JPS6061521A - Microencapsulated pharmaceutical - Google Patents

Microencapsulated pharmaceutical

Info

Publication number
JPS6061521A
JPS6061521A JP17090783A JP17090783A JPS6061521A JP S6061521 A JPS6061521 A JP S6061521A JP 17090783 A JP17090783 A JP 17090783A JP 17090783 A JP17090783 A JP 17090783A JP S6061521 A JPS6061521 A JP S6061521A
Authority
JP
Japan
Prior art keywords
microencapsulated
alkyl
water
anoacrylate
dispersion medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17090783A
Other languages
Japanese (ja)
Inventor
Tomoaki Shoda
正田 友章
Kazuyuki Sugiyama
杉山 和幸
Yoshio Moriyama
森山 圭雄
Akira Kondo
明 近藤
Tadashi Ashizawa
芦沢 忠
Makoto Morimoto
森本 真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KH Neochem Co Ltd
Original Assignee
Kyowa Hakko Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Hakko Kogyo Co Ltd filed Critical Kyowa Hakko Kogyo Co Ltd
Priority to JP17090783A priority Critical patent/JPS6061521A/en
Publication of JPS6061521A publication Critical patent/JPS6061521A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/18In situ polymerisation with all reactants being present in the same phase

Abstract

PURPOSE:To obtain the titled capsules, obtained by adding a specific alkyl 2-cyanoacrylate to a water-in-oil type emulsion, and polymerizing the above- mentioned acrylate in the interface between the disperse phase and the dispersion medium to cover the disperse phase, and capable of adjusting the releasing property. CONSTITUTION:A mircoencapsulated pharmaceutical obtained by adding an alkyl 2-cyanoacrylate having a 1-8C alkyl group to a water-in-oil type emulsion containing a suspension of a chemical, e.g. a carcinostatic agent, e.g. mitomycin C or 5-fluorouracil, or an antibiotic substance, in an aqueous solution of a biocompatible high polymer, e.g. albumin or dextran, as a disperse phase and an organic solvent, e.g. a vegetable oil, slightly soluble in water as a dispersion medium, and polymerizing the above-mentioned alkyl 2-cyanoacrylate in the interface between the disperse phase and the dispersion medium to cover the disperse phase. The microencapsulated pharmaceutical is capable of enhancing the selectivity for tumorous tissues of the carcinostatic agent and controlling the releasing property of the drug effective component.

Description

【発明の詳細な説明】 解または懸濁させたものが分散相てあり、水に難溶性の
有機溶剤が分散媒である油中水滴型エマル/ヨンに、ア
ルキル基が1〜8の炭素原子をもつアルキル2−/アノ
アクリレー1を添加することにより分散相き分散媒の界
面で該アルキル2−/アノアクリレートを重合させ、分
散相を被覆化することによって得られるマイクロカプセ
ル化製剤に関するものである。
DETAILED DESCRIPTION OF THE INVENTION A water-in-oil emulsion in which the dissolved or suspended product is the dispersed phase and an organic solvent that is sparingly soluble in water is the dispersion medium, the alkyl group has 1 to 8 carbon atoms. This invention relates to a microencapsulated preparation obtained by adding an alkyl 2-/anoacrylate 1 having the following properties, polymerizing the alkyl 2-/anoacrylate at the interface of a dispersion medium with a dispersed phase, and coating the dispersed phase. .

近年、多くの制癌薬が開発され臨床的に使用されている
。しかしながら、ほとんどの制癌薬は腫瘍組織への選択
性が十分てなく、正常組織への副作用が大きな問題とな
っている。そこで投与法を含む剤型的工夫により、制癌
薬を正常組織に分布さIることなく、目的とする腫瘍組
織にだけ到達させ、かつ長く滞留および持続放出させる
試みが種々なされている。マイクロカプセル化製剤の局
所投与もその1つである。従来、医薬品への応用が検討
されたマイクロカプセルの多くは合成高分子を膜として
いるため、毒性、抗原性および生体内非分解性などの点
で生体適合性に劣り、特に直接体内投与できるものがほ
とんどなかった。また、生体適合性の高分子が用いられ
ていても、マイクロカプセルの大きさを自由に変えるこ
とができ、かつ制癌薬の放出性を自由に制御できるマイ
クロカプセル化製剤がなかった。
In recent years, many anticancer drugs have been developed and are in clinical use. However, most anticancer drugs do not have sufficient selectivity for tumor tissues, and side effects on normal tissues are a major problem. Therefore, various attempts have been made to make anticancer drugs reach only the target tumor tissue without being distributed to normal tissues, and to remain there for a long time and be released in a sustained manner by devising formulations including administration methods. Topical administration of microencapsulated formulations is one of them. Many of the microcapsules that have been considered for use in pharmaceuticals have membranes made of synthetic polymers, and therefore have poor biocompatibility in terms of toxicity, antigenicity, and non-biodegradability, especially those that can be administered directly into the body. There were very few. Furthermore, even if a biocompatible polymer is used, there has been no microencapsulated preparation that allows the size of the microcapsule to be freely changed and the release properties of the anticancer drug to be freely controlled.

