JPS6060764A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6060764A
JPS6060764A JP16812983A JP16812983A JPS6060764A JP S6060764 A JPS6060764 A JP S6060764A JP 16812983 A JP16812983 A JP 16812983A JP 16812983 A JP16812983 A JP 16812983A JP S6060764 A JPS6060764 A JP S6060764A
Authority
JP
Japan
Prior art keywords
diffusion layer
semiconductor device
substrate
diffusion
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16812983A
Other languages
Japanese (ja)
Inventor
Hiroo Masuda
弘生 増田
Yasuo Wada
恭雄 和田
Masao Tamura
田村 誠男
Shoji Yadori
章二 宿利
Shigeru Nishimatsu
西松 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16812983A priority Critical patent/JPS6060764A/en
Publication of JPS6060764A publication Critical patent/JPS6060764A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Element Separation (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To improve a protective function against breakdown by static electricity of an integrated circuit by using ion beams as a forming method for an impurity layer and controlling a fine diffusion layer. CONSTITUTION:An integrated circuit chip 1 consists of input-output pads, a wiring 2 connected to the pads, a through-hole 3 electrically connecting a diffusion layer 4 and the wiring 2, and a semiconductor element. The semiconductor element is formed by the source N<+> diffusion layer 4, drain N<+> diffusion layer 5, a gate electrode 6, fine P<+> diffusion layers 7, 7', a P type substrate 8, an inter- layer insulating film 9, and a silicon oxide film 10. The P<+> diffusion layers 7, 7' are formed in such a manner that they are brought into contact with the P type substrate 8 and brought into contact with the N<+> diffusion layers 4, 5 and their impurity concentration is made larger than that of the substrate 8. B, C, D in the figure represent a cross section A-A', a cross section B-B' and a cross section C-C'.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は集積回路の信頼性向上にかかわり、特に静電気
の放電による集積回路の破壊を防ぐ半導体装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to improving the reliability of integrated circuits, and more particularly to a semiconductor device that prevents destruction of integrated circuits due to electrostatic discharge.

〔発明の背景〕[Background of the invention]

従来集積回路は、拡散層の接合降服あるいは、MO8形
トランジスタのドレイン接合降服により静電気の放電に
よる集積回路の破壊を防いでいた。
Conventionally, integrated circuits have been prevented from being destroyed by electrostatic discharge by junction breakdown of a diffusion layer or drain junction breakdown of an MO8 transistor.

しかし、上記拡散層の接合おるいはドレイン接合の降服
電圧が高いと、接合部で発生される局所的な電力により
接合破かいがおこつfct)、MOSトランジスタのゲ
ート絶縁膜が破壊されるという欠点があった。
However, if the breakdown voltage of the junction or drain junction of the above diffusion layer is high, the local power generated at the junction tends to break the junction (fct), and the gate insulating film of the MOS transistor is destroyed. There were drawbacks.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記欠点を局所的な不純物形成により
、集積回路の特性をかえることなく改善する半導体装置
を提供することである。
An object of the present invention is to provide a semiconductor device that improves the above-mentioned drawbacks by locally forming impurities without changing the characteristics of the integrated circuit.

〔発明の概要〕[Summary of the invention]

従来の不純物層の形成方法としては、熱拡散法又はイオ
ン打込み法等が一般的に用いられておりこの様な方法で
は、ホトレジストの加工寸法の限界により拡散層の微細
化が制限されていた。例えば今日一般的に用いられてい
る技術においては、3μmX3μm がその最小寸法で
あり、これ以下の平面寸法の拡散層は形成できずまた必
らずホトレジストの加工の工程を必要とするため、特別
な拡散工程を追加すると製造コストが高くなる欠点があ
った。本発明は、イオンビームを用いた不純物のSl中
への注入を用いることによ如1μmレベル又は1μm以
下の幅をもつ不純物層をホトレジストの加工を必要とせ
ず、微細拡散層が形成できること金利用するものである
。この様な微細拡散層の形成は上記説明により従来技術
では不可能であることは明白である。
As a conventional method for forming an impurity layer, a thermal diffusion method, an ion implantation method, or the like is generally used, and in such methods, miniaturization of the diffusion layer is restricted due to the limitations of the processing dimensions of the photoresist. For example, in the technology commonly used today, the minimum dimensions are 3 μm x 3 μm, and it is impossible to form a diffusion layer with a planar dimension smaller than this, and it necessarily requires a photoresist processing process, so a special process is required. Adding a diffusion step has the disadvantage of increasing manufacturing costs. The present invention provides that a fine diffusion layer can be formed by implanting impurities into Sl using an ion beam to form an impurity layer with a width of 1 μm level or less than 1 μm without the need for photoresist processing. It is something to do. From the above explanation, it is clear that formation of such a fine diffusion layer is impossible with the prior art.

