as shown and performing the correction based on Equation 13C2, the fluctuation of the absorption rate in the path of the fluorescent light XMA generated from the sample and incident on the detector can be compensated for. You can. Therefore, accurate analysis can be performed regardless of changes in temperature, atmospheric pressure, humidity, etc.

、4、図面の簡単な説明 図面は本発明の方法を実施する装置の一例(二つきその
’5’s Ij!’+を示L ’tv p;iである。
, 4. BRIEF DESCRIPTION OF THE DRAWINGS The drawing shows an example of an apparatus for carrying out the method of the invention (two pieces of '5's Ij!'+L'tv p;i).

4お図(=おいて、1はX経管、2I−、試料、3はX
嗣検出餡1.4tま増’fQI)ン+jfs5は波高分
析器、6はスナーラ、7u補正回路、8は表示器、9は
温度検出器、工oH気圧検出器、11は相対湿度の検出
器である。
4 Diagram (=, 1 is the X tube, 2I-, the sample, 3 is the X
5 is a wave height analyzer, 6 is a sunara, 7u correction circuit, 8 is a display, 9 is a temperature detector, an air pressure detector, 11 is a relative humidity detector It is.

Claims (1)

【特許請求の範囲】 X線の照射を受けて螢光X線を放出する試料の近傍に温
度T(”K)と気圧F (my>Tl/ )並び区二相
対う;度rの検出器を設けて検出された螢光X@の強度
工に対し、 但し、(p/ )Ait−、はl気圧の空気の螢光Xi
に対する質量吸収係数 T、は$a’J3 (0°Cの絶対温度) −pHは’
160 rrbmH# n−Il+nBC,1eLWの2!?仇密度(lJ93
×log/、rrL3) 4 はX線の通過距離 p、H温度T(−おける飽和水蒸気圧 a は水蒸気と空気との分子景の比(o、6ggo)L
、は水蒸気のモル蒸発熱(9,11)l×1dカロ9R
は気体定数(1,987カロリ/QK/楚)AT は温
度Tと基準温度との差 ΔF はう鼓度ヂと基準湿度との差 iP は気圧Pと基準気圧との差 で与えられる補正を加えることを特徴とする螢光xt8
分析の補正方法
[Claims] A detector with a temperature T (K) and an air pressure F (my>Tl/) and a degree r detector is arranged in the vicinity of a sample that emits fluorescent X-rays when irradiated with X-rays. However, (p/)Ait-, is the fluorescence Xi of air at 1 atm.
The mass absorption coefficient T, for is $a'J3 (absolute temperature of 0°C) -pH is'
160 rrbmH# n-Il+nBC, 1eLW's 2! ? Enemy Density (lJ93
×log/, rrL3) 4 is the passing distance p of X-rays, H temperature T (- saturated water vapor pressure a) is the molecular landscape ratio of water vapor and air (o, 6ggo)L
, is the molar heat of vaporization of water vapor (9,11) l x 1d Karo 9R
is the gas constant (1,987 calories/QK/Chu) AT is the difference between the temperature T and the reference temperature ΔF The difference between the crawling temperature and the reference humidity iP is the correction given by the difference between the atmospheric pressure P and the reference atmospheric pressure Fluorescent xt8 characterized by adding
How to correct the analysis
JP16934983A 1983-09-16 1983-09-16 Correction of x-ray fluorescence analysis Pending JPS6061649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16934983A JPS6061649A (en) 1983-09-16 1983-09-16 Correction of x-ray fluorescence analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16934983A JPS6061649A (en) 1983-09-16 1983-09-16 Correction of x-ray fluorescence analysis

Publications (1)

Publication Number Publication Date
JPS6061649A true JPS6061649A (en) 1985-04-09

Family

ID=15884916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16934983A Pending JPS6061649A (en) 1983-09-16 1983-09-16 Correction of x-ray fluorescence analysis

Country Status (1)