本発明者らは、■生体適合性に優れ、■粒子径を約1μ
mから500μmまで自由に変えることができ、■薬物
の放出性を自由に制御できるマイクロカプセル化製剤に
関して鋭意検討した。その結果、上記3点を満足するマ
イクロカプセル化製剤を見出し本発明を完成するに至っ
たものである。
The present inventors have discovered that 1) it has excellent biocompatibility, and 2) the particle size is approximately 1 μm.
We conducted intensive studies on microencapsulated preparations that can freely change the particle size from m to 500 μm and (2) freely control drug release properties. As a result, we have found a microencapsulated preparation that satisfies the above three points and completed the present invention.

以下本発明について詳細に説明する。The present invention will be explained in detail below.

本発明は、生体適合性高分子水溶液に薬剤を溶解または
瞥濁させたものが分散相であり、水に離溶性の有機溶剤
が分散媒である油中水滴型エマルジヨンに、゛rアルキ
ル基1〜8の炭素原子をもっアルキル2−シアノアクリ
レートを添加することにより分散相と分散媒の界面で該
アルキル2−ンアノアクリレートを重合させ、分散相を
被覆化することによって得られるマイクロカプセル化製
剤を提供する。
The present invention provides a water-in-oil emulsion in which the dispersed phase is a drug dissolved or clouded in an aqueous solution of a biocompatible polymer, and the dispersion medium is an organic solvent that is soluble in water. A microencapsulated preparation obtained by adding an alkyl 2-cyanoacrylate having ~8 carbon atoms, polymerizing the alkyl 2-cyanoacrylate at the interface between the dispersed phase and the dispersion medium, and coating the dispersed phase. I will provide a.

本発明のマイクロカプセル化製剤の製造法の一例を具体
的に示すと以下のとおりである。
A specific example of the method for producing the microencapsulated preparation of the present invention is as follows.

(1) 水に離溶性の有機溶媒に攪拌下、薬剤を溶解ま
たは髪濁させた高分子水溶液を添加し、油中水滴型エマ
ルジョンを得る。
(1) A water-in-oil emulsion is obtained by adding an aqueous polymer solution in which a drug is dissolved or made cloudy under stirring to a water-dissolvable organic solvent.

(2) 次いで、水の存在下で重合するアルキル2−ノ
アノアクリレートを添加することにより、薬剤を溶解ま
たはg濁させた高分子水溶液の分散粒子表面上でアルキ
ル2−ノアノアクリレートを重合させ、被覆化させる。
(2) Next, by adding alkyl 2-noanoacrylate that polymerizes in the presence of water, the alkyl 2-noanoacrylate is polymerized on the surface of the dispersed particles of the aqueous polymer solution in which the drug has been dissolved or made cloudy. , coated.

(31石油エーテルやn−ヘキサンなどの低沸点炭化水
素系溶剤を加えて撹拌し、メンブランフィルタ−により
濾過を行う。m過残渣を同じく低沸点炭化水素系溶剤で
2〜3回洗浄は過を繰り返し、マイクロカプセルの分散
媒である有機溶媒を除去する。
(31 Add a low-boiling hydrocarbon solvent such as petroleum ether or n-hexane, stir, and filter using a membrane filter. Wash the filtered residue 2 to 3 times with the same low-boiling hydrocarbon solvent, then filtrate. The organic solvent that is the dispersion medium for the microcapsules is repeatedly removed.

(41&!過残渣を真空乾燥処理して、残存溶剤および
水分を除去し、マイクロカプセル化製剤を得る。
(41 &! The excess residue is vacuum-dried to remove residual solvent and water, and a microencapsulated preparation is obtained.

本発明に用いられる薬剤は水溶性であっても、水不溶性
であっても用いることができる。たとえば、ベニ/リン
系1セフアロスポリン系、アミノグリコ/ド系、テトラ
サイクリン系、マクロライド系の抗生物質、ステロイド
ホルモン、プロスタグランツノ、イン/ニリンなどのホ
ルモン剤、ア毫ノグルコノダーゼ、インベルターゼなど
の酵素剤、/クラシン、ナルトレキソンなどの麻薬拮抗
剤、ハτシベリ1゛−ルなどの精神神某用剤、wl環器
管用薬などに用いることができる。
The drug used in the present invention can be either water-soluble or water-insoluble. For example, antibiotics such as beni/phosphorus, cephalosporin, aminoglyco/de, tetracycline, macrolide, steroid hormones, hormones such as prostaglans, in/nilin, and enzymes such as aminogluconodase and invertase. It can be used as narcotic antagonists such as , /crasin and naltrexone, psychotropic drugs such as lactisiber, and drugs for the circulatory system.

