JPS6058202A - Structure of condensing part in distillation apparatus - Google Patents

Structure of condensing part in distillation apparatus

Info

Publication number
JPS6058202A
JPS6058202A JP58166917A JP16691783A JPS6058202A JP S6058202 A JPS6058202 A JP S6058202A JP 58166917 A JP58166917 A JP 58166917A JP 16691783 A JP16691783 A JP 16691783A JP S6058202 A JPS6058202 A JP S6058202A
Authority
JP
Japan
Prior art keywords
condensation
condensing
water
mirror surface
efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58166917A
Other languages
Japanese (ja)
Other versions
JPS6330043B2 (en
Inventor
Kenji Tsumura
津村 健児
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ORIENTAL METAL SEIZO KK
Original Assignee
ORIENTAL METAL SEIZO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ORIENTAL METAL SEIZO KK filed Critical ORIENTAL METAL SEIZO KK
Priority to JP58166917A priority Critical patent/JPS6058202A/en
Publication of JPS6058202A publication Critical patent/JPS6058202A/en
Publication of JPS6330043B2 publication Critical patent/JPS6330043B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/142Solar thermal; Photovoltaics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PURPOSE:To improve heat conductive efficiency by enhancing condensation efficiency of an apparatus, by forming a thin transparent ceramics film layer for condensing steam excellent in wettability to the mirror surface side of the corrosion resistant metal foil of a condensing part. CONSTITUTION:In a distillation apparatus used in desalting seawater, a thin transparent ceramics film 1 having high surface activity to water is formed to the side of the mirror surface of the metal vapor deposition layer 3 provided to a corrosion resistance metal foil or substrate forming a condensing part to form a condensing surface 2. A wick 5 is adhered to the surface opposite to the mirror surface 4 through a plastic sheet 7 and an adhesive layer 6 to constitute an evaporation part impregnated with a liquid to be treated. By this condensing surface 2, condensed water resulting from dew condensation is directly formed into a thin film and the conductivity of condensation latent heat becomes easy and, therefore, the condensation efficiency of the apparatus can be enhanced.

Description

【発明の詳細な説明】 関する。さらに詳しくは、海水などの淡水化などに用い
る蒸留装置における凝縮効率が高められた凝縮部の構造
に関する。
[Detailed Description of the Invention] Related. More specifically, the present invention relates to a structure of a condensing section with improved condensing efficiency in a distillation apparatus used for desalination of seawater or the like.

海水の淡水化装置などにおける凝縮面には、(1)耐蝕
性にすぐれていること、(2)水蒸気の凝縮という良好
な熱伝導性を有していること、(8)蒸気から凝縮しや
すく、結露しやすいこと、(4)潜熱による熱の運搬以
外の伝達、たとえば空気の対流または熱線輻射による伝
達などを抑制して蒸気潜熱のみによる伝達を行なうこと
が造水効率を高めるので熱線輻射を防ぐために凝縮部を
反射性能の大きい鏡面にすること、および(5)空気な
どによる対熱伝達を防ぐため、空気分圧の少い蒸気分圧
の大なる沸点近くの高温において稼動させることが要求
される。
The condensing surface of seawater desalination equipment, etc. has (1) excellent corrosion resistance, (2) good thermal conductivity for condensing water vapor, and (8) easy condensation from steam. (4) Suppressing heat transfer other than latent heat transfer, such as air convection or heat ray radiation, and transmitting only steam latent heat increases water production efficiency, so heat ray radiation is (5) In order to prevent heat transfer by air, etc., it is necessary to operate at a high temperature close to the boiling point where the partial pressure of steam is high and the partial pressure of air is low. be done.

従来はそうした凝縮面を鏡面を有するステンレス鋼、ア
ルミニウムなどで形成しており、それらは前,記(1)
および(2)の性質を満している。しかし、(S)〜(
6)の要請については満足できるものではない。
Conventionally, such condensation surfaces have been made of mirror-finished stainless steel, aluminum, etc.
and satisfies property (2). However, (S)~(
Request 6) cannot be satisfied.