他方、素子の微細化にともない静電破壊に対する集積回
路の強さは低下する一方であり、これに対する有効な方
策は見当らない状態である。本発明ハ主に上記イオンビ
ームによる微細拡散層の形成により入出力ピンと低抵抗
で電気的に結合された拡散層の降服電圧を精度よく制御
し、静電気の放電による集積回路の破壊を防ぐことを基
本的な原理とする。
On the other hand, with the miniaturization of elements, the strength of integrated circuits against electrostatic discharge damage continues to decline, and no effective countermeasures have yet been found. The main objective of the present invention is to precisely control the breakdown voltage of the diffusion layer electrically connected to the input/output pins with low resistance by forming a fine diffusion layer using the ion beam, thereby preventing damage to the integrated circuit due to electrostatic discharge. This is the basic principle.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の実施例を示すものである。第1図面は
平面図、0はA−A’断面図、(QはB−B′断面図、
■はC−C’断面図を示す。1は集積回路チツ六2はA
t等の良導電材よりなる入出力パッド及びそれにつなが
る配線、3はn9拡散層4と上記2とを電気的に接続す
る為のスルーホール、4及び5はソース又はドレインn
9拡散層、6はゲート電極、7は微細p00拡散、8は
p形基板、9は層間絶縁膜、10はsi酸化膜である。
FIG. 1 shows an embodiment of the invention. The first drawing is a plan view, 0 is an AA' sectional view, (Q is a BB' sectional view,
(2) shows a CC' cross-sectional view. 1 is an integrated circuit 62 is A
3 is a through hole for electrically connecting the n9 diffusion layer 4 and the above 2, 4 and 5 are source or drain n.
9 is a diffusion layer, 6 is a gate electrode, 7 is a fine p00 diffusion, 8 is a p-type substrate, 9 is an interlayer insulating film, and 10 is a Si oxide film.

本実施例にdいてはB−B’断面部分の4′と8との接
合耐圧は、比較的太きく、例えばケート長3μm、fi
”拡散深さ0.4μmの構造においてはドレイン耐圧は
約20V程度になる。他方c−c’断面図における4′
と8及び7との接合耐圧は7′のp型不純物濃度を10
17〜1019程度に制御することにより6V〜15V
程度に容易設定することができる。したがって本実施例
では接合耐圧を7′を形成することにより20V以下の
比較的広い範囲で制御することができ、例えば5Vの電
源を使用する場合には接合耐圧は8v程効果を大きくす
ることができる。なお本実施例においては、p+拡散層
7及び7′の幅は、イオンビームの走査によ91μm以
下の値に容易にすることができ、ゲート6の幅に対して
十分小さな値となるため 7,7/の注入による回路特
性の変化は十分無視できるものでゲート幅の寸法を変更
する等の余分の集積回路設計変更を必要としない。
In this embodiment, the junction breakdown voltage between 4' and 8 in the B-B' cross section is relatively large, for example, the gate length is 3 μm, the fi
``In a structure with a diffusion depth of 0.4 μm, the drain breakdown voltage is approximately 20V.On the other hand, 4' in the cc' cross-sectional view
The junction breakdown voltage between and 8 and 7 is 7' p-type impurity concentration 10
6V to 15V by controlling to about 17 to 1019
Can be easily set up to a certain degree. Therefore, in this embodiment, by forming 7', the junction breakdown voltage can be controlled over a relatively wide range of 20V or less. For example, when using a 5V power supply, the effect of the junction breakdown voltage can be increased to 8V. can. In this example, the width of the p+ diffusion layers 7 and 7' can be easily reduced to a value of 91 μm or less by scanning with an ion beam, which is a sufficiently small value with respect to the width of the gate 6. , 7/ is sufficiently negligible and does not require any additional changes in the integrated circuit design such as changing the gate width dimension.