とくに制癌薬に好適に用いることができる。例えばマイ
トマイ/ンC,5−フルオロウラ/ル。
It can be particularly suitably used as an anticancer drug. For example, mitomycin/C,5-fluoroura/ru.

アトリアマイ/ン、CCNU、ネオカルチノスタチン、
/クロフォスフアミド、プレオマイノン。
Atria Mine/N, CCNU, Neocarcinostatin,
/ clophosphamide, pleomynon.

カルボコン、 Vinca アルカロイド、メルカプl
プリン1メトトレキセート、サイトノンアラビノノド、
L−アスパラギナーゼ等およびこれらの誘導体がある。
Carbocon, Vinca alkaloid, mercapl
Purine 1 methotrexate, cytononarabinonod,
There are L-asparaginase, etc. and derivatives thereof.

芯物質になる高分子には、生体適合性に優れた水溶性高
分子を用いることができる。例えばアルブミノ、デキス
トラン、ゼラチンまたはコラーゲン等が使用できる。特
にアルブミンがマイクロカプセルの成型性などの点で優
れている。またこれらは+11用してもよい。
A water-soluble polymer with excellent biocompatibility can be used as the polymer serving as the core material. For example, albumino, dextran, gelatin or collagen can be used. In particular, albumin is excellent in terms of moldability into microcapsules. Also, these may be used for +11.

壁物質にはアルキル2−ノアノアクリレートが用いられ
る。アルキル2〜ンアノアクリレートはその重合体が生
体内分解性に優れているため、外科手術の縫合に代わる
医療用接着剤として使用されており、その安全性が確か
められている。アルキル基は炭素数1〜8の炭化水素が
用いられる。
Alkyl 2-noanoacrylate is used as the wall material. Since the polymer of alkyl 2--anoacrylate has excellent biodegradability, it is used as a medical adhesive in place of sutures in surgical operations, and its safety has been confirmed. As the alkyl group, a hydrocarbon having 1 to 8 carbon atoms is used.

特にエチル、イソブチルおよびn−ブチル2−ノアノア
クリレートが適している。これらは使用してもよい。
Particularly suitable are ethyl, isobutyl and n-butyl 2-noanoacrylate. These may be used.

油中水滴型エマルジヨンの分散媒には、水に難溶性の有
機溶剤が用いられる。好ましいものは綿実油やゴマ油な
どの植物油である。
An organic solvent that is sparingly soluble in water is used as a dispersion medium for a water-in-oil emulsion. Preferred are vegetable oils such as cottonseed oil and sesame oil.

本発明のマイクロカプセル化製剤の粒子径は、用途およ
び目的により約1μmから500μmまで自由に調整す
ることができる。粒子径は、最初に作成する油中水滴型
エマルジョンの粒子径に依存するため、エマルジョンの
m!1条件、例えば乳化機の種類、撹拌速度1分散媒に
用いる有機溶剤の種類などを変化させることにより自由
に調整可能である。またこの目的のために界面活性剤を
併用してもよい。好ましい界面活性剤は、ソルビタンセ
スキオレエートである。さらに得られたマイクロカプセ
ル化製剤を篩分することにより、均一な粒子径のマイク
ロカプセル化製剤を得ることができる。
The particle size of the microencapsulated preparation of the present invention can be freely adjusted from about 1 μm to 500 μm depending on the use and purpose. The particle size depends on the particle size of the water-in-oil emulsion that is initially prepared, so the m! It can be freely adjusted by changing one condition, for example, the type of emulsifier, the stirring speed, and the type of organic solvent used in the dispersion medium. A surfactant may also be used in combination for this purpose. A preferred surfactant is sorbitan sesquioleate. Furthermore, by sieving the obtained microencapsulated preparation, a microencapsulated preparation with a uniform particle size can be obtained.

本発明のマイクロカプセル化製剤の薬物の放出性は芯物
質高分子や壁物質高分子の種類および比i144変λろ
、−々に1って自由に制御ずろことができる。詳しくは
実施例で説明する。
The drug release properties of the microencapsulated preparation of the present invention can be freely controlled depending on the type of core polymer and wall polymer, the ratio i144, λ, -. Details will be explained in Examples.

本発明のマイクロカプセル化製剤は、注射用蒸留水、生
理的食塩水および植物油などに分散させて、血管内、筋
肉内、皮下および腹腔内より注射1シリJることかでき
る。注射用蒸留水や生理的食塩水にマイクロカプセル化
製剤を分散させるためには、あらかじめ7ween−8
0やHC060などの注射可能な界面活性剤で処理を行
うか、分散液にこれらの界面活性剤を01〜10%加え
て分散させると良い。
The microencapsulated preparation of the present invention can be dispersed in distilled water for injection, physiological saline, vegetable oil, etc., and injected intravascularly, intramuscularly, subcutaneously, or intraperitoneally. To disperse the microencapsulated preparation in distilled water for injection or physiological saline, prepare 7ween-8 in advance.
It is preferable to perform treatment with an injectable surfactant such as 0 or HC060, or add 01 to 10% of these surfactants to the dispersion liquid and disperse it.

