JPS6058692A - Manufacture of semiconductor laser element - Google Patents

Manufacture of semiconductor laser element

Info

Publication number
JPS6058692A
JPS6058692A JP16778283A JP16778283A JPS6058692A JP S6058692 A JPS6058692 A JP S6058692A JP 16778283 A JP16778283 A JP 16778283A JP 16778283 A JP16778283 A JP 16778283A JP S6058692 A JPS6058692 A JP S6058692A
Authority
JP
Japan
Prior art keywords
layer
etched
cleavage
buffer layer
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16778283A
Other languages
Japanese (ja)
Inventor
Hiroo Yonezu
米津 宏雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP16778283A priority Critical patent/JPS6058692A/en
Publication of JPS6058692A publication Critical patent/JPS6058692A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • H01S5/0281Coatings made of semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0201Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To simplify the structure of the titled element by the formation of a high resistant semiconductor crystal thin film having a larger band gap than the laser energy on a cleavage surface by a method wherein a buffer layer is selectively side-etched, resulting in the cleavage of a double hetero junction layer in the neighborhood of the etched side wall. CONSTITUTION:The n-Al0.6Ga0.4As buffer layer 2, an n-Al0.4Ga0.6As clad layer 3, a P-Al0.1Ga0.9As active layer 4, a P-Al0.4Ga0.6As clad layer 5, and a P-GaAs cap layer 6 are successively formed on a GaAs substrate 1. These layers 3-6 are applied to a stripe structure, and a groove 7 of a fixed width is formed so as to reach the layer 2 by etching in the direction of (110) perpendicular to the stripe direction. Next, undercut ends 8 are etched, and the cleavage surfaces 10 are formed by means of cleavage pressure sections 9. The semiconductor laser device is simplified in structure and easily manufactured by the formation of a high resistant Al0.4Ga0.6Al thin film 11 on this cleavage surface 10.

Description

【発明の詳細な説明】 本発明は半導体レーザの製造方法に関するものである。[Detailed description of the invention] The present invention relates to a method for manufacturing a semiconductor laser.

半導体レーザの光出力を制限する最大の要因は、光出力
密度が高くなる事によって、反射面近傍が溶融・破壊す
る光学損傷である。活性層に平行な方向の横モードが基
本モードに制御されたAlGaAsレーザでは、20〜
30mWが光学損傷の典型的な臨界光出力である。この
光学損傷は、反射面近傍をレーザ光に対して透明な結晶
材料で構成する事によって、抑制される以後、この種の
構造を有するレーザをウィンドウ型レーザと呼ぶことに
する。
The biggest factor limiting the optical output of a semiconductor laser is optical damage caused by melting and destruction of the vicinity of the reflecting surface due to the increased optical output density. In an AlGaAs laser in which the transverse mode in the direction parallel to the active layer is controlled to be the fundamental mode, 20~
30 mW is a typical critical light power for optical damage. This optical damage can be suppressed by configuring the vicinity of the reflecting surface with a crystal material that is transparent to the laser beam, and hence a laser having this type of structure will be referred to as a window type laser.

しかるに、これを実現する具体的な手段はこれ迄極めて
少く、また、特性及び生産性の両面に於いて、極めて不
十分なものであった。例えば、不純物濃度及び導電型差
によって形成したウィンドウ型レーザでは、透明領域に
於いて活性層に平行な方向の横モード制御機構がないた
めに、非点収差が発生する。また、他のウィンドウ型レ
ーザでは、構造が複雑でつくシにくいという大きな難点
があった。
However, until now there have been very few concrete means for achieving this, and they have been extremely inadequate in terms of both characteristics and productivity. For example, in a window type laser formed by a difference in impurity concentration and conductivity type, astigmatism occurs because there is no transverse mode control mechanism in the direction parallel to the active layer in the transparent region. In addition, other window-type lasers have a complicated structure and are difficult to attach.

本発明の目的はこのような難点を一挙に取シ除いた半導
体レーザ素子の製造方法を提供する事にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor laser device that eliminates all of the above-mentioned difficulties.