すなわち従来の製品に本発明を実施することにより、製
品の性能をかえることなく静電破壊に対する強度を大き
くすることができるという利点のあることは明らかであ
る。なお一度4′−7′間の接合降服がおきると、基板
抵抗の効果により4′−5′間に電流の通路ができるこ
とは公知であり、4 / 5 /間の接合が熱的に破か
いされることはない。
That is, it is clear that by applying the present invention to a conventional product, there is an advantage that the strength against electrostatic discharge damage can be increased without changing the performance of the product. It is well known that once junction breakdown occurs between 4' and 7', a current path is created between 4' and 5' due to the effect of substrate resistance, and the junction between 4' and 5' is thermally ruptured. It will not be done.

第2図は他の実施例を示すものである。第2図面は平面
図、■はA−A’断面図、(QはB−B’断面図である
。ここで4“は通常静電破かい防止の為に用いられるn
0拡散層である。本実施例では微細p+層が4“をクロ
スする様に形成されており、第1図の実施例と同様、 
+ p +間の接合耐圧を低くして静電耐圧を向上する
ものである。
FIG. 2 shows another embodiment. The second drawing is a plan view, ■ is a cross-sectional view along A-A', and Q is a cross-sectional view along B-B'.
0 diffusion layer. In this embodiment, the fine p+ layer is formed so as to cross 4", and as in the embodiment shown in FIG.
This is to lower the junction breakdown voltage between + p + and improve the electrostatic breakdown voltage.

効果は、第1図の実施例と全く同様に説明できる。The effect can be explained in exactly the same way as the embodiment of FIG.

なお本実施例においては、電極2から遠い稈長数本のp
1微細領域7′を設けることにより、人出カパツドから
遠い部分での静電荷の放電能力を大きくすることができ
、4”n+拡散層による集積回路の保護機能を大きくす
ることができる。これは、集積回路と接続される配線部
の電位が、複数本の7′により効果的にクランプされる
ことによる。
In this example, several culm lengths far from the electrode 2 are
By providing one fine region 7', it is possible to increase the ability to discharge static charges in a portion far from the outgoing capacitor, and it is possible to increase the protection function of the integrated circuit by the 4''n+ diffusion layer. This is because the potential of the wiring section connected to the integrated circuit is effectively clamped by the plurality of wires 7'.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、ホトマスク工程を追
加することなく集積回路の静電破かいに対する保両機能
を向上することができ、したがって、低価格で信頼性の
高い集積回路を提供することができる。
As described above, according to the present invention, it is possible to improve the protection function against electrostatic damage of an integrated circuit without adding a photomask process, and therefore to provide a low-cost and highly reliable integrated circuit. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を、第2図は他の実施例を示す
。 4/ 、5/・・・ソース、ドレインn+拡散層、6・
・パ■j図 鱈 2 図 第1頁の続き 0発 明 者 西 松 茂 国分寺市東恋ケ窪1丁目28幡地 株式会社日立製作所
中央研究所内
FIG. 1 shows an embodiment of the invention, and FIG. 2 shows another embodiment. 4/, 5/...source, drain n+ diffusion layer, 6.
・Pa■j Diagram Cod 2 Continuation of Figure 1 Page 0 Author: Shigeru Nishimatsu 1-28 Hata, Higashikoigakubo, Kokubunji City, Hitachi, Ltd. Central Research Laboratory

Claims (1)