本発明者はその原因を鋭意探求したところ、結露した凝
縮水が球状に近い水滴を凝縮面上に形成していることが
最大の原因であることをつきとめ、しかも球状に近い水
滴が凝縮面に付着きな水蒸気圧が凝縮面付近の水蒸気圧
を高め、凝縮面の温度が過冷現象を生じ、したがって凝
縮効率を低下させていること、およびかかる状態のとき
に生じた水滴は凝縮面よりも温度が低くなっており、し
かも水の熱伝導率がわるいため、速やかに凝縮潜熱を凝
縮面に伝えることができず、その結果水滴が付着してい
る部分の凝縮効率および熱伝導効率を低下させているこ
とを見出し、そうした水滴を形成させずしかも前記(1
)〜(5)の性質を具備した凝縮面を有する凝縮部を開
発するべく鋭意研究を重ねた結果、本発明を完成した。
The inventor of the present invention earnestly investigated the cause and found that the biggest cause was that the condensed water formed nearly spherical water droplets on the condensation surface. The large adhesion water vapor pressure increases the water vapor pressure near the condensing surface, and the temperature of the condensing surface causes a supercooling phenomenon, thus reducing the condensing efficiency, and the water droplets formed under such conditions are lower than the condensing surface. Because the temperature is low and the thermal conductivity of water is poor, the latent heat of condensation cannot be quickly transferred to the condensing surface, resulting in a decrease in the condensation efficiency and heat transfer efficiency of the area where water droplets are attached. They found that the formation of such water droplets was prevented and the above (1)
The present invention has been completed as a result of intensive research to develop a condensing section having a condensing surface having the properties of ) to (5).

すなわち本発明は、鏡面を有する耐蝕性金属箔または金
属蒸着フィルムの鏡面側に、水に対して表面活性の大な
る(以下、濡れ性にすぐれたという)水蒸気凝縮用透明
セラミックス薄膜層が設けられてなる水溶液蒸留装置の
凝縮部の構造に関する。
That is, in the present invention, a transparent ceramic thin film layer for water vapor condensation having high surface activity against water (hereinafter referred to as "excellent wettability") is provided on the mirror surface side of a corrosion-resistant metal foil or metal vapor deposited film having a mirror surface. This invention relates to the structure of the condensing section of an aqueous solution distillation apparatus.

本発明における金属箔または金属蒸着フィルムとしては
、鏡面を有し、耐蝕性でかつ熱伝導性が良好なものであ
ればとくに制限されない。
The metal foil or metal-deposited film in the present invention is not particularly limited as long as it has a mirror surface, corrosion resistance, and good thermal conductivity.

それらの呉体例としては、たとえばアルミ箔、ステンレ
ス箔、±=±=塘hヂタン箔などの金属箔やアルミニウ
ム、銀などが蒸着されたフィルム、たとえばポリエステ
ルフィルム、ポリアクリル系フィルム、ポリフッ化ビニ
リデンなどのフッ素系フィルムなどの金属蒸着フィルム
があげられる。
Examples of these materials include aluminum foil, stainless steel foil, metal foil such as ±=±=Tangh titanium foil, films deposited with aluminum, silver, etc., such as polyester film, polyacrylic film, polyvinylidene fluoride, etc. Examples include metal-deposited films such as fluorine-based films.

本発明における凝縮部は前記のごとく、金属箔または金
属蒸着フィルムを基体とし、その鏡面側に濡れ性にすぐ
れた水蒸気凝縮用透明セラミックス薄膜層が設けられて
構成されている。
As described above, the condensation section in the present invention is constructed by using a metal foil or a metal-deposited film as a base, and having a transparent ceramic thin film layer for water vapor condensation with excellent wettability provided on the mirror surface side of the base.