本発明によれば選択的にエツチングされるバッファ一層
を基板とダブルへテロ接合層間に含み、このダブルへテ
ロ接合層をストライプ方向と直角方向に溝状に少くとも
バッファ一層に到達する迄エツチングし、その後、バッ
ファ一層を選択的に側面エツチングした後に、ダブルへ
テロ接合層がエツチング側壁近傍で5ツ開され、との労
開面にレーザ光の光子エネルギーよシバンドギャップの
大きな高抵抗半導体結晶薄膜がエピタキシャル成長され
、且つ、ダブルへテロ接合層及びバッファ一層がエツチ
ング除去された溝部の基板結晶を分離切断してつくられ
た結晶片構造を有する事を特徴とする高出力半導体レー
ザ素子の製造方法が得られる。
According to the present invention, a selectively etched buffer layer is included between the substrate and the double heterojunction layer, and the double heterojunction layer is etched in a groove shape in a direction perpendicular to the stripe direction until at least the buffer layer is reached. Then, after selectively side-etching one buffer layer, a double heterojunction layer is opened in the vicinity of the etched sidewall, and a high-resistance semiconductor crystal with a large band gap corresponding to the photon energy of the laser beam is formed on the opening plane of the double heterojunction layer. A method for manufacturing a high-output semiconductor laser device, characterized in that it has a crystal piece structure created by separating and cutting a substrate crystal in a groove portion in which a thin film is epitaxially grown and a double heterojunction layer and a buffer layer have been etched away. is obtained.

本発明の原理は、反射面全形成するための伸開は結晶の
厚さが薄い程容易にできる事、及び半絶縁性の高抵抗の
高バンドギャップ薄膜を気相成長技術によって容易に被
着できる事、更には活性層及びこれに隣接しない領域を
スクライプ法によって切断する事によシ、活性層近傍に
結晶欠陥を導入しないようにする事ができるという事実
に基づいている。これらをたくみに組み合わせる事によ
って、本発明の意図した非点収差がなく、且つ生産性の
よいウィンドウ型の高出力半導体レーザを実現する事が
できる。
The principle of the present invention is that the thinner the crystal, the easier it is to expand to form the entire reflective surface, and that a semi-insulating, high-resistance, high-bandgap thin film can be easily deposited using vapor phase growth technology. This is based on the fact that crystal defects can be prevented from being introduced in the vicinity of the active layer by cutting the active layer and regions not adjacent thereto by a scribing method. By skillfully combining these elements, it is possible to realize a window-type high-power semiconductor laser which is free from astigmatism and has good productivity as intended by the present invention.