以下に、実施例により、本発明のマイクロカプセル化製
剤について具体的に説明する。
Hereinafter, the microencapsulated preparation of the present invention will be specifically explained with reference to Examples.

実施例1 マイトマイノンCマイクロカプセル化製剤の調製 A成分 綿 実 油 201 B成分 マイトマイシンC100■ C成分 エチル2−ノアノアクリレート 600■八成分の綿実
油を501容ビーカーに取り、スリーワンモーターによ
るプロペラ攪拌(回転数80Orpm)LながらB成分
のマイトマイ/ンC懸濁アルブミン水溶岐を滴下した。
Example 1 Preparation of mitomynon C microencapsulated preparation Ingredient A Cottonseed oil 201 Ingredient B Mitomycin C 100 ■ Ingredient C Ethyl 2-noanoacrylate 600 Component B, mitomine/C suspended albumin water, was added dropwise at several 80 rpm.

15分後、C成分のエチル2〜シアノアクリレートを滴
下して2時1■反応させた。次に、石油エーテル約20
1を加えて攪拌後、メンブランフィルタ−で濾過を行っ
た。この操作を3回繰り返し、A成分の綿実油を洗浄し
た。濾過残渣を40℃約3時間l′r空乾燥を行い、マ
イトマイシンCのマイクロカプセル化製剤を得た。得ら
れたマイクロカプセルは、マイトマイシンCを約100
%+1!/W)包含し、粒子径が10〜50μmのほぼ
球状黒紫色微粒子であった。
After 15 minutes, ethyl 2 to cyanoacrylate as component C was added dropwise to react for 2 hours and 1 hour. Next, about 20% petroleum ether
1 was added and stirred, followed by filtration with a membrane filter. This operation was repeated three times to wash the cottonseed oil of component A. The filtration residue was air-dried at 40° C. for about 3 hours to obtain a microcapsule preparation of mitomycin C. The resulting microcapsules contained approximately 100 mitomycin C.
%+1! /W) and were almost spherical black-purple fine particles with a particle size of 10 to 50 μm.

比較例1゜ 比較例として、アルキル2−ノアノアクリレートで被覆
しないアルブミン変性マイトマイノンC小球体を調製し
た。以下に調製法を示−した。
Comparative Example 1 As a comparative example, albumin-modified mitominone C microspheres were prepared that were not coated with alkyl 2-noanoacrylate. The preparation method is shown below.

A成分 綿 実 油 2 Qm1 13成分 蒸 留 水 11 牛血清アルブミン 270+ng マイトフイノンC30+@: A成分の綿実油を501容ビーカーに取り、スリーワン
モーターによるプロペラ攪拌(回転数80Orpm)L
なからB成分のマイトマイ/ンCv濁、アルブミン水溶
液を滴下した。15分後、5イ温をitい80℃で3時
間かけてアルブミ/を熱変性させた。次に、室温まで冷
却後、石油エーテル約201111を加えて混合し、メ
ンブランフィルタ−で濾過を行った。この操作を3回繰
り返し、Δ成分の綿実油を洗浄した。濾過残渣を40℃
で約3時間真空乾燥を行い、マイトマイシンCのアルブ
ミン水溶液を得た。得られた小球体は、マイトマイシン
Cを平均的10.0%(If/If )包含L、粒子径
が10〜50μmのほぼ球状黒紫色微粒子てあった。
A component cottonseed oil 2 Qm1 13-component distilled water 11 Bovine serum albumin 270+ng Mitofinone C30+@: Take component A cottonseed oil in a 501 volume beaker and stir with a propeller using a three-one motor (rotation speed 80 rpm) L
Then, an aqueous solution of mitomycin and albumin, component B, was added dropwise. After 15 minutes, the albumin was heat-denatured at 80° C. for 3 hours. Next, after cooling to room temperature, about 201111 petroleum ether was added and mixed, and filtered with a membrane filter. This operation was repeated three times to wash the cottonseed oil of the Δ component. Filter residue at 40℃
Vacuum drying was performed for about 3 hours to obtain an albumin aqueous solution of mitomycin C. The obtained microspheres contained mitomycin C at an average of 10.0% (If/If) and were almost spherical black-purple fine particles with a particle diameter of 10 to 50 μm.

実施例2〜9 実施例1と同様にして、第1表に示す配合および攪拌速
度でマイクロカプセル化製剤を調製した。
Examples 2 to 9 Microencapsulated preparations were prepared in the same manner as in Example 1 using the formulations and stirring speeds shown in Table 1.

第1表 実施例2〜4て得られたマイトマイノンCのマイクロカ
プセルは、それぞれマイトマイノンCを)V均+4.3
.7.7.10.0%(W/11)包含し、粒子径が1
0〜50μmのほぼ球状黒紫色微粒子であった。
The microcapsules of mitomynon C obtained in Examples 2 to 4 of Table 1 each contain mitomynon C) V average + 4.3
.. 7.7. Contains 10.0% (W/11) and has a particle size of 1
The particles were approximately spherical black-purple fine particles with a diameter of 0 to 50 μm.