かかる水に対して濡れ性にすぐれた水蒸気凝縮用透明セ
ラミックス薄膜層は公知の無機質塗料、たとえばアルカ
リ金ハシリケード系やコロイダルシリカ系、酸性金属リ
ン酸塩系、シリコーン系、チタネート糸などの無機質塗
料により形成されうる。これらの無機質塗料は、比較的
低温(室温〜15000)での乾燥や焼成により、耐熱
性、耐蝕性、耐熱衝撃性、耐水性、弾tt1可撓性、耐
摩耗性にすぐれたセラミックス薄膜を形成しうるもので
あり、そのような性質を利用して製鋼業界における高炉
の溶銑鍋のコーティングや、非鉄金属業界における金型
の内面コーティング、電力業界におけるタービンなどの
耐熱、耐摩耗、耐蝕用コーティングなどに用いられてい
るものである。
The transparent ceramic thin film layer for water vapor condensation, which has excellent wettability to water, can be formed by using known inorganic paints such as alkali gold halide, colloidal silica, acidic metal phosphate, silicone, and titanate threads. can be formed. These inorganic paints form ceramic thin films with excellent heat resistance, corrosion resistance, thermal shock resistance, water resistance, elasticity tt1 flexibility, and abrasion resistance by drying and firing at relatively low temperatures (room temperature to 15,000°C). These properties can be used to coat hot metal ladle in blast furnaces in the steel industry, inner surface coatings on molds in the non-ferrous metal industry, and heat-resistant, wear-resistant, and corrosion-resistant coatings for turbines in the electric power industry. It is used in

本発明におけるセラミックス薄膜層は、そうした性質に
加えて濡れ性にすぐれ、かつアルミニウム、ステンレス
、鉄、ガラスなどに強固に結合する耐蝕性の透明なセラ
ミックス薄膜を形成する0該親水性セラミツクス薄膜は
、水との接触角が00に近づくに従って結露した水滴は
粒状となることなく凝縮水を生成するのである。
In addition to these properties, the ceramic thin film layer of the present invention has excellent wettability and forms a corrosion-resistant transparent ceramic thin film that firmly bonds to aluminum, stainless steel, iron, glass, etc. As the contact angle with water approaches 00, the condensed water droplets do not become particulate and form condensed water.

そのようなセラミックス薄膜を形成する無機質塗料とし
ては、たとえばナトリウム、カリウム、リチウムなどの
アルカリ金属を用いたシリケート重合体系塗料であるセ
タライト(四国化研工業■製)、バイタル・マーク(関
西ペイント−ミンククリアー(大阪イVIA化学工業■
製)、アロンセラミック(東亜合成化学工業(−製)、
スミ七ラムP(住友化学工業(IIりなどのセラミック
ス塗料などがあげられる。
Examples of inorganic paints that form such ceramic thin films include Cetalite (manufactured by Shikoku Kaken Kogyo), which is a silicate polymer paint using alkali metals such as sodium, potassium, and lithium, and Vital Mark (Kansai Paint - Mink). Clear (Osaka I VIA Chemical Industry ■
manufactured by Toagosei Chemical Industry Co., Ltd.), Aron Ceramic (manufactured by Toagosei Chemical Industry Co., Ltd.),
Ceramic paints such as Sumichilam P (Sumitomo Chemical Industries (II)) are examples.

