JPS606045A - Fuel injecting device of internal-combustion engine - Google Patents

Fuel injecting device of internal-combustion engine

Info

Publication number
JPS606045A
JPS606045A JP58113779A JP11377983A JPS606045A JP S606045 A JPS606045 A JP S606045A JP 58113779 A JP58113779 A JP 58113779A JP 11377983 A JP11377983 A JP 11377983A JP S606045 A JPS606045 A JP S606045A
Authority
JP
Japan
Prior art keywords
exhaust gas
gas recirculation
correction
combustion engine
learning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58113779A
Other languages
Japanese (ja)
Other versions
JPS6340924B2 (en
Inventor
Yasuyuki Morita
泰之 森田
Yukinobu Nishimura
西村 幸信
Jiro Sumitani
隅谷 次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Mitsubishi Electric Corp
Original Assignee
Mazda Motor Corp
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Mitsubishi Electric Corp filed Critical Mazda Motor Corp
Priority to JP58113779A priority Critical patent/JPS606045A/en
Publication of JPS606045A publication Critical patent/JPS606045A/en
Publication of JPS6340924B2 publication Critical patent/JPS6340924B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • F02D41/2416Interpolation techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PURPOSE:To provide highly accurate control of air-fuel ratio both on operating time and inoperative time of an exhaust gas reflux device by independently providing a learning control correcting means in accordance with the operation and inoperativeness of said exhaust gas reflux device and carrying out an air-fuel ratio correction for the correction of said device on inoperative time using a correcting value in the inoperative operating area. CONSTITUTION:When an exhaust gas reflux device is not operating, a learned value updating operation section C11 interopatingly updates a memory value in the area which is not updated at the inoperative time because of low cooling water temp. in a table memory C8, by means of a memory value which is updated while capable of learning and being controlled, in the surrounding area in which the cooling water temp. is high. Other components operate equally as in the operating time, and switches C9 and C10 close inoperative-time contact points S1b, S2b respectively, according to the judgement of an EGR judging section. Then a signal 12a from an ignition coil 12 causes a timer C12 to operate, and an inoperative pulse PN from the exhaust gas reflux device is sent to a drive circuit C13, which, in turn, drives a fuel injection valve 14 by means of a valve opening pulse 13b which was outputted in accordance with the pulse PN. Accordingly, learning correction can be carried out in accordance with both the operation and inoperativeness of the exhaust gas reflux device.

Description

【発明の詳細な説明】 この発明は、排気ガス還流装置I77を付加したスピー
ドデンシティ方式の内燃機関燃料噴射装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a speed density type internal combustion engine fuel injection system to which an exhaust gas recirculation device I77 is added.

従来のスピードデンシティ方式の燃料噴射装置は負圧で
吸入空気量を検知し回転数で補i、IE j、て基本燃
料漏−をめるもの、あるいは負圧と回転数の2次元マツ
プを用いて基本燃料侑−を設定するものが知られている
Conventional speed-density type fuel injection systems detect the amount of intake air using negative pressure and compensate for it based on the rotational speed, or use a two-dimensional map of negative pressure and rotational speed. There is a known method for setting the basic fuel level.

また、これにi0気ガス中の酸素濃度を検出する0、セ
ンサを組み合わせて周知の積分制御を行ない、空燃比を
理論空燃比に制御する装置も知られている。
Furthermore, there is also known a device that combines this with a sensor that detects the oxygen concentration in the i0 gas to perform well-known integral control to control the air-fuel ratio to the stoichiometric air-fuel ratio.

ところが、空燃比を理論空燃比になるよう制御すると、
NOxが増大することから上記装置に排気ガス、、l;
−j流装置をイ;]加することが必要に々ってきた。
However, when controlling the air-fuel ratio to the stoichiometric air-fuel ratio,
Exhaust gas to the above equipment due to increased NOx;
It became necessary to add a flow device.

しかし、スピードデンシティ方式では、排気ガス還流装
+Ktが作動1″ると負圧が新気の圧力を示さ4二〈な
り、基本燃料量に基づき燃イ、・1供給すると空燃比は
リッチ側に移行する。
However, in the speed density method, when the exhaust gas recirculation system +Kt is activated 1", the negative pressure indicates the pressure of fresh air and becomes 42, and if 1 is supplied based on the basic fuel amount, the air-fuel ratio shifts to the rich side. Transition.

そこで、02センサを用い/こ学習機能により排気ガス
還流装置が作動するときは上記基本燃料量より少ない燃
料量を設定することが考えられ、神々の要因によシ機関
が予め設定された空燃比からずれた場合には、これを補
イハする学習制御手段が望−止れる。
Therefore, when the exhaust gas recirculation system operates using the 02 sensor/learning function, it is possible to set a fuel amount smaller than the above basic fuel amount, and due to divine factors, the engine will be able to adjust to the preset air-fuel ratio. If there is a deviation, a learning control means is required to compensate for this deviation.