Country Link
JP (1) JPS6061649A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05119000A (en) * 1991-10-23 1993-05-14 Horiba Ltd Fluorescent x-ray analyzing device
US5721759A (en) * 1994-11-14 1998-02-24 Ima Engineering Ltd. Oy Method and equipment for determining the content of an element
US7666490B1 (en) 1999-02-10 2010-02-23 Toyo Boseki Kabushiki Kaisha Functional roll film and vacuum evaporation apparatus capable of producing the functional roll film
CN102735705A (en) * 2011-03-16 2012-10-17 奥林巴斯Ndt公司 Portable xrf analyzer and xrf analysis method
CN103197712A (en) * 2013-01-30 2013-07-10 王建刚 X-fluorescence weather-proof test box detection control system and control method thereof
CN104165871A (en) * 2013-05-15 2014-11-26 国家***第三海洋研究所 Calculation method for specific fluorescence intensity of high purity phycoerythrin
CN105092624A (en) * 2014-05-20 2015-11-25 株式会社堀场制作所 Analyzing apparatus and calibration method
JP2015219199A (en) * 2014-05-20 2015-12-07 株式会社堀場製作所 Analysis device and calibration method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5786030A (en) * 1980-11-17 1982-05-28 Idemitsu Kosan Co Ltd Method and apparatus for analysis of fluorescence x-rays

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5786030A (en) * 1980-11-17 1982-05-28 Idemitsu Kosan Co Ltd Method and apparatus for analysis of fluorescence x-rays

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05119000A (en) * 1991-10-23 1993-05-14 Horiba Ltd Fluorescent x-ray analyzing device
US5721759A (en) * 1994-11-14 1998-02-24 Ima Engineering Ltd. Oy Method and equipment for determining the content of an element
US7666490B1 (en) 1999-02-10 2010-02-23 Toyo Boseki Kabushiki Kaisha Functional roll film and vacuum evaporation apparatus capable of producing the functional roll film
CN102735705A (en) * 2011-03-16 2012-10-17 奥林巴斯Ndt公司 Portable xrf analyzer and xrf analysis method
CN103197712A (en) * 2013-01-30 2013-07-10 王建刚 X-fluorescence weather-proof test box detection control system and control method thereof
CN104165871A (en) * 2013-05-15 2014-11-26 国家***第三海洋研究所 Calculation method for specific fluorescence intensity of high purity phycoerythrin
CN104165871B (en) * 2013-05-15 2017-04-12 国家***第三海洋研究所 Calculation method for specific fluorescence intensity of high purity phycoerythrin
CN105092624A (en) * 2014-05-20 2015-11-25 株式会社堀场制作所 Analyzing apparatus and calibration method
JP2015219199A (en) * 2014-05-20 2015-12-07 株式会社堀場製作所 Analysis device and calibration method

Similar Documents

Publication Publication Date Title
Kessler Jr et al. The deuteron binding energy and the neutron mass
JP4009523B2 (en) Ozone gas concentration measuring method and ozone gas concentration measuring device
JPS6061649A (en) Correction of x-ray fluorescence analysis
Karakida et al. Molecular Structures of Hydrogen Cyanide and Acetonitrile as Studied by Gas Electron Diffraction
Folman et al. Perturbation effects due to hydrogen bonding in physical adsorption studied by length-change and infra-red techniques
JPH02228943A (en) Two-wavelength type apparatus for measuring concentration of respiration gas
Hildenbrand et al. Thermodynamics of vaporization of lithium oxide, boric oxide, and lithium metaborate
JPS6131415B2 (en)
CN106461544B (en) The temperature-compensating of gas sensor
Nelson et al. Determining soil gypsum content and expressing properties of gypsiferous soils
US7996159B2 (en) Gas detector system and method
Anketell et al. Oscillator strengths in the 2∑+—2 Π band system of OH by the hook method
US20120236989A1 (en) Portable XRF analyzer for low atomic number elements
KR100717953B1 (en) Method and Device for Measurement of the Emission Rate of Radon
Goldfinger et al. Elementary rate constants in atomic chlorination reactions. Part 2.—Experiments in competitive systems
Anderson et al. The Infra‐Red Absorption Spectrum of Diborane
Nielsen et al. Atmospheric Chemistry of HFC-143a: Spectrokinetic Investigation of the CF3CH2O2. bul. Radical, Its Reactions with NO and NO2, and the Fate of CF3CH2O
Karlovets et al. Analysis and theoretical modeling of the 18O enriched carbon dioxide spectrum by CRDS near 1.74 µm
Cullinane et al. Organic derivatives of titanium. II. Preparation and properties of some ortho‐esters
Fild et al. Vapor-phase studies of hydrogen bonding in the trimethylamine-methanol system
US2583221A (en) Infrared gas analyzing apparatus
Cheetham et al. Donor-acceptor complexes formed by perfluoro-organo bromides and iodides with nitrogenous and other bases. I. Vapour pressure measurements
Gregory et al. The photo-oxidation of methylene iodide
GB1583845A (en) Determination of the ratio of amounts of two components of a mixture of substances
Dingle et al. The estimation of small quantities of carbon dioxide in air by the absorption of infra-red radiation