一般に無機質塗料により形成されるセラミックス薄膜が
濡れ性にすぐれていることは知られておらず、したがっ
てその性質を利用する用途は開発されていない。ところ
で本発明が対象とする水溶液の蒸留装置の凝縮部では、
前記のごとく凝縮面に水滴が付着すると蒸留効率が低ト
する。とくに水滴の付着状態が粒状に近くなるほど凝縮
面に滞留する時間が長くなり、しかも水の熱伝導率がわ
るいので速やかに凝縮潜熱を伝えることができず、さら
に水滴が付着している付近の水蒸気圧を高めるため凝縮
効率が低下する。前記のような無機質塗料から形成され
る濡れ性にすぐれたセラミックス薄膜層により蒸留装置
の凝縮面を形成すると、セラミックス薄Hmを形成しな
いばあいと比較して、結露した六礒劇鑓索がブーブー゛
飢L−1目テ■の14分にtrり一友犠り朽禍イΔLか
Gモえやすくなるため、蒸留装置の凝縮効率を向上させ
ることができ、したがって、凝縮面の裏側の面に存在す
る蒸発面への熱伝導性が良好になり、蒸留装置全体とし
ての効率も向上させ・ることができる。
Generally, it is not known that ceramic thin films formed from inorganic paints have excellent wettability, and therefore no applications utilizing this property have been developed. By the way, in the condensation section of the aqueous solution distillation apparatus to which the present invention is directed,
As mentioned above, when water droplets adhere to the condensing surface, the distillation efficiency decreases. In particular, the closer the adhesion of water droplets is to granules, the longer they stay on the condensing surface.Moreover, the thermal conductivity of water is poor, so the latent heat of condensation cannot be transferred quickly, and the water vapor in the vicinity of the adhering water droplets increases. Condensation efficiency decreases due to increased pressure. When the condensation surface of the distillation device is formed from a ceramic thin film layer with excellent wettability formed from an inorganic paint as described above, condensed condensation is less likely to occur than when the ceramic thin film layer is not formed. At 14 minutes after starvation L-1, the condensation efficiency of the distillation device can be improved, and the surface on the back side of the condensation surface can be improved. Thermal conductivity to the evaporation surface present in the evaporation surface is improved, and the efficiency of the distillation apparatus as a whole can also be improved.

セラミックス薄膜層を形成する方法としては通常無機質
塗料において用いられている方法が採用される。たとえ
ば無m質塗料をスプレー塗布、コーター塗布などにより
基体の鏡面に塗布し、室温〜150°C程度で乾燥焼成
すればよい。乾燥焼成温度や時間は基体の材質などによ
って異なるが、一般に高い温度で長時間乾燥するほど耐
水性が向上する。
As a method for forming the ceramic thin film layer, a method normally used for inorganic paints is employed. For example, an amorphous paint may be applied to the mirror surface of the substrate by spray coating, coater coating, etc., and dried and baked at room temperature to about 150°C. Although the drying firing temperature and time vary depending on the material of the substrate, in general, the higher the temperature and the longer the drying time, the better the water resistance.

つぎに不発明の蒸留装置の凝縮部の構造を図面に基づい
て説明する。
Next, the structure of the condensing section of the inventive distillation apparatus will be explained based on the drawings.

第1図〜第5図はそれぞれ本発明の構造を多段(多重)
蒸留装置の蒸発凝縮セルを用いるばあいの実施態様の部
分断面図である。
Figures 1 to 5 each show a multi-stage (multiple) structure of the present invention.
1 is a partial cross-sectional view of an embodiment of a distillation apparatus using an evaporation condensation cell; FIG.