従来、この種の動作状態に対応するものとして、たとえ
ば、(負圧、回転数)で区分けしてその領域毎に学習し
補正値を記憶し、この値をその領域の補正値として用い
る方法が知られていた。
Conventionally, as a method to deal with this type of operating condition, for example, there is a method of dividing the system by (negative pressure, rotation speed), learning and storing a correction value for each area, and using this value as the correction value for that area. It was known.

ととろが、上記排気ガス還流装置を付加したときは、同
一(負圧、回転数)の動作点でもこの排気ガス還流装置
の作動・非作動に対して新気の量が異なシ、機関の動作
状態が異なる。
When Totoro added the above exhaust gas recirculation device, even at the same operating point (negative pressure, rotation speed), the amount of fresh air will differ depending on whether the exhaust gas recirculation device is activated or not, and the engine operation will be different. Conditions are different.

そこで、上記排気力゛ス還流装置の作動・非作動に対応
してそれぞれ独立に上記学習制御による補正を行なうこ
とが考えられる。
Therefore, it is conceivable to perform the correction by the learning control independently depending on whether the exhaust gas recirculation device is activated or deactivated.

しかるに、通常、上記学習制御は暖機完了後行なわれ(
ただし補正値は暖気完了前にも適用される)、上記排気
ガス還流装置はドライバビリティの点から通常冷却水温
40〜50・℃以上で作動するよう設定される。
However, the above learning control is usually performed after warm-up is completed (
However, the correction value is applied even before the warm-up is completed.) From the viewpoint of drivability, the exhaust gas recirculation device is normally set to operate at a cooling water temperature of 40 to 50° C. or higher.

したがって、本来上記排気ガス還流、装jべが作動ずべ
き運転領域で冷却水温が低くて上記装置¥1が作動しな
い運転領域は上記学習制御ができないという欠点がある
Therefore, there is a drawback that the learning control cannot be performed in an operating region where the exhaust gas recirculation and equipment should normally operate, but where the cooling water temperature is low and the device does not operate.

この発明−一、上記従来の欠点を解消して、排気ガス還
流装置の作動時・非作動時とともに学習制御を行ない、
きめ細かい空燃比制御を行なう内燃機関燃料噴射装置を
捺供することを目的としている。
This invention - 1. Eliminating the above-mentioned conventional drawbacks, learning control is performed when the exhaust gas recirculation device is activated and not activated,
The purpose is to provide an internal combustion engine fuel injection device that performs fine air-fuel ratio control.

以下、この発明の内燃機関燃料噴射装置の実M11例に
ついて図面に基づき説明する。第1図はその一実施例の
概略構成を示す図でるる。この第1図において、1はエ
アクリーナ、2は吸入空気をシリング3へ導く吸気管、
4k」、上記空気量を調整する絞り弁、5け上記吸気管
2の側壁にあってかつ上記絞り弁4の近傍の下流側に備
えられ、この吸気管2内の負圧を検知する半導体負圧セ
ンサで、負圧信+35aを出力する。
Hereinafter, an actual M11 example of the internal combustion engine fuel injection device of the present invention will be explained based on the drawings. FIG. 1 is a diagram showing a schematic configuration of one embodiment. In this FIG. 1, 1 is an air cleaner, 2 is an intake pipe that guides intake air to a shilling 3,
4k'', a throttle valve for adjusting the amount of air; The pressure sensor outputs a negative pressure signal +35a.

6に排気管、7 hr土土耕排気管6取勺旬けられて刊
気ガス中の酸素濃度を4小出する。2センザで、リッチ
(濃い)、リーン(Rい)イ月刊7aを114力する。
6 is an exhaust pipe, 7 hr soil cultivation exhaust pipe is removed and the oxygen concentration in the air gas is extracted 4 times. With 2 sensors, 114 liters of rich, lean, monthly 7a are produced.

’jJl:気ガス還原ガス還流装置8ノイドバルブ9、
BPT ] OオよびEGIZバルブ11を備えている
'jJl: Air gas recirculation device 8 noid valve 9,
BPT ] O and EGIZ valves 11 are provided.

このソレノイドバルブ9 (rJ、後述の制御装R1,
3からの指令信号13aにょシ吸気管負圧あるいU二人
気圧を選択するように構成されている。
This solenoid valve 9 (rJ, control device R1 described later,
The command signal 13a from 3 is configured to select either the negative intake pipe pressure or the two-person pressure.

trc、 こ(7)BPTIOは上記ソレノイドバルブ
9が選択した圧力を刊、気ガス圧力に応じてコントロー
ル負圧に変換するものであり、このEGRパルプ1lf
dこのコントロール負圧に応じて用原ガスを吸気管2に
導入するように構成されている。
trc, (7) BPTIO converts the pressure selected by the solenoid valve 9 into a control negative pressure according to the gas pressure, and this EGR pulp 1lf
d The raw gas is introduced into the intake pipe 2 in accordance with this control negative pressure.