実施%l 5で得られた5−フルメロウラノルのマイク
ロカプセルは、5−フルオロウラシルを平均100%(
1す/W )包含し、粒子径が10〜50μmのほぼ球
状白色徴杓子であった。
The microcapsules of 5-fluorouranol obtained in Example 5 contained 5-fluorouracil at an average of 100% (
The particles were approximately spherical white particles with a particle diameter of 10 to 50 μm.

実施例6て得られたアトリアマイ7ノのマイクロカプセ
ルは、アトリアマイ7ノを平均100%(lIl/11
)包含し、粒子径が10−50μmのほぼ球状赤色匂粒
子であった。
The microcapsules of Atria May 7 obtained in Example 6 contained 100% of Atria May 7 on average (lIl/11
) and were approximately spherical red odor particles with a particle diameter of 10-50 μm.

実施例7〜9て得られたマイトマイノンCのマイクロカ
プセルは、マイトマイノンCを平均] 0.0%(W/
W)包含し、それぞれ層粒予後が30〜100μm、5
0〜250μm、5〜20μmのほぼ球状黒紫色微粒子
であった。
The microcapsules of mitomynon C obtained in Examples 7 to 9 had an average content of mitomynon C of 0.0% (W/
W) Including, with a lamellar prognosis of 30 to 100 μm, 5
The particles were approximately spherical black-purple fine particles of 0 to 250 μm and 5 to 20 μm.

実施例10 放出試験(In viLro) 実施例Cfiられたマイ1マイ/ンCのマイクロカプセ
ルのIn vitroJ&出試験を行った。
Example 10 Release Testing (In vitro) In vitro J&R testing of the microcapsules of Example Cfi was conducted.

■ ツンブルの調製 実施例1〜3および比較例1て得られたマイクロカプセ
ルおよび小球体を約500mHビーカーに取り、Twe
an3oを5%含ム:r−タノール溶液100mlを加
え混合攪拌後、孔径】μmのメンブランフィルタ−で濾
過を行った。濾過残渣を40℃2時間乾燥して放出試験
用サンプルを得た。
■ Preparation of Tweet The microcapsules and small spheres obtained in Examples 1 to 3 and Comparative Example 1 were placed in a beaker of approximately 500 mH, and
100 ml of an r-tanol solution containing 5% an3o was added, mixed and stirred, and then filtered through a membrane filter with a pore size of [mu]m. The filtration residue was dried at 40° C. for 2 hours to obtain a release test sample.

■ 放出試験方法 マイクロカプセルまたは小球体5 mgを50mlml
用フラスコに取り、試験液として生理的食塩水を20m
l加え、37℃で経時的に試験液に放出されたマイトマ
イノンCの濃度を定量した。
■ Release test method 5 mg of microcapsules or small spheres in 50 ml
20ml of physiological saline as the test solution.
The concentration of mitomynon C released into the test solution was determined over time at 37°C.

結果を′i52表に示す。The results are shown in Table 'i52.

第2表 本発明による実施例で得られたマイトマイ770マイク
ロカプセル化製剤は、In vitr。
Table 2 Mitomai 770 microencapsulated formulations obtained in Examples according to the present invention were prepared in vitro.

放出試験において、比較例で得られたマイトマイツノC
γルブミノ小球体に比べ持続放出性を示した。また、芯
物質高分子に対する壁物質高分子量が多くなるにしたが
い持続放出性が増した。すなわち芯物質高分子と壁物質
高分子の比率を変えることにより、放出例を自由に制御
することができる。
In the release test, Mitomaitsuno C obtained in the comparative example
It exhibited sustained release properties compared to gamma-lubumino spherules. Furthermore, as the weight of the wall material polymer relative to the core material polymer increased, the sustained release property increased. That is, by changing the ratio of the core material polymer to the wall material polymer, the release pattern can be freely controlled.