本発明における凝縮部は、たとえば第2図に示すように
金属蒸着層(8)が耐蝕性プラスチックフィルム(8)
上に形成された基体の金属蒸着N(8)の鏡面(4)側
に形成された透明セラミックス薄膜層(1)とから構成
されており、セラミックス薄膜層(1) ノ面(2)が
凝縮面を形成している。プラスチックフィルム(8)の
鏡面と反対の面には、接着剤層(6)を介して、強度を
付与するための繊維入り耐蝕プラスチックシート(7)
、さらに接着剤層(θ)を介してウィック(5)が貼着
され、被処理液を含浸した蒸発部を構成している。なお
第1図に示すように、繊維入り耐蝕プラスチックシート
(7)上に直接金属蒸着層(8)を形成することができ
るようなばあいにはプラスチックフィルム(8)を省略
してもよい。また寸法安定性を向上させるために、たと
えば第3図または第4図に示すように金属蒸着層のかわ
りに金属箔(g)、たとえばアルミニウム箔、ステンレ
ス箔などを用い、鏡面(4)側にセラミックス薄膜層(
りを形成させ、本発明における凝縮部を形成させてもよ
い。鏡面(4)の反対側には接着剤層(6)または融着
面(1(1)を介して耐蝕性プラスチックフィルム(8
)、さらに接着剤層(θ)を介してウィック(5)が貼
着されている。
In the condensation part in the present invention, for example, as shown in FIG.
It consists of a transparent ceramic thin film layer (1) formed on the mirror surface (4) side of the metal vapor deposited N (8) of the substrate formed on the substrate, and the ceramic thin film layer (1) and the surface (2) are condensed. forming a surface. On the surface opposite to the mirror surface of the plastic film (8), a corrosion-resistant plastic sheet (7) containing fibers for imparting strength is applied via an adhesive layer (6).
A wick (5) is further attached via an adhesive layer (θ) to form an evaporation section impregnated with the liquid to be treated. As shown in FIG. 1, the plastic film (8) may be omitted if the metal vapor deposition layer (8) can be directly formed on the fiber-containing corrosion-resistant plastic sheet (7). In addition, in order to improve dimensional stability, for example, as shown in Fig. 3 or 4, a metal foil (g), such as aluminum foil or stainless steel foil, is used instead of the metal vapor deposition layer, and the mirror surface (4) side is Ceramic thin film layer (
It is also possible to form a condensation section in the present invention. A corrosion-resistant plastic film (8) is placed on the opposite side of the mirror surface (4) via an adhesive layer (6) or a fusion surface (1 (1)
), and a wick (5) is further attached via an adhesive layer (θ).

なお金属箔(9)が充分な耐蝕性と強度を有するばあい
には、第5図に示すように耐蝕性プラスチックフィルム
(8)を用いずに直接ウィック(5)に接着剤層(0)
を介して貼着してもよい。
If the metal foil (9) has sufficient corrosion resistance and strength, the adhesive layer (0) can be applied directly to the wick (5) without using the corrosion-resistant plastic film (8), as shown in Figure 5.
It may also be attached via.

本発明における凝縮部を構成する金属箔または金属蒸着
フィルムの厚さは強度や寸法安定性、熱伝導効率の点か
ら、金属箔のばあいは0.05〜0.5m’m、好まし
くは0.05〜0.1mm 、金I/j4蒸着フィルム
のばあいは0.01〜O,jmm、好ましくは0.03
〜0.1mmである。
In terms of strength, dimensional stability, and heat conduction efficiency, the thickness of the metal foil or metal vapor-deposited film constituting the condensation part in the present invention is 0.05 to 0.5 m'm, preferably 0.05 m'm in the case of metal foil. .05 to 0.1 mm, in the case of gold I/j4 vapor deposited film, 0.01 to O,jmm, preferably 0.03
~0.1 mm.

また蒸発部を構成するフィルムまたはシートおよびウィ
ックの厚さはそれぞれ0.1〜1.0mmおよび0.2
〜5.Qmmが好ましい。
In addition, the thickness of the film or sheet and wick constituting the evaporation section are 0.1 to 1.0 mm and 0.2 mm, respectively.
~5. Qmm is preferred.

なお蒸発凝縮セルの寸法安定性を向上させるためには前
記のごとき金門箔を用いたり、耐蝕プラスチックシート
に繊維などの補強材を入れる以外にも、繊維製の布や紙
、カーボン繊維製の布や紙などの補強材を用いてもよい
In order to improve the dimensional stability of the evaporation condensation cell, in addition to using Kinmon foil as mentioned above or adding reinforcing materials such as fibers to the corrosion-resistant plastic sheet, it is possible to improve the dimensional stability of the evaporation condensation cell. A reinforcing material such as paper or paper may also be used.