12(・まイグニション信号12aを出力するイグニシ
ョンコイルであシ、また、11川省4j装置?Q 13
は、上記負圧センサ5の負圧信号5aおよび上記イグニ
ションコイル12のイグニション信号12aを入力し、
との負圧信号5a、イグニション1t3 勾12aK基
づいて基本燃料量を演q゛シ、上記02センサ7からの
m力信号7aによシフイードバック制御および学習制御
を行ない、寸た予め設定されt川原ガス還流装置8の作
動状態に応じて自ら出力する指令信号13aでソレノイ
ドバルブ9を作q)させ、上述の演R1および制御で得
た最終の噴射燃刺量Gfを対応する出力パルスのパルス
幅に変換し、1iJ弁パルス13bを出力して燃料噴射
弁14を駆動するように構成されている。
12 (・Is it an ignition coil that outputs the ignition signal 12a? Also, is it an ignition coil that outputs the ignition signal 12a?
inputs the negative pressure signal 5a of the negative pressure sensor 5 and the ignition signal 12a of the ignition coil 12,
The basic fuel amount is calculated based on the negative pressure signal 5a of the ignition 1t3 and the ignition gradient 12aK, and the shift feedback control and learning control are performed based on the m force signal 7a from the 02 sensor 7, and the preset t rivera is calculated. The solenoid valve 9 is operated (q) with the command signal 13a outputted by itself according to the operating state of the gas recirculation device 8, and the pulse width of the output pulse corresponding to the final injection fuel stabilization amount Gf obtained by the above-mentioned operation R1 and control is , and outputs a 1iJ valve pulse 13b to drive the fuel injection valve 14.

第2図1は制御装置13のブロック図であシ、図中、C
1はイグニションコイル12のイグニション信号12a
の周期の逆数を演算し、機関回転数(以F回転数という
)をめる回転数演算部、C2は回転数演算部CIで得ら
れる回転数と、角圧センサ5の負圧信号5aで与えられ
る負圧とで決められる1−負圧・回転数領域]が予め設
定された排気ガス還流制御領域内であるがどうかを1′
I」定するJCG RYIJ定部である。
FIG. 2 1 is a block diagram of the control device 13, and in the figure, C
1 is the ignition signal 12a of the ignition coil 12
C2 is a rotation speed calculation unit that calculates the reciprocal of the period of the engine and calculates the engine rotation speed (hereinafter referred to as F rotation speed). 1-Negative pressure/rotational speed range determined by the given negative pressure] is within the preset exhaust gas recirculation control range.
This is the JCG RYIJ constant section.

C3は上記(回転数・負圧)で予め決められた基本燃料
量Gfoを算定する基本燃料量演算部、C4は上記02
センツ゛7のリッヂ、リーン信号7aに応じて積分制御
の操作量としての積分補IE値を生ずるA、t′ツ゛分
袖正部である。
C3 is the basic fuel amount calculation unit that calculates the basic fuel amount Gfo determined in advance based on the above (rotation speed and negative pressure), and C4 is the above 02
The ridge of center point 7 is the A, t' division correct part which generates the integral compensation IE value as the manipulated variable of integral control in response to the lean signal 7a.

C5は存を分補正部C4の出力の平均値、すなわち学習
制御補正値をめる平均値演算部、C6は基本燃料量Gf
o K積分補正を行なうための采γr器、C7、C81
:J、それぞれ排気ガス速流イbU p414@ fy
’−3の作動、非作動に対応して設けらJまた学’fV
制御jl補正用テーブルメモリ(以下体重1.IIf)
チー グツトメモリ、非作動時テーブルメモリというつ
で、上記(負圧、回転数)でテーブル・ルックアップが
できるようにイ14成されている。
C5 is the average value of the output of the balance correction unit C4, that is, the average value calculation unit that calculates the learning control correction value, and C6 is the basic fuel amount Gf.
o γr device for performing K-integral correction, C7, C81
:J, respectively exhaust gas fast flow bU p414 @ fy
It is provided in response to the operation and non-operation of '-3.
Table memory for control jl correction (hereinafter referred to as weight 1.IIf)
The engine is called a command memory and a non-operating table memory, which are designed to allow table look-up at the above (negative pressure, rotational speed).

C9は1’2 G 1.を判定部c2がらの指令にょシ
、平均値演算部C5から出力された学習制御補正値の送
出先として作動時テーブルメモリCatたは非作動時テ
ーブルメモリC8のいずれ〃1をそ−h−ぞれ接点Sl
a + S1’T)で選択する第1のスイッチで、上記
学習制御補正値を送出されたテーブルメモリは負圧、回
転数により予め定められた領域のデープルメモリ値が更
新されるように構成されている。
C9 is 1'2 G 1. When a command is issued from the judgment unit c2, either the operating table memory Cat or the non-operating table memory C8 is selected as the destination of the learning control correction value output from the average value calculation unit C5. contact SL
The table memory to which the learning control correction value is sent by the first switch selected by a+S1'T) is configured so that the table memory value in a predetermined area is updated according to the negative pressure and rotation speed. has been done.