次に本発明の実施例について第1図(a)〜(g) を
参照しながら説明する。まず、第1図(a) K示すよ
うにn −G a A S基1上に、厚さ5/jmのn
−Al0.6 G a 0.4 A sバッファ一層2
が通常の液相成長法で設けられ、その上に活性層に平行
な方向の横モードを制御する各種のストライプ構造を含
んだダブルへテロ接合層が設けられる。本発明は全ての
スト2イブ構造に適用できるため、図中では単に、n 
−A I 0.4 G a 0.6 A sクラット層
3(厚さ2μm)、P−AI 0.lGa0.9As活
性層4(厚さo、1μm)、P−A I 0.4 G 
a O,6A sクラッド層5(厚さ1.5/Jm)、
PI −G a A sキャップ層6(厚さ1μm)が
設けられているとしておく。次いで第1図(b)に示す
ように、ストライプ方向と直角(<110)方向)に巾
50μmの溝7を化学エツチング法(硫酸:過酸化水素
水:水等)又はイオンエツチング法等で少くともバッフ
ァ一層2に到達するように形成する。次に第1図(C)
に示すように、Al混晶比の高い層のみをエツチングす
る弗酸等で、n −A I 0.6 G a O,4A
sバツフア一層3のみを巾50μm程度エツチング(ア
ンダーカット、サイドエッチ)する。アンダーカットさ
れた端部8の近傍9に結晶表面よシカをかければ、バッ
ファ一層以上の層は薄いために容易に伸開され、半導体
レーザの反射面となる弁開面10が形成される(第1図
(d))。次いで、第1図(e)に示すようにMOCV
D法によシ、厚さ0.5μmの7yドープAI0.4G
a0.6As薄膜11をエピタキシャル成長させる。こ
の際、装置中の酸素や水分がとル込まれて薄膜]lは半
?3縁性の高抵抗層となり、ダブルへテロ接合の電気的
シ目−トを回避することができる。次に第1図(f)に
示すように電極12及び131cストライプ構造に応じ
て必要な部分に設けた後、巾約150μmと広くなった
溝14を通してスクライプ法またはダイシング法によっ
てn−GaAg基板1を切断する。
Next, embodiments of the present invention will be described with reference to FIGS. 1(a) to 1(g). First, as shown in FIG. 1(a), a layer of n with a thickness of 5/jm is placed on the
-Al0.6 Ga 0.4 A s buffer 1 layer 2
is formed by a conventional liquid phase growth method, and a double heterojunction layer containing various stripe structures for controlling the transverse mode in the direction parallel to the active layer is formed thereon. Since the present invention is applicable to all stave structures, in the figure, n
-A I 0.4 Ga 0.6 A s Crut layer 3 (thickness 2 μm), P-AI 0. lGa0.9As active layer 4 (thickness o, 1 μm), P-A I 0.4 G
a O,6A s cladding layer 5 (thickness 1.5/Jm),
It is assumed that a PI-GaAs cap layer 6 (1 μm thick) is provided. Next, as shown in FIG. 1(b), grooves 7 with a width of 50 μm are formed in a direction perpendicular to the stripe direction (<110 direction) using a chemical etching method (sulfuric acid: hydrogen peroxide: water, etc.) or an ion etching method. Both are formed so as to reach buffer layer 2. Next, Figure 1 (C)
As shown in Figure 2, n-A I 0.6 Ga O, 4A is etched using hydrofluoric acid, etc., which etches only the layer with a high Al mixed crystal ratio.
Only the S buffer layer 3 is etched (undercut, side etched) to a width of about 50 μm. If a crystal surface is applied to the vicinity 9 of the undercut end 8, the buffer layer or more will be easily expanded because it is thin, and a valve opening surface 10 will be formed, which will serve as a reflection surface for the semiconductor laser. Figure 1(d)). Next, as shown in FIG. 1(e), MOCV
7y-doped AI0.4G with a thickness of 0.5 μm by D method
An a0.6As thin film 11 is grown epitaxially. At this time, the oxygen and moisture in the device are dissolved into a thin film] l is half? A three-edge high-resistance layer is formed, and the electrical seams of a double heterojunction can be avoided. Next, as shown in FIG. 1(f), after providing the electrodes 12 and 131c in necessary parts according to the striped structure, the n-GaAg substrate cut.

できたバーのストライプ間を分離切断すれば、第1図(
g)のレーザチップができ上がる。
If the stripes of the resulting bar are separated and cut, the result shown in Figure 1 (
g) The laser chip is completed.

このようにすれば、レーザ光の出射部分15は、結晶学
的につながシ且つ、レーザ光にとって透明な高バンドギ
ャップ薄膜11によって−J?\われるから、光学枦傷
を木質的に回避でき、通常の半導体レーザに比べて5〜
lO倍の高光出力密度動作が可能になる。また、高バン
ドギャップ層が薄いから、非点収差も生ぜず1反射伊失
も少ない。更に、結晶の切断分離が基板に対してのみ行
われるから、発振領域への結晶欠陥の導入が抑えられ。
In this way, the laser beam emitting portion 15 can be -J? \Since optical damage can be avoided, it is possible to avoid optical damage, and it is 5 ~
It becomes possible to operate at a high optical output density 10 times higher. Furthermore, since the high bandgap layer is thin, astigmatism does not occur and there are fewer missed reflections. Furthermore, since the crystal is cut and separated only on the substrate, introduction of crystal defects into the oscillation region is suppressed.

信頼性が高まる。勿論、本発明は、従来の反射面保護膜
の被着と同様の手法が用いられるから、生産性は極めて
高い。また、ストライプに平行な方向についても上記と
同様の手法を用いればダブルへテロ接合のrn接合は完
全に高バンドギャノプの高抵抗層で覆われるから、外気
の影響を極めて受けにくくなり、耐環境性的な保藤効果
も高まる。
Increased reliability. Of course, since the present invention uses a method similar to that used for depositing a conventional reflective surface protective film, productivity is extremely high. In addition, if the same method as above is used in the direction parallel to the stripes, the rn junction of the double heterojunction will be completely covered with a high-band ganop high-resistance layer, making it extremely difficult to be affected by the outside air and improving environmental resistance. The Hoto effect will also increase.