かか7.宙怖紹樽のセルー−/−、L−テげ筑凡Mに云
ずセルを複数個間隔をあけて組合せると、第6図に示す
ような多重カーテン型太陽熱淡水化装置が作製される。
Or 7. When a plurality of cells are combined at intervals, a multi-curtain type solar desalination device as shown in FIG. 6 is fabricated.

この太陽熱淡水化装置では、断熱tfa造枠II)に取
付けられた透明な保護カバー(財)を通過した太陽光線
(HS)が縦方向に設置されている蒸発専用セル(ロ)
を加熱する。該太陽光線(aS)は、耐蝕断熱材に)中
に設けられた海水供給バイブ(P)をとおして海水供給
樋(ロ)からウィック(5)に供給されている海水を加
熱蒸発させる。発生した水蒸気は凝縮蒸発セルOa>に
到達し、凝縮部のセラミックス薄膜層(1)の表面で凝
縮し、基体に凝縮潜熱を伝える。セラミックス薄M A
M (1)上の凝縮水は凝縮と同時に極めて薄い膜状に
なって流下し、凝縮水槌α6)に集められる。一方、濃
縮された海水はウィックを降下し、下部タンク(18)
に集められ、オーバーフローバイブ09)から排出され
る。
In this solar desalination system, solar rays (HS) that have passed through a transparent protective cover installed on a heat-insulating TFA frame (II) are sent to evaporation cells (RO) installed vertically.
heat up. The sunlight (aS) heats and evaporates the seawater being supplied from the seawater supply gutter (b) to the wick (5) through the seawater supply vibrator (P) provided in the corrosion-resistant insulation material. The generated water vapor reaches the condensation evaporation cell Oa>, condenses on the surface of the ceramic thin film layer (1) of the condensation section, and transfers the latent heat of condensation to the substrate. Ceramic thin M A
The condensed water on M (1) flows down in the form of an extremely thin film as it condenses, and is collected in the condensed water hammer α6). Meanwhile, the concentrated seawater descends through the wick and enters the lower tank (18).
is collected and discharged from the overflow vibrator 09).

基体に伝えられた凝縮潜熱は接着剤に!1 (6)を介
して海水が流下しているウィック(5)を加熱し、水を
蒸発させ、つぎのセル0場の凝縮部と潜熱の授受を行な
う。この潜熱の授受が順次凝縮蒸発セル(+3)間で行
なわれ、最終的に放熱専用セルQ→の凝縮部に潜熱が伝
えられ、該セルθ→の裏面から放熱される。
The latent heat of condensation transferred to the base material is transferred to the adhesive! The wick (5) into which seawater is flowing down through the wick (5) is heated to evaporate the water and exchange latent heat with the condensation section of the next cell 0 field. This transfer of latent heat is sequentially carried out between the condensation and evaporation cells (+3), and finally the latent heat is transferred to the condensing section of the heat radiation only cell Q→, and is radiated from the back surface of the cell θ→.

各セル0厘)、θ3)、Q→曲にはセル同士の接触を避
けるために、撥水性七パレータαm全挿入するのが好ま
しい。該炭水性セパレータ0のはセル受兼撥水性セパレ
ータ吊下げ材によって吊下げられている。
In order to avoid contact between cells, it is preferable to insert all seven water-repellent pallets αm in each cell 0 厘), θ3), Q → song. The carbonaceous separator 0 is suspended by a water-repellent separator hanging material that also serves as a cell receiver.

このように太陽熱などを利用する蒸留装置では、熱源の
単位面積あたりのエネルギー濃度が少ないため、蒸発お
よび凝縮効率を高めることがもつとも重要であり、すぐ
れた凝縮効率と耐蝕性効果とを有する本発明の凝縮部の
構造はかかる装置に最適なものである。
In a distillation apparatus that uses solar heat, etc., the energy concentration per unit area of the heat source is low, so it is important to increase the evaporation and condensation efficiency, and the present invention has excellent condensation efficiency and corrosion resistance. The structure of the condensing section is optimal for such a device.