CIOは上記E G R判定部C2の指令により、上述
のスイッチC9と同様に作動時および非作動時テーブル
メモ!7Cj、C8の出力をそり、ぞれの接点SJa 
HS2bで選択する第2のスイッチである。
In response to the command from the EGR determination section C2, the CIO writes a table memo when it is activated and when it is not activated in the same way as the switch C9 described above! 7Cj and C8 outputs are bent, and each contact SJa
This is the second switch selected by HS2b.

C12は乗舅器C6の出力である基本燃ネ・1#Gf。C12 is the basic fuel oil 1#Gf which is the output of the passenger unit C6.

と積分補正値との積、すなわち補正基本燃料量Gfo’
に平均値演算部C5の出力である学習制御補正値を乗じ
た一値、すなわち噴射燃刺稲01を上記作動時デープル
メモ+j C7または非作動時デルプルメモリC8から
第2のスイッチCJOを介して入力し、これを出力パル
スのパルス幅に変換しで出力するタイマである。
and the integral correction value, that is, the corrected basic fuel amount Gfo'
is multiplied by the learning control correction value which is the output of the average value calculation unit C5, that is, the injection fuel 01 is sent from the working time double memo+j C7 or the non-working working time del pull memory C8 through the second switch CJO. This is a timer that inputs the pulse width, converts it to the pulse width of the output pulse, and outputs the pulse width.

C13は駆動回路で、排気ガス還流装置8の作動時はタ
イマC12から出力される作動時パルスPJ>を、非作
動時は非作動時パルス■)Nを入力し、上記イグニショ
ンコイル12から出力されたイグニション信号12aを
トリガとして、燃泊[噴射弁1、4 fr:駆動するよ
うに作動時パルスPF、または非作動時パルスPNの1
11カモードに応じて開弁パルスi 3 bを出力する
j:うに構成されている。
C13 is a drive circuit, which inputs the operating pulse PJ> output from the timer C12 when the exhaust gas recirculation device 8 is operating, and the non-operating pulse ■)N when it is not operating, and outputs the output from the ignition coil 12. The ignition signal 12a is used as a trigger to activate the fuel injection valves 1, 4 fr: 1 of the pulse PF when activated or the pulse PN when not activated.
The valve opening pulse i 3 b is output according to the 11 modes.

なお、C1lは学習値更新演算部であや、]11気ガス
還流装置8の非作動時において、非作動時テーブルメモ
リC8が更新されない領域のメモリ値をその周辺の更新
されたメモリ値で補間して更新させるものである。
Note that C1l is a learning value update calculation unit that interpolates the memory values in the area where the table memory C8 is not updated when the air gas recirculation device 8 is not in operation, with the updated memory values in the vicinity thereof. This will update the information.

次に、以上のように構成さ′i7.たこの発明の内燃機
関燃料噴射装置ハ1の動作について説明する。
Next, 'i7. The operation of the internal combustion engine fuel injection device C1 of this invention will be explained.

寸ず、回I Mi7iする内燃機関において、イグニシ
ョンコイル12からC4力されたイグニション信号12
aを入力した回転数演p: %B c 1はその周期の
逆数を演算して回転数を、F; G 1?、判定部C2
および基本燃料量演算?’4(I C3K送出する。
In an internal combustion engine that is running a number of times, the ignition signal 12 that receives C4 from the ignition coil 12
Rotation speed operation p with input a: %B c 1 calculates the rotation speed by calculating the reciprocal of the period, F; G 1? , determination unit C2
and basic fuel quantity calculation? '4 (Send I C3K.

一方、半導体負圧センサ5で検知された吸気管2内の負
圧の大きさを知らせる負圧信号5aが基本燃料量演η1
部C3に入力されると、この基本燃料量演算部C3は回
転数とで(負圧、回転数)1(応じて予め定められた基
本燃料量Gfoを算出し、その値Gfoを乗q−器C6
に出力する。
On the other hand, the negative pressure signal 5a that indicates the magnitude of the negative pressure in the intake pipe 2 detected by the semiconductor negative pressure sensor 5 is the basic fuel quantity calculation η1.
When the input is input to section C3, this basic fuel amount calculation section C3 calculates a predetermined basic fuel amount Gfo by the number of revolutions (negative pressure, number of revolutions) 1 (accordingly), and multiplies the value Gfo by q- Container C6
Output to.

また、EGR判定部c2は上記(負圧、回転数)で決め
られた1−負圧・回転数領域」が予め設定された排気ガ
ス還流制御領域内にあるがどうかを判定し、その判定結
果を第1および第2のスイッチC9+ C10K伝える
。。
In addition, the EGR determination unit c2 determines whether the 1-negative pressure/rotational speed region determined by the above (negative pressure, rotational speed) is within the preset exhaust gas recirculation control region, and the determination result is is transmitted to the first and second switches C9+C10K. .