実施例11 生体内動態、特に肺内濃度: 実施例1て7「)られたマイトマイノンCマイクロカプ
セル化製剤1マイトマイノンC実測含量109%(M 
M C−m c −i l’) l 0.9 +!:略
す)とマイトマイノンC水溶液についてマウスの肺内濃
度を比較した。ずflわちマイトマイノンCに換算して
4+u++ / kgのMMC;−mc−ipIO,9
をd d y7ウス(j、li 2 [1〜22g)に
静脈内投与し、経時的に1時点て3匹のマウスを殺し、
肺を摘出した。肺を11理的食塩水で洗滌後、その重量
を計算し、1/100Mリン酸緩衝液(p H6,0)
を肺重量の9倍1i1加λ、10%士モノオートを作成
した。マイトマイノンCに対する不活性化酵素を失活さ
せるためl tl 0℃、1分の軌処理を行い、すぐ冷
却した後、3.00 Or p mで10分間遠心分離
を行い、1−4中のフィトマイツノCを大腸菌BMN(
ATCC11+303)を披検閑とするバイAアッセイ
によって定量した。血清中のマイトマイノンCの濃度は
薬物投与後経時的に末梢血を採血し、血清を得、血清3
2m1に0.07 M IJノ酸緩衝液1.8mlを加
え、肺と同じバイオアνセイを行って測定した。
Example 11 Kinetics in vivo, especially concentration in the lungs: Mitomynon C microencapsulated preparation 1 (Example 1 and 7).Actual content of mitomynon C 109% (M
M C-m c-i l') l 0.9 +! : omitted) and mitomynon C aqueous solution in the lungs of mice were compared. -mc-ipIO,9
was administered intravenously to d d y7 mice (j, li 2 [1-22 g), and three mice were killed at one time point over time.
The lungs were removed. After washing the lungs with 11 saline, its weight was calculated, and the lungs were washed with 1/100M phosphate buffer (pH 6,0).
9 times the weight of the lungs, λ, and 10% of the weight were created. In order to inactivate the inactivating enzyme for mitomynon C, it was subjected to orbital treatment at 0°C for 1 minute, immediately cooled, and then centrifuged at 3.00 Or p m for 10 minutes to deactivate the phytomynon C in 1-4. C is E. coli BMN (
ATCC11+303) was quantified by a BiA assay with a blank. To determine the concentration of mitomynon C in serum, peripheral blood was collected over time after drug administration, serum was obtained, and serum 3
1.8 ml of 0.07 M IJ acid buffer was added to 2 ml, and the same bioassay as for the lungs was performed and measured.

結果を第3表に示す。The results are shown in Table 3.

1g3表 第3表に示すように肺内濃度は、マイトマイノンC水溶
液投与群では投与後60分で0076μg/gであるが
、MMC−mc−iplo、9投4 nYでは120分
後でも10μg/g以」二を示した。
As shown in Table 3, the concentration in the lungs was 0.076 μg/g 60 minutes after administration in the mitomynon C aqueous solution administration group, but it was 10 μg/g even after 120 minutes in the case of MMC-mc-iplo, 9 doses of 4 nY. The following is shown below.

−力血清内濃度は、マイトマイノンC水溶液投与群では
60分て0.12μg/ml 90分テハi rAであ
った。一方MMC−mc−ip10.0投与群では60
分て0067μg/口1.90分では痕跡であった。−
りなわちマイトマイノンCの血中濃度は、M M C−
m c −i 1) 10.9投与群ではマイトマイノ
ン水溶液投与群に比べ消失が早く、マイトマイ7ノCの
肺内濃度は、MMC−me−ip109投Lj群ではマ
イトマイツノC水溶液投与群に比べ高い濃度8持続する
ことが明らかになった。
- The serum concentration of mitomynon C was 0.12 μg/ml at 60 minutes and irA at 90 minutes in the mitomynon C aqueous solution administration group. On the other hand, in the MMC-mc-ip10.0 administration group, 60
There was no trace at 0.067 μg/mouth at 1.90 minutes. −
In other words, the blood concentration of mitomynon C is MMC-
m c -i 1) In the 10.9 administration group, disappearance was faster than in the mitomynon aqueous solution administration group, and the concentration of mitomy7noC in the lungs was higher in the MMC-me-ip109 administration Lj group compared to the mitomynon C aqueous solution administration group. It has been revealed that it lasts for 8 hours.

ずrlわちマイトマイ7/Cをマイクロカプセル製剤化
することにより、マイトマイノンCの生体内動態が変化
したことが認められた。このことはル11で増殖する腫
瘍に対して持続的な抗腫瘍効果が得られることが期待て
きることを示している。
It was observed that the in vivo dynamics of mitomynon C was changed by microcapsule formulation of Zrl, that is, mitomynon C. This indicates that it is expected that a sustained antitumor effect will be obtained against tumors that grow with Le 11.