本発明の凝縮部の構造は、前記の太陽熱による海水の淡
水化装置に限らず、地熱や比較的低い温度の工場廃水、
発電所などで発生する温廃水などの熱源を利用したりす
ることができ、またブドウ酒や果実酒、その他醗酵酒な
どの蒸留(濃縮)装置などにも利用することができる。
The structure of the condensing section of the present invention is applicable not only to the desalination device using solar heat, but also to geothermal heat, industrial wastewater at a relatively low temperature,
It can be used as a heat source such as hot wastewater generated at power plants, etc., and can also be used in distillation (concentration) equipment for grape wine, fruit wine, and other fermented liquors.

つぎに第6図に示す海水の淡水化装置を用いて海水の淡
水化を行なった結果を示す。
Next, the results of seawater desalination using the seawater desalination apparatus shown in FIG. 6 will be shown.

第6図において凝縮蒸発セルθ3)として、厚さ0.1
5mrnのアルミ箔(1,5mX 1.Om )にU−
MJ:(jでJ9さ0.02mmの透明セラミックス層
を形成し、これに厚さ1.0mmのウィックが貼着され
たものを用いた。
In Fig. 6, the condensation evaporation cell θ3) has a thickness of 0.1
U- on 5mrn aluminum foil (1.5m x 1.0m)
MJ: (For J9, a 0.02 mm transparent ceramic layer was formed, and a 1.0 mm thick wick was attached to this.)

このセルを6個用いて淡水化装置を作製し、総海水供給
量を6 、01/b rとして淡水化を行なったところ
、6.61/hrで蒸留水かえられた。
A desalination apparatus was prepared using six of these cells, and desalination was carried out with a total seawater supply rate of 6.01/br, and distilled water was replaced at a rate of 6.61/hr.

比較のため凝縮部として厚さ0 、3mmのステンレス
板にJ%さLOmmのウィックを貼着されたものを用い
て同様の米作で淡水化を行なったところ、蒸留水量は2
.77/hrと少ないものであった。
For comparison, desalination was carried out in a similar rice cultivation using a stainless steel plate with a thickness of 0.3 mm and a wick of J% LO mm attached as a condensation part, and the amount of distilled water was 2.
.. It was as low as 77/hr.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜5図はそれぞれ本発明の凝縮部の構造を用いた凝
縮蒸発セルの実施態様の部分断面図、第6図は第5図に
示すセルを用いた太](湯熱を利用した海水の淡水化装
置の概略縦断面図である。 (図面の主要符号〕 (1):セラミックス薄膜層 (2) : M細面 (9):金属蒸着層 (4):鏡面 (5):ウイック (9):金属箔 03):凝縮蒸発セル 第1図 第2図
1 to 5 are partial cross-sectional views of embodiments of condensation and evaporation cells using the structure of the condensing section of the present invention, and FIG. This is a schematic vertical cross-sectional view of the desalination equipment. (Main symbols in the drawing) (1): Ceramic thin film layer (2): M narrow surface (9): Metal vapor deposited layer (4): Mirror surface (5): Wick (9) ): Metal foil 03): Condensation evaporation cell Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1 鏡面を有する耐蝕性金属箔または金属蒸着フィルム
の鏡面側に、水に対して表面活性の大なる水蒸気凝縮用
透明セラミックス薄膜層が設けられてなる水溶液の蒸留
装置の凝縮部の構造。
1. Structure of a condensing section of an aqueous solution distillation apparatus, in which a transparent ceramic thin film layer for water vapor condensation with high surface activity against water is provided on the mirror side of a corrosion-resistant metal foil or metal vapor deposited film having a mirror surface.
JP58166917A 1983-09-09 1983-09-09 Structure of condensing part in distillation apparatus Granted JPS6058202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58166917A JPS6058202A (en) 1983-09-09 1983-09-09 Structure of condensing part in distillation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58166917A JPS6058202A (en) 1983-09-09 1983-09-09 Structure of condensing part in distillation apparatus