ところで、排気管6内ガスの02を検知した0、センサ
7からはリッチ信号あるいはリーンイ占号7aが出力さ
れ、このリッチ信号せたはリーン信号7aを入力した積
分補正部C4は積分制御の操作量と(−での積分補正値
を平均値演算f+Ii C5および乗釣器C6に送出す
る、。
By the way, when 02 of the gas in the exhaust pipe 6 is detected, the sensor 7 outputs a rich signal or lean signal 7a, and the integral correction section C4 inputting this rich signal or lean signal 7a performs an integral control operation. The integral correction value at (-) is sent to the average value calculation f+Ii C5 and the fishing device C6.

そこで1.この平均値演算部c5け積分補正値の平均値
、すなわち学習制御補正値を出力し、Jイ:C”、It
判定部C2ば、上記「負圧・回9・・′−、数領域」が
予め設定さ1また排気ガス譚流制仰領域内にあると判定
すると、第1のスイッチc9で作動時接点S1aを閉成
するため、この学習制御補正値を作動時テーブルメモリ
C7に送出する。
So 1. This average value calculation unit outputs the average value of the 5 integral correction values, that is, the learning control correction value,
If the determination unit C2 determines that the above-mentioned "negative pressure/times 9...'-, number range" is within the preset 1 and exhaust gas flow suppression range, the first switch c9 activates the contact S1a. In order to close the learning control correction value, this learning control correction value is sent to the table memory C7 during operation.

このとき、第2のスイッチCIOも上記Jr G R−
′14I定部C2の判定によ夕作動時接点SZRを閉成
する。
At this time, the second switch CIO also
'14I Closes the contact SZR when activated according to the judgment of the constant part C2.

一方、乗算器C6では、基本燃相針Gfoおよび積分補
正値を入力してこの基本燃料量G4oK積分補正を行な
い、その演算結果を補正基本炉料量Gfo’として作動
時テーブルメモIJ C7および非作動時・チーグルメ
モリC8に送出する。
On the other hand, the multiplier C6 inputs the basic fuel phase needle Gfo and the integral correction value, performs the basic fuel quantity G4oK integral correction, and uses the calculation result as the corrected basic reactor fuel quantity Gfo' for the operation table memo IJ C7 and the non-operation table memo IJ C7. Time/Send to Cheagle memory C8.

そこで、上記学習制御補正値を入力した作動時デープル
メモリC7は、さらに補正基本燃Pi 量G fo’に
対して学習制御補正を行ない、その演算結果を噴射燃料
量Gfとして第2のスイッチC10を介してタイマC1
2に送出する。
Therefore, the operation double memory C7 into which the learning control correction value has been input further performs a learning control correction on the corrected basic fuel amount Pi', and uses the calculation result as the injected fuel amount Gf to the second switch C10. timer C1 via
Send to 2.

このタイマC]、 2は噴射燃料量Gfをパルス幅に変
換する。このとき、イグニションコイル12からのイグ
ニション信号12aをトリがとしてタイマC12が駆動
され、ノJ1”気ガス還流装置8の作動時の作動パルス
PEを駆動回路C13に送出する。
This timer C], 2 converts the injected fuel amount Gf into a pulse width. At this time, the timer C12 is driven by the ignition signal 12a from the ignition coil 12, and sends out an operating pulse PE for operating the gas recirculation device 8 to the drive circuit C13.

その結果、この駆動回路C1,3は上記作動パルスp=
の化カモ−ドに応じて出力されたu:1弁パノ【ス13
bで燃料噴射弁J4を駆動する。
As a result, this drive circuit C1,3 has the above-mentioned actuation pulse p=
U:1 valve pano output according to the conversion mode
b drives the fuel injection valve J4.

次に、UL気ガス還流装首8の非作動時において、学習
値更新演錯1部C1lは非作動時デープルメモリC8の
前記理由にょQ更新されない領域0)メ;(−9値を、
その周辺の更新さ)L/こメそり値で#lil 1ft
J (。
Next, when the UL air gas recirculation neck device 8 is not activated, the learned value update complex 1 part C1l is the area 0) where Q is not updated for the above reason in the depleted memory C8 when not activated;
Update around it) L/Komesori value #lil 1ft
J (.

て更新させる(詳細動作は後述する)3、その他の各(
・h酸部は上述の作piIJI1.J′とli’iJイ
パ(に励信し、上NQ E G R同定部C2の判定に
よって、第」のスイッチC9および第2のスイッチC”
 I (lはぞり、ぞれソト作動時接点Sxb 、 S
2bを閉成する。
(detailed operation will be described later) 3, and each other (
・The h acid part was prepared as described above in piIJI1. J' and li'iJ ipa(), and according to the judgment of the upper NQ E G R identification section C2, the ``th switch C9 and the second switch C''
I (l is removed, respectively, the contacts Sxb and S
2b is closed.

これによシ、イグニションコイノド12がらのイグニシ
ョン信号12aでタイマC,12が駆動され、排気ガス
還流装置8の非作動パルスP!4を駆動回路C13に送
る。
As a result, the timer C, 12 is driven by the ignition signal 12a from the ignition controller 12, and the deactivation pulse P! of the exhaust gas recirculation device 8 is driven! 4 to the drive circuit C13.