実施例12 末梢白+In球数に対する影響・ 実施例1で得られたマイトマイノンC4mg / kg
相当慣のマイトマイノンCマイクロカプセル化lu剤(
VIIAC−mc−ipl(1,9)をdayマウス(
ilt 、体重20〜22g)に静脈内投与した群と、
マイトマイノンC水溶肢4■/kgを静脈内に投与した
l+7とで未111]白血球数を比較した。実験は薬物
段り後経日的に眼窩静脈叢より血液を0.02m1採取
し、10m1のセルキットセブン液(東亜医用電子社製
)中に吹きこんだ。ザボニン液を一滴加えて赤血球を溶
血させた後、ミクロセルカウンターCC−108型(東
亜医用電子ネ」製)で白血球数を君1測した。結果を第
1図に示した。マイトマイノンC水溶液投与群では末梢
白血球数は非投与群の45%に低下するが、MMC−m
c−iplo、9投与群では非投与群の70%を示し、
明らかにMMC−me〜i p I O,9投与群にお
いて骨髄毒性が軸度であった。ずなわちマイトマイ7ノ
Cをマづクロカプセル製剤化することにより、マイトマ
イ7ノCの生体内動態が変化し、マイトマイノンCのも
つ重篤t工副作用である111髄7:を性が軽誠される
ことが明らかになった。
Example 12 Effect on peripheral white + In cell count - Mitomynon C obtained in Example 1 4 mg/kg
Mitomynon C microencapsulated lu agent (
VIIAC-mc-ipl (1,9) was injected into day mice (
ilt, body weight 20-22 g), and
The white blood cell count was compared between the 1+7 and 111 days after intravenously administering 4 kg of mitomynon C solution/kg. In the experiment, 0.02 ml of blood was collected from the orbital venous plexus day after day after drug administration and injected into 10 ml of Cellkit Seven solution (manufactured by Toa Medical Electronics Co., Ltd.). After adding a drop of Zabonin solution to hemolyze red blood cells, the number of white blood cells was measured using a micro cell counter model CC-108 (manufactured by Toa Medical Electronics Co., Ltd.). The results are shown in Figure 1. In the mitomynon C aqueous solution administration group, the peripheral leukocyte count decreased to 45% of the non-administration group, but in the MMC-m
c-iplo, 9 administration group showed 70% of non-administration group,
Bone marrow toxicity was clearly significant in the MMC-me~ipIO,9 administration group. By formulating Mitomai 7-C into macrocapsules, the in-vivo dynamics of Mitomi-7-C change, and the 111-marrow 7: side effect, which is a serious side effect of Mitomin-C, is reduced. It became clear that it would be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はMMC−me−iplo、9およびMMC水溶
液投与後の末梢白血球比(対照に対する百分率比)を示
す。横軸は投与後の日数、縦軸は白血球数を示す。・□
・はM M C、O−□ OはMMC−mc−i+)1
0.9の場合を示す。
FIG. 1 shows the peripheral leukocyte ratio (percentage ratio to control) after administration of MMC-me-iplo, 9 and MMC aqueous solution. The horizontal axis shows the number of days after administration, and the vertical axis shows the white blood cell count.・□
・ is MMC, O-□ O is MMC-mc-i+)1
The case of 0.9 is shown.

Claims (1)

【特許請求の範囲】 +1+ 生体適合性高分子水溶液に薬剤を溶解または懸
濁させたものが分散相であり、水に難溶性の有機溶剤が
分散媒である油中水滴型エマル/ジノに、どルキル基が
1〜8の炭素原子をもつアルキル2−/アノアクリレー
トを添加するこLにより分散相と分散媒の界面で該アル
キル2−/アノアクリレートを重合させ、分nk相を被
覆化することによって得られるマイクロカプセル化製剤
。 (2) 生体適合書d高分子がアルダミノ1デキストラ
ン、セラヂン4)よびコラーゲンから選ばれる1抽以上
であるこきを特徴とする特許請求の範囲第1項記載のマ
イクロカプセル化製剤 (3) 薬剤が制癌剤、抗生物質9士ルモノ剤、酵素剤
、中枢神経用薬および循環器管用薬から選ばれることを
特徴とする特許請求の範囲第1項記載のマイクX】カプ
セル化製剤。 +a 制i M カマイトマイノン0.5−フルオロウ
ランル、゛rドリアマイ/ンまたはこれらの誘導体であ
る特許請求の範囲第1項記載のマイクロカプセル化製剤
。 (5) 難溶性の有機溶剤が植物油である特許請求の範
囲第1項記載のマイクロカプセル化製剤。 (6) アルキル2−ンアノアクリレートがエチル2−
/アノアクリレート、イノブチル2−/アノアクリレー
トおよびn−ブチル2−/アノアクリレートから選ばれ
る1秒置」二であることを特徴とする特許請求の範囲第
1項記載のマイクロカプセル化製剤。
[Claims] +1+ A water-in-oil emul/dino in which the dispersed phase is a drug dissolved or suspended in an aqueous solution of a biocompatible polymer, and the dispersion medium is an organic solvent that is sparingly soluble in water; By adding an alkyl 2-/anoacrylate whose dolkyl group has 1 to 8 carbon atoms, the alkyl 2-/anoacrylate is polymerized at the interface between the dispersed phase and the dispersion medium, and the NK phase is coated. Microencapsulated preparations obtained by (2) The microencapsulated preparation according to claim 1, characterized in that the biocompatibility polymer is selected from aldamino-1-dextran, celadin-4) and collagen. The encapsulated preparation [Mike 2. The microencapsulated preparation according to claim 1, wherein the microencapsulated preparation is chamaitomyone 0.5-fluorouranyl, ゛r-dolyaminone, or a derivative thereof. (5) The microencapsulated preparation according to claim 1, wherein the poorly soluble organic solvent is a vegetable oil. (6) Alkyl 2-ane anoacrylate is ethyl 2-
2. The microencapsulated preparation according to claim 1, wherein the microencapsulated preparation is selected from n-butyl 2-/anoacrylate, inobutyl 2-/anoacrylate, and n-butyl 2-/anoacrylate.
JP17090783A 1983-09-16 1983-09-16 Microencapsulated pharmaceutical Pending JPS6061521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17090783A JPS6061521A (en) 1983-09-16 1983-09-16 Microencapsulated pharmaceutical