Publications (2)

Publication Number Publication Date
JPS6058202A true JPS6058202A (en) 1985-04-04
JPS6330043B2 JPS6330043B2 (en) 1988-06-16

Family

ID=15840037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58166917A Granted JPS6058202A (en) 1983-09-09 1983-09-09 Structure of condensing part in distillation apparatus

Country Status (1)

Country Link
JP (1) JPS6058202A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064658A (en) * 1999-08-24 2001-03-13 Ishikawajima Harima Heavy Ind Co Ltd Evaporator
JP4757792B2 (en) * 2003-01-27 2011-08-24 バッテル メモリアル インスティチュート Method for separating fluid and apparatus capable of separating fluid
JP2018034144A (en) * 2016-05-18 2018-03-08 パナソニックIpマネジメント株式会社 Device, and its manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55127102A (en) * 1979-03-22 1980-10-01 Kenji Tsumura Heat diffusion type solar heat evaporation system and evaporator thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55127102A (en) * 1979-03-22 1980-10-01 Kenji Tsumura Heat diffusion type solar heat evaporation system and evaporator thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064658A (en) * 1999-08-24 2001-03-13 Ishikawajima Harima Heavy Ind Co Ltd Evaporator
JP4757792B2 (en) * 2003-01-27 2011-08-24 バッテル メモリアル インスティチュート Method for separating fluid and apparatus capable of separating fluid
JP2018034144A (en) * 2016-05-18 2018-03-08 パナソニックIpマネジメント株式会社 Device, and its manufacturing method

Also Published As

Publication number Publication date
JPS6330043B2 (en) 1988-06-16

Similar Documents

Publication Publication Date Title
Tu et al. A 3D‐structured sustainable solar‐driven steam generator using super‐black nylon flocking materials
Abdullah et al. Enhancing trays solar still performance using wick finned absorber, nano-enhanced PCM
Appadurai et al. Performance analysis of fin type solar still integrated with fin type mini solar pond
CA1088295A (en) Solar radiation absorbing material
US4329205A (en) Process for distilling water and distillation apparatus
US3215134A (en) Solar heat collector
US4579107A (en) Solar energy collector and method of making same
Madhukeshwara et al. An investigation on the performance characteristics of solar flat plate collector with different selective surface coatings.
JP2011513801A (en) Reflective goods
CN102016441A (en) A reflector element for a solar heat reflector and the method for producing the same
Ahmed Seasonal performance evaluation of solar stills connected to passive external condensers
Gao et al. Reversed vapor generation with Janus fabric evaporator and comprehensive thermal management for efficient interfacial solar distillation
JPS6058202A (en) Structure of condensing part in distillation apparatus
Wang et al. Radiative cooling layer boosting hydrophilic-hydrophobic patterned surface for efficient water harvesting
CN1775870A (en) Anticorrosive energy-saving coating based on infrared radiating body
CN112591834B (en) Large-scale high-efficiency solar seawater desalination device enhanced by radiation refrigeration
Shan et al. Improving solar water harvesting via airflow restructuring using 3D vapor generator
Aldoori et al. Performance investigation of a solar water distiller integrated with a parabolic collector using fuzzy technique
CN108840387A (en) It is a kind of based on graphene/porous carbon/carbon-copper composite material desalination plant and method
Phadatare et al. Effect of cover materials on heat and mass transfer coefficients in a plastic solar still
KR100632452B1 (en) Heating element for regenerative heat exchanger and method of manufacturing the heating element
JP2001336692A (en) Heat insulating structure
WO2020155903A1 (en) Solar seawater desalination device and seawater desalination method
JPS5864452A (en) Reflecting plate for solar heat collector
ES2361926T3 (en) HEATING ELEMENT FOR A REGENERATIVE HEAT EXCHANGER AND PROCEDURE FOR MANUFACTURING A HEATING ELEMENT.