その結果、駆動回路C]、 3は非作動パルスPNの出
力モードに応じて出方された開弁パルス13bで燃料噴
射弁14を駆動する。したがって4J1:気ガス還流装
屑の作動・非作動に応じてともに学習補正がなされる。
As a result, the drive circuit C], 3 drives the fuel injection valve 14 with the valve opening pulse 13b issued in accordance with the output mode of the non-actuation pulse PN. Therefore, 4J1: Learning correction is performed in response to whether the air gas recirculation equipment is activated or not.

次に、前述の学習値更新前3Hi部C1,1の動作を第
3図、第4図を用いて説明する3、第3図において、横
軸Nは回転数、縦tll+ P sは軸馬力、Pi(i
−1〜4)は等ブースト曲紳、A、!−A、2〜A3−
A4、−A2−A5−A、6−A3などの領域はJJ1
気ガス還流装置8の非作動時の学課領域、曲線り内は排
気ガス還流装置8の作動可能領域をそれぞれ示す。
Next, the operation of the 3Hi section C1, 1 before learning value update described above will be explained using FIGS. 3 and 4. In FIG. , Pi(i
-1 to 4) are equal boost songs, A,! -A, 2~A3-
Areas such as A4, -A2-A5-A, 6-A3 are JJ1
The school area when the exhaust gas recirculation device 8 is not in operation is shown, and the area inside the curve shows the operable area of the exhaust gas recirculation device 8, respectively.

いま、学習領域A2−A3.−A6−A3について、図
の斜テ、液部では、通常学・ご7できない。なぜなら、
斜線部(・・ま学習fit:I御が可能な冷却水温の高
い状態では、排気ガス還流装置8が作動するため、学習
値は排気ガス還流装置8の作動時の補正値となシ、4V
+、気ガス遠流装置8の非作動時の余1線部は学習制御
されないことになる。
Now, learning areas A2-A3. - Regarding A6-A3, the diagonal angle of the diagram and the liquid part cannot be viewed normally. because,
The shaded area (...) Learning fit: In a state where the cooling water temperature is high and can be controlled, the exhaust gas recirculation device 8 operates, so the learned value is a correction value when the exhaust gas recirculation device 8 is activated.
+: When the air gas remote flow device 8 is not operating, the extra line portion is not subjected to learning control.

したがって、冷却水VIAが低いときに斜線部は学11
補正されないことになり、空燃比のきめ細かい制御は望
めない。
Therefore, when the cooling water VIA is low, the shaded area is
Since no correction is made, fine control of the air-fuel ratio cannot be expected.

そこで、学習値更新演算部C1lでは、冷却水温が高く
学習制御可能なときにA2−A5−A6−A3内で斜線
部外のたとえば、E1点で学習制御し、冷却水温が低い
ときの上記斜線部内のたとえば、E2点での動作時にも
学習補正値を適用するよう制御を行なう。
Therefore, in the learning value update calculation unit C1l, when the cooling water temperature is high and learning control is possible, learning control is performed at a point outside the shaded area within A2-A5-A6-A3, for example, E1 point, and when the cooling water temperature is low, For example, control is performed to apply the learning correction value even when operating at point E2 within the section.

また、第4図に示すように学習領域を細分化した場合、
図の領域B 2− B 3−87−13 にのように排
気力゛スR流装置動作可能領域(同図曲H6: r、 
+jq )と学習領域の区分とが完全にニア+i々る鴨
合が存在するが、領域B 1− B 2 B 6− H
5と領1或1+ 3− B 4−B8−B7のそり、ぞ
れの学習補正値で補間ないしは平均することにより、領
域B 2− B3− B 7−B6の学習補正値をめる
よう制御する。
Furthermore, when the learning area is subdivided as shown in Figure 4,
As shown in the area B2-B3-87-13 in the figure, the exhaust force R flow device is operable area (song H6 in the same figure: r,
+jq) and the division of the learning area are completely close to each other, but the area B 1- B 2 B 6- H
5 and region 1 or 1+ 3- B 4-B8-B7, control is performed to obtain the learning correction value of region B 2- B3- B 7-B6 by interpolating or averaging with each learning correction value. do.

したがって、排気ガス還流装置8の作動・非作動に応じ
てともに学習制御補正が欧される。
Therefore, the learning control correction is performed depending on whether the exhaust gas recirculation device 8 is activated or not.

なお、上記実施例では、その必要構成部をブロック図で
示したが、プログラムで行なってもよい。
In the above embodiment, the necessary components are shown in block diagrams, but they may be implemented by programs.

また、上記実施例では、スピードデンシティ方式のもの
を示したが、マスフロ一方式であってもよく、新規の量
は変わらなくても不燃性の排気ガスの混流により燃焼状
態が異なるため、この発明による制御装置によりさらに
きめ細かい制御が可能である。
In addition, although the speed density type was shown in the above embodiment, a mass flow type may also be used, and even if the amount of new gas does not change, the combustion state changes due to the mixed flow of non-flammable exhaust gas, so the present invention Even more fine-grained control is possible with the control device.