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17090783A JPS6061521A (en) 1983-09-16 1983-09-16 Microencapsulated pharmaceutical

Publications (1)

Publication Number Publication Date
JPS6061521A true JPS6061521A (en) 1985-04-09

Family

ID=15913543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17090783A Pending JPS6061521A (en) 1983-09-16 1983-09-16 Microencapsulated pharmaceutical

Country Status (1)

Country Link
JP (1) JPS6061521A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148129A (en) * 1990-03-16 1993-06-15 L'oreal Sa Composition for cosmetic and/or pharmaceutical treatment on upper skin layer based on topical application on skin
EP0608207A1 (en) * 1993-01-18 1994-07-27 U C B, S.A. Nanocapsule containing pharmaceutical compositions
WO2002039979A1 (en) * 2000-11-17 2002-05-23 Centre National De La Recherche Scientifique (C.N.R.S.) Block-structure copolymer consisting of a saccharide segment bound to at least a biodegradable hydrophobic segment, and corresponding particles
JP2008513363A (en) * 2004-09-14 2008-05-01 ナノデル テクノロジーズ ゲーエムベーハー Delivery vehicle comprising nanoparticles
CN102846556A (en) * 2012-06-12 2013-01-02 柏自奎 5-fluorouracil drug-loading microspheres and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148129A (en) * 1990-03-16 1993-06-15 L'oreal Sa Composition for cosmetic and/or pharmaceutical treatment on upper skin layer based on topical application on skin
EP0608207A1 (en) * 1993-01-18 1994-07-27 U C B, S.A. Nanocapsule containing pharmaceutical compositions
US5500224A (en) * 1993-01-18 1996-03-19 U C B S.A. Pharmaceutical compositions containing nanocapsules
WO2002039979A1 (en) * 2000-11-17 2002-05-23 Centre National De La Recherche Scientifique (C.N.R.S.) Block-structure copolymer consisting of a saccharide segment bound to at least a biodegradable hydrophobic segment, and corresponding particles
JP2008513363A (en) * 2004-09-14 2008-05-01 ナノデル テクノロジーズ ゲーエムベーハー Delivery vehicle comprising nanoparticles
CN102846556A (en) * 2012-06-12 2013-01-02 柏自奎 5-fluorouracil drug-loading microspheres and preparation method thereof

Similar Documents

Publication Publication Date Title
US6395302B1 (en) Method for the preparation of microspheres which contain colloidal systems
US7001616B2 (en) Microspheres for use in the treatment of cancer
CA2579533C (en) Drug delivery from embolic agents
RU2145498C1 (en) Nanocapsules-containing pharmaceutical composition and method of its making
EP0169618B2 (en) Method for making uniformly sized particles from water-insoluble organic compounds
US6099864A (en) In situ activation of microcapsules
CN104136012B (en) The method that preparation is mounted with the nano particle of active material
JPH06501258A (en) Drug delivery excipient suspended in a non-aqueous perfluorinated carrier
GB1567763A (en) Albumin medicament carrier system
JPS60116627A (en) Manufacture of microspheres for intervascular transportation
JPH06504051A (en) Formulation of stable suspensions for controlled delivery of drug compounds
WO2019139380A1 (en) Vitamin c-containing polycaprolactone microsphere filler and preparation method therefor
JPH11130697A (en) Pharmaceutical composition controlled in rate for releasing medicine
EP0941068A1 (en) Process for the preparation of a controlled release system
JP2003526503A (en) Method for preparing colloidal particles in the form of nanocapsules
JP2911732B2 (en) Sustained release polynuclear microsphere preparation and its manufacturing method
JPH01311024A (en) Drug preparation having controlled acting substance release properties containing azelastine and production thereof
JP2001507044A (en) New method for producing fine particles and products obtained by the method
JPS6061521A (en) Microencapsulated pharmaceutical
AU4713397A (en) Porous microcapsules and their use as therapeutic and diagnostic vehicles
CN113827546A (en) Injectable hydrogel containing adriamycin and immunologic adjuvant combined drug liposome and preparation method thereof
JP4308933B2 (en) Microsphere formulation containing dolastatin 10 derivative
JP3442866B2 (en) Sustained-release preparation containing poorly water-soluble drug
KR920003329B1 (en) Process for preparing uniformly sized particles from water-insoluble organic compounds
JPS5815173B2 (en) How to prepare microcapsules