尚、本発明の効果は上記の実施例には限らない。Note that the effects of the present invention are not limited to the above embodiments.

全てのストライプ構造に本発明は適用できる。また、バ
ッファ一層やダブルへテロ接合のAl混晶比、あるいは
製法手順は上記に限らない。1μmμm長波長0.7p
m帯波長のI n G a A s P / 1nPレ
ーザについても、InGaAsPとInPに対する選択
エツチングを利用してバッファ一層のアンダーカラトラ
する事ができるため、上記実施例と同様の製造方法並び
にチップ構造をうる事ができる。尚、高抵抗の高バンド
ギャップ薄層はMBE(分子 エピタキシー)法等によ
ってもつくる事ができる。
The present invention is applicable to all striped structures. Further, the Al mixed crystal ratio of the buffer single layer or double heterojunction, or the manufacturing procedure is not limited to the above. 1μmμm long wavelength 0.7p
For InGaAsP/1nP lasers with m-band wavelengths, it is possible to undercut the buffer layer by using selective etching for InGaAsP and InP, so the same manufacturing method and chip structure as in the above embodiments can be used. can be obtained. Incidentally, a high-resistance, high-bandgap thin layer can also be produced by the MBE (molecular epitaxy) method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(Wは本発明の基本的実施例を製法層に
説明するだめの要所面図を示す。 1・・−−−−n−GaAs基板、 2 ・−−−−−
n −A I 0.6GaO,4A sバッファ一層、
3−−−−n −A I 0.4 G ao、 6 A
 sクラッド層、 4− P−A I 0. I G 
aO,9As活性層、5−・= P A 10.4 G
 a O,6A sクラッド層、6…・・・p−GaA
sキャップ層、7°0・・・溝、8・・・・・・アンダ
ーカット端部、9−・・・・・劣開用加圧部分、10・
・・・・・弁開面、11・・・・・・高抵抗AIO,4
G a 0.6 A s薄膜、12−−−−−・P−電
極、13・・・・・・n−電極、14・・・・・・溝、
15・・・・・・レーザ光出射部分。 第1図
FIGS. 1(a) to 1(W) show important cross-sectional views for explaining basic embodiments of the present invention in terms of manufacturing method layers. 1.---n-GaAs substrate, 2.---- −
n-AI 0.6GaO, 4A s buffer layer,
3---n-AI 0.4 Gao, 6 A
s cladding layer, 4-P-A I 0. IG
aO, 9As active layer, 5-.=P A 10.4 G
a O,6A s cladding layer, 6...p-GaA
s cap layer, 7°0...groove, 8... undercut end, 9-... pressure part for inferior opening, 10.
... Valve opening surface, 11 ... High resistance AIO, 4
Ga 0.6 A s thin film, 12------P-electrode, 13...n-electrode, 14...groove,
15... Laser light emitting part. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 選択的にエツチングされるバッファ一層を基板とダブル
へテロ接合層間に含み、該ダブルへテロ接合層をストラ
イプ方向と直角方向に溝状に少くとも該バッファ一層に
到達する迄エツチングする工程と、該バッファ一層を選
択的に側面エツチングした後に、該ダブルへテロ接合層
を該エツチング側壁近傍で弁開する工程と、該弁開面に
レーザ光の光子エネルギーよシハンドギャップの大きな
高抵抗半導体結晶薄膜を形成する工程と、前記溝部の基
板結晶を分離切断する工程とを有することを特徴とする
半導体レーザ素子の製造方法。
a selectively etched buffer layer between the substrate and the double heterojunction layer, etching the double heterojunction layer in the form of a groove in a direction perpendicular to the stripe direction until at least the buffer layer is reached; After selectively side-etching one buffer layer, opening the double heterojunction layer near the etched sidewall, and applying a high-resistance semiconductor crystal thin film with a large side gap to the photon energy of the laser beam on the opening surface. 1. A method for manufacturing a semiconductor laser device, comprising the steps of: forming a substrate crystal; and separating and cutting a substrate crystal in the groove portion.
JP16778283A 1983-09-12 1983-09-12 Manufacture of semiconductor laser element Pending JPS6058692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16778283A JPS6058692A (en) 1983-09-12 1983-09-12 Manufacture of semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16778283A JPS6058692A (en) 1983-09-12 1983-09-12 Manufacture of semiconductor laser element