以上のように、この発明の内燃機関燃料噴射装置によれ
ば、排気ガス還流装置の作動・非作動に応じて独立に学
習制御補正手段を備え、この学習制御補正手段により補
正を行なう領域が上記排気ガス還流装渦1の作動する領
域を含むよう設定し、排気ガス還v1t’、装置の作動
すべき運転領域で冷却水温条件などで損気ガス還流装置
が作動しないときの学習補正を排気ガス還流装置が作動
し左い運転領域の学習補正飴を用いて補正することによ
り、囲気ガス還流装置の作動・非作動的ともに機関空燃
比を)ツf望の値に精度よ< jul]御できるという
大々る効果がある。
As described above, according to the internal combustion engine fuel injection device of the present invention, the learning control correction means is provided independently depending on whether the exhaust gas recirculation device is activated or deactivated, and the area to be corrected by the learning control correction means is as described above. The exhaust gas recirculation system is set to include the region where the exhaust gas recirculation system vortex 1 operates, and the learning correction is performed when the exhaust gas recirculation system does not operate due to cooling water temperature conditions etc. in the operating range where the exhaust gas recirculation system should operate. It is said that by correcting using the learning correction candy for the operating range in which the device is activated, it is possible to precisely control the engine air-fuel ratio to the desired value both when the ambient gas recirculation device is activated and when it is not activated. It has a huge effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の内燃機関燃料噴射装置の一実施例の
概略構成を示す図、第2図は第1図の内燃機関燃料噴射
装置における制御装置のブロック説明図、第3図および
第4図はそれぞれ第2図の制御装置における学習値更新
演算部C1lの動作を説明するための説明図である。 2・・・吸気管、3 ・シリンダ、4・・・絞シ弁、5
・・半導体負圧センザ、6・・・4Jト気管、7・・・
o2センザ、8・・・損気カスRtlL装置、12 ・
イグニションコイル、13・・・制御装置、C2・■号
c n判定部、C3・・・基本燃料量演算部、C4禎分
補iモ部、C5・・・平均値演算部、C6・・・乗算器
、C7・・作動時チーへプルメモリ、C8・非作動時テ
ーブルメモリ、C9、CIO・・・スイッチ、C1l・
・愕習イ1百更新演q一部、C12・・・駆動回路。 なお、図中同−省号は同−へ11分ま7′こけ相当部分
を示す。 代理人 犬 岩 Jv/ 雄 千 イ、ノ、袖 正 書 (自発) 昭和 5馬已哨η1 口 1”11!’l’l ’I艮官1p、、j>1 、1G
 f’lノ/j 小111Qfi昭58−113779
号2 発明の名称 内燃機関燃料噴射装置 :3. tlill ろ−=+ る省 5、補正の対象 明細書の発明の詳細な説明の欄。 6 補正の内容 明細書13頁11行1通常学習できない」を「排気ガス
還流装置8の非作動時の学習ができない」と訂正する。 以上
FIG. 1 is a diagram showing a schematic configuration of an embodiment of an internal combustion engine fuel injection system of the present invention, FIG. 2 is a block diagram illustrating a control device in the internal combustion engine fuel injection system of FIG. 1, and FIGS. Each figure is an explanatory diagram for explaining the operation of the learning value update calculation section C1l in the control device of FIG. 2. 2... Intake pipe, 3 - Cylinder, 4... Throttle valve, 5
・・Semiconductor negative pressure sensor, 6...4J trachea, 7...
o2 sensor, 8... Loss gas RtlL device, 12 ・
Ignition coil, 13...control device, C2/■c n determination section, C3...basic fuel amount calculation section, C4 supplementary i-mo section, C5...average value calculation section, C6... Multiplier, C7...Pull memory when activated, C8/table memory when not activated, C9, CIO...switch, C1l...
・C12...Drive circuit. In addition, the ministry name in the figure indicates the part corresponding to 11 minutes to 7'. Agent Inu Iwa Jv/ Yuchi I, no, Sode Masashi (self-motivated) Showa 5 Umami Sho η1 Mouth 1"11!'l'l 'I Rinkan 1p,, j>1, 1G
f'lノ/j Elementary School 111 Qfi 1979-113779
No. 2 Name of the invention Internal combustion engine fuel injection device: 3. Section 5: Detailed description of the invention in the specification to be amended. 6. In the detailed description of the amendment, page 13, line 11, line 1, ``Normal learning is not possible'' is corrected to ``Learning is not possible when the exhaust gas recirculation device 8 is not in operation.''that's all

Claims (1)