【特許請求の範囲】 1、第1導電型の基板からなる半導体集積回路において
、入出力端子と低抵抗材料を介して電気的に接続された
縞2導電型の第1の拡散層が上記基板表面に形成されて
おり、当該拡散層の表面近傍に上記第1導電型の基板と
接しかつ上記第2導電型の拡散層と接する様に上記基板
より不純物濃度の大きな微細な第1導電型の第2の拡散
層が形成されていることを特徴とする半導体装置。 2、前記第2導電形の拡散層が、MO8形トランジスタ
のソースあるいはドレインであることを特徴とする特許
請求の範囲第1項記載の半導体装置。 3、前記第2の拡散層が、前記MO8形トランジスタの
ゲートと重なっていることを特徴とする特許請求の範囲
第2項に記載の半導体装置。 4、前記第2の拡散層が前記MOSトランジスタのソー
スドレイン方向に形成されており、かつ当該拡散層の幅
が、前記MO8)ランジスタのチャネル幅に対しl/1
0以下の寸法であることを特徴とする特許請求の範囲第
3項記載の半導体装置。 5、前記第2の拡散層は添加不純物の微細なビームを用
いて形成されたことを特徴とする特許請求の範囲第1項
記載の半導体装置。
[Claims] 1. In a semiconductor integrated circuit comprising a substrate of a first conductivity type, a striped first diffusion layer of a conductivity type 2 electrically connected to an input/output terminal via a low-resistance material is connected to the substrate. A fine first conductivity type substrate having a higher impurity concentration than the substrate is formed on the surface of the diffusion layer, and is in contact with the first conductivity type substrate and in contact with the second conductivity type diffusion layer near the surface of the diffusion layer. A semiconductor device characterized in that a second diffusion layer is formed. 2. The semiconductor device according to claim 1, wherein the second conductivity type diffusion layer is a source or drain of an MO8 transistor. 3. The semiconductor device according to claim 2, wherein the second diffusion layer overlaps the gate of the MO8 type transistor. 4. The second diffusion layer is formed in the source-drain direction of the MOS transistor, and the width of the second diffusion layer is l/1 with respect to the channel width of the MO8) transistor.
4. The semiconductor device according to claim 3, wherein the semiconductor device has a dimension of 0 or less. 5. The semiconductor device according to claim 1, wherein the second diffusion layer is formed using a fine beam of doped impurities.
JP16812983A 1983-09-14 1983-09-14 Semiconductor device Pending JPS6060764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16812983A JPS6060764A (en) 1983-09-14 1983-09-14 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16812983A JPS6060764A (en) 1983-09-14 1983-09-14 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6060764A true JPS6060764A (en) 1985-04-08

Family

ID=15862373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16812983A Pending JPS6060764A (en) 1983-09-14 1983-09-14 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6060764A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6250710B1 (en) * 1998-09-30 2001-06-26 Fuji Jukogyo Kabushiki Kaisha Front body structure of vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6250710B1 (en) * 1998-09-30 2001-06-26 Fuji Jukogyo Kabushiki Kaisha Front body structure of vehicle

Similar Documents

Publication Publication Date Title
US5637899A (en) Semiconductor device
US4086642A (en) Protective circuit and device for metal-oxide-semiconductor field effect transistor and method for fabricating the device
US6624495B2 (en) Adjustable threshold isolation transistor
US4503448A (en) Semiconductor integrated circuit device with a high tolerance against abnormally high input voltage
US6365941B1 (en) Electro-static discharge circuit of semiconductor device, structure thereof and method for fabricating the structure
JPH0558583B2 (en)
JP2872585B2 (en) Field effect transistor and manufacturing method thereof
US5614752A (en) Semiconductor device containing external surge protection component
KR950012705A (en) Transistor of electrostatic discharge protection circuit and its manufacturing method
US5451799A (en) MOS transistor for protection against electrostatic discharge
JPH08274267A (en) Semiconductor device
US6552393B2 (en) Power MOS transistor having increased drain current path
JP3472911B2 (en) Semiconductor device
JP2676888B2 (en) Semiconductor device
JPS6060764A (en) Semiconductor device
US4680605A (en) High voltage depletion mode transistor with serpentine current path
US6593605B2 (en) Energy robust field effect transistor
JPH08172135A (en) Manufacture of semiconductor device and semiconductor integrated circuit device
JP2748938B2 (en) Semiconductor integrated circuit device
US5416339A (en) Semiconductor device having electrode for collecting electric charge in channel region
KR100290916B1 (en) Elector static discharge protection circuit and method for manufacturing the same
US5432369A (en) Input/output protection circuit
JPH02183558A (en) Semiconductor device
JPH0817206B2 (en) Semiconductor device
JP2948256B2 (en) Method for manufacturing semiconductor memory device