Publications (1)

Publication Number Publication Date
JPS6058692A true JPS6058692A (en) 1985-04-04

Family

ID=15856007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16778283A Pending JPS6058692A (en) 1983-09-12 1983-09-12 Manufacture of semiconductor laser element

Country Status (1)

Country Link
JP (1) JPS6058692A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62291194A (en) * 1986-06-11 1987-12-17 Nec Corp Manufacture of semiconductor laser element
JPH01227485A (en) * 1988-03-07 1989-09-11 Mitsubishi Electric Corp Semiconductor laser device
JPH0330390A (en) * 1989-06-27 1991-02-08 Nec Corp Formation of semiconductor laser resonator end face protective layer
JPH03106090A (en) * 1989-09-20 1991-05-02 Nec Corp Semiconductor laser element
EP0469900A2 (en) * 1990-08-01 1992-02-05 Sharp Kabushiki Kaisha A method for the production of a semiconductor laser device
WO2016131912A1 (en) * 2015-02-18 2016-08-25 Osram Opto Semiconductors Gmbh Method for producing an electronic component

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62291194A (en) * 1986-06-11 1987-12-17 Nec Corp Manufacture of semiconductor laser element
JPH01227485A (en) * 1988-03-07 1989-09-11 Mitsubishi Electric Corp Semiconductor laser device
JPH0330390A (en) * 1989-06-27 1991-02-08 Nec Corp Formation of semiconductor laser resonator end face protective layer
JPH03106090A (en) * 1989-09-20 1991-05-02 Nec Corp Semiconductor laser element
EP0469900A2 (en) * 1990-08-01 1992-02-05 Sharp Kabushiki Kaisha A method for the production of a semiconductor laser device
WO2016131912A1 (en) * 2015-02-18 2016-08-25 Osram Opto Semiconductors Gmbh Method for producing an electronic component
CN107251345A (en) * 2015-02-18 2017-10-13 奥斯兰姆奥普托半导体有限责任公司 Method for manufacturing electronic building brick
US10290997B2 (en) 2015-02-18 2019-05-14 Osram Opto Semiconductors Gmbh Method of producing an electronic component
CN107251345B (en) * 2015-02-18 2020-07-14 奥斯兰姆奥普托半导体有限责任公司 Method for producing an electronic component

Similar Documents

Publication Publication Date Title
JP3510305B2 (en) Semiconductor laser manufacturing method and semiconductor laser
EP0311445A2 (en) A semiconductor laser device and a method for the production of the same
US4675710A (en) Light emitting semiconductor device
US6088378A (en) Ring cavity type surface emitting semiconductor laser and fabrication method thereof
EP1248335B1 (en) Nitride semiconductor laser device and method for manufacturing the same
JPS6343908B2 (en)
US5786234A (en) Method of fabricating semiconductor laser
JPS6058692A (en) Manufacture of semiconductor laser element
JP2863677B2 (en) Semiconductor laser and method of manufacturing the same
JP2002141611A (en) Semiconductor light emitting element and its fabricating method
US5173447A (en) Method for producing strained quantum well semiconductor laser elements
JPS59227177A (en) Semiconductor laser
JP4014375B2 (en) Semiconductor laser element structure and manufacturing method
JPS59145590A (en) Semiconductor laser device
CA1154852A (en) Semiconductor laser
JP3689733B2 (en) Manufacturing method of semiconductor device
JPH07312462A (en) Surface laser beam emitting diode and manufacturing method thereof
JPS6234473Y2 (en)
JP2973215B2 (en) Semiconductor laser device
JP2806695B2 (en) Semiconductor laser device
JPS59149078A (en) Semiconductor laser
JPH0237789A (en) Multiwavelength array laser
JPS6017977A (en) Semiconductor laser diode
JPH03208390A (en) Semiconductor laser element and manufacture thereof
JPH0758401A (en) Manufacture of surface emitting laser