【特許請求の範囲】 (]、)燃料噴射弁と、機関の吸入空気量や温度を含む
各種作動パラ7 タに基づいて予めプログラムされた制
御内容にしたがって上記燃料噴射弁の開弁時間を制御す
るf&!I御装置表装置気ガス中の酸素濃度を検出する
02センサと、排気ガス還流装置とを備えた内燃機関噴
射装置において、上記02センザの検出量による秋分制
御を行々い、機関の各運転状態に応じた前記積分動作に
よって得られた積分補正値の平均値を記憶しておき、こ
の値を」こ記#1.気力゛ス還流装置の作動時と非作動
時で独立に補iEを行なうことを特徴とする内燃機関燃
料噴射装置。 (2)補正値の上記排気ガス還流装置の作動時に対応す
る補正領域および非作動時に対応する補正領域が上記排
気ガス還流装置の作動領域を含むように設定することを
特徴とする特許請求の範囲第1項記載の内燃機関撚#+
噴射装置。 (3)非作動時に対応する補正領域内で排気ガス還流装
置の作動領域の前記補正を非作動時に対応する補正領域
内のHr気ガス還流装置の非作動領域の前記補正値に基
づき空燃比補正をおこなうことを特徴とする特許請求の
範囲第2項記載の内燃機関燃料噴射装置。
[Claims] (],) The opening time of the fuel injector is controlled in accordance with control contents programmed in advance based on the fuel injector and various operating parameters including the intake air amount and temperature of the engine. Do f&! In an internal combustion engine injection system equipped with an 02 sensor that detects the oxygen concentration in gas and an exhaust gas recirculation device, equinox control is performed based on the amount detected by the 02 sensor, and each engine operation is The average value of the integral correction values obtained by the above-mentioned integral operation according to the state is memorized, and this value is used in this article #1. A fuel injection system for an internal combustion engine, characterized in that supplementary iE is performed independently when an air gas recirculation device is activated and when it is not activated. (2) The scope of the present invention is characterized in that a correction area of the correction value corresponding to when the exhaust gas recirculation device is activated and a correction area corresponding to the non-activation of the exhaust gas recirculation device are set to include the activation area of the exhaust gas recirculation device. Internal combustion engine twist #+ as described in item 1
Injection device. (3) The air-fuel ratio is corrected based on the correction value of the non-operating region of the exhaust gas recirculation device within the correction region corresponding to the non-operating time. The internal combustion engine fuel injection device according to claim 2, characterized in that the internal combustion engine fuel injection device performs the following.
JP58113779A 1983-06-24 1983-06-24 Fuel injecting device of internal-combustion engine Granted JPS606045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58113779A JPS606045A (en) 1983-06-24 1983-06-24 Fuel injecting device of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58113779A JPS606045A (en) 1983-06-24 1983-06-24 Fuel injecting device of internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS606045A true JPS606045A (en) 1985-01-12
JPS6340924B2 JPS6340924B2 (en) 1988-08-15

Family

ID=14620895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58113779A Granted JPS606045A (en) 1983-06-24 1983-06-24 Fuel injecting device of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS606045A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791304A (en) * 1993-09-22 1995-04-04 Nissan Motor Co Ltd Fuel supply controller of internal combustion engine
US6025445A (en) * 1996-11-01 2000-02-15 Kaneka Corporation Curable compound

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791304A (en) * 1993-09-22 1995-04-04 Nissan Motor Co Ltd Fuel supply controller of internal combustion engine
US6025445A (en) * 1996-11-01 2000-02-15 Kaneka Corporation Curable compound

Also Published As

Publication number Publication date
JPS6340924B2 (en) 1988-08-15

Similar Documents

Publication Publication Date Title
CN105275637B (en) Multivariable low pressure exhaust gas recirculation control
JPS5917259B2 (en) Air fuel ratio control device
JP2007247445A (en) Intake control device of internal combustion engine
JPS606045A (en) Fuel injecting device of internal-combustion engine
JPS6158940A (en) Air-fuel ratio control device for engine
JPS58150057A (en) Study control method of air-fuel ratio in internal-combustion engine
JPH0436036A (en) Air-fuel ratio controller of engine
JPS6128739A (en) Method of controlling learning value for internal-combustion engine
JPS6130136B2 (en)
JP2002130029A (en) Electronic controller for internal combustion engine
JPS6093143A (en) Control device of idle speed in internal-combustion engine
JPS60212648A (en) Learning controller for idle revolution speed of internal-combustion engine
JP3067489B2 (en) Fuel supply control device for internal combustion engine
JPH0115690B2 (en)
JPH02153241A (en) Air-fuel ratio control device for engine
JP2700571B2 (en) Engine air-fuel ratio control device
JPS6146435A (en) Air fuel ratio controller
JPH01130032A (en) Fuel injection quantity controller for internal combustion engine
JPH02275055A (en) Exhaust gas recirculation controller for engine
JPS58220932A (en) Fuel injection device of internal-combustion engine
JPS59136541A (en) Idling-speed controlling method
JPS61190140A (en) Learning control device of air-fuel ratio of internal-combustion engine
JPS61190138A (en) Learning control device of internal-combustion engine
JPH01271638A (en) Device for controlling idling speed of engine
JPH0710444U (en) Air-fuel ratio controller for internal combustion engine