JPS6057937A - Ultraviolet washing method - Google Patents

Ultraviolet washing method

Info

Publication number
JPS6057937A
JPS6057937A JP16514883A JP16514883A JPS6057937A JP S6057937 A JPS6057937 A JP S6057937A JP 16514883 A JP16514883 A JP 16514883A JP 16514883 A JP16514883 A JP 16514883A JP S6057937 A JPS6057937 A JP S6057937A
Authority
JP
Japan
Prior art keywords
washed
irradiation chamber
cleaning
cleaned
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16514883A
Other languages
Japanese (ja)
Inventor
Kazuya Tanaka
一也 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP16514883A priority Critical patent/JPS6057937A/en
Publication of JPS6057937A publication Critical patent/JPS6057937A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PURPOSE:To prevent the re-contamination of a body to be washed by irradiating and washing the body to be washed with ultraviolet rays in an atomosphere containing oxygen, decompressing the inside of an irradiating chamber and executing the next process in the irradiating chamber. CONSTITUTION:A gas containing oxygen is fed from gas-supply port 11, ultraviolet rays are projected to a body to be washed 5 in an irradiating chamber 4 by an ultraviolet lamp 9, and an organic contaminant adhering on the surface is decomposed and washed. A rotary pumep 3 and a diffusion pump 2 are operated without taking out the body to be washed 5 to decompress the inside of the irradiating chamber 4, and silicon is grown on the silicon wafer 5 in an epitaxial manner by a molecular-beam source 13. A silicon crystal with no defect can be grown because the body to be washed 5 is not exposed to atmospheric air, in which the organic contaminant floats, and is treated under the purest state.

Description

【発明の詳細な説明】 本発明は紫外線による洗浄方法に関するものである。[Detailed description of the invention] The present invention relates to a cleaning method using ultraviolet rays.

紫外線ランプにより発生するオゾンを利用して汚染物を
分解洗浄することが従来より行われている。例えばシリ
コンウェハー上にMBEによりシリコン結晶を成長させ
る際の前処理として、主洗浄後にシリコンウェハー上に
付着した大気中の有機汚染物を分解して、結晶を欠陥な
く成長させたシ、真空蒸着させる際の前処理として洗浄
し、蒸着膜の密着性を向上させることが行なわれている
Conventionally, ozone generated by an ultraviolet lamp has been used to decompose and clean contaminants. For example, as a pretreatment when growing silicon crystals on silicon wafers by MBE, organic contaminants in the atmosphere that have adhered to the silicon wafers are decomposed after main cleaning, crystals are grown without defects, and then vacuum evaporation is performed. Cleaning is performed as a pretreatment to improve the adhesion of the deposited film.

ところで紫外線ランプ、例えば低圧水銀ランプを点灯す
ると、主として波長が254nmの水銀共鳴線の紫外線
が外部に放出され、従として185nmの紫外線が、梃
には他の波長のものがわずかに放出される。そして、波
長185nmの紫外線によってオゾンが生成し、次に、
このオゾンが波長254nmの紫外線によシ分解されて
発生基の酸素が生成し、この発生基の酸素が有機汚染物
を分解してガス状態で飛散することが知られている。
By the way, when an ultraviolet lamp, such as a low-pressure mercury lamp, is turned on, ultraviolet rays of the mercury resonance line with a wavelength of 254 nm are mainly emitted to the outside, ultraviolet rays of 185 nm are mainly emitted, and ultraviolet rays of other wavelengths are emitted slightly. Then, ozone is generated by ultraviolet rays with a wavelength of 185 nm, and then,
It is known that this ozone is decomposed by ultraviolet rays with a wavelength of 254 nm to generate oxygen as a generating group, and this oxygen as a generating group decomposes organic pollutants and is scattered in a gaseous state.

紫外線による有機汚染物の分解機構は以上の通シである
が、この洗浄された被洗浄体には残存効果がなく、これ
を大気中に放置すると、浮遊する汚染物により再び汚染
されてしまう問題がある。
The mechanism of decomposition of organic pollutants by ultraviolet rays is as described above, but the problem is that the cleaned object has no residual effect, and if it is left in the atmosphere, it will be contaminated again by floating pollutants. There is.

従って洗浄後にストックし、その後MBEや真空蒸着な
どの次工程を実施すれば効果が低下して所期の目的を達
成できない不具合があった。
Therefore, if the material is stocked after cleaning and subsequent steps such as MBE or vacuum evaporation are carried out, the effect will decrease and the desired purpose cannot be achieved.

そこで本発明は、被洗浄体が洗浄後に再び汚染されるこ
とがなく、高い洗浄度のもとて水工Sを実施することを
目的とし、その構成は、被洗浄体を照射室内に支持し、
酸素あるいは酸素を含む雰囲気で紫外線ランプの光を照
射して表面に付着する有機汚染物などを分解して洗浄し
、洗浄後に照射室内を減圧し、この照射室内あるいはこ
れと接続する真空容器内で被洗浄体に対してMBEや真
空蒸着などの次工程を実施することを特徴とする。
Therefore, an object of the present invention is to perform waterworks S with a high level of cleanliness without recontaminating the object to be cleaned after cleaning. ,
Organic contaminants adhering to the surface are decomposed and cleaned by irradiating the light from an ultraviolet lamp in oxygen or an atmosphere containing oxygen, and after cleaning, the pressure inside the irradiation chamber is reduced, and the irradiation chamber is heated in the irradiation chamber or in a vacuum container connected to it. It is characterized by carrying out subsequent steps such as MBE and vacuum evaporation on the object to be cleaned.

以下に図面に基いて本発明の一実施例を具体的に説明す
る。
An embodiment of the present invention will be specifically described below based on the drawings.

第1図は本発明の実施例に使用される装置の概略を示す
断面図であるが、真空容器10側方には洗浄用の酸素を
含むガスを供給する給気孔11と、内部のガスを排気し
減圧させるための排気孔12が設けられ、排気孔12に
は拡散ポンプ2とロータリーポンプ3が接続されている
。真空容器1の内部が照射室4であるが、その中央部に
は被洗浄体5であるシリコンウェハーが支持具6により
支持されている。真空容器1の左右の上方部に灯体7が
一体に連結され、両者は石英ガラスからなる窓板8で区
画されている。そして灯体7内には紫外線ランプ9とし
て大出力低圧水銀灯が2本配設され、その背後には水冷
された反射部材10が設けられ、紫外線ランプ9の光は
窓板8を透過して下方に照射されるようになっている。
FIG. 1 is a cross-sectional view schematically showing an apparatus used in an embodiment of the present invention. On the side of a vacuum container 10, there is an air supply hole 11 for supplying gas containing oxygen for cleaning, and an air supply hole 11 for supplying gas containing oxygen for cleaning. An exhaust hole 12 is provided for evacuating and reducing the pressure, and a diffusion pump 2 and a rotary pump 3 are connected to the exhaust hole 12. The inside of the vacuum container 1 is an irradiation chamber 4, and a silicon wafer, which is an object to be cleaned 5, is supported by a support 6 in the center thereof. A lamp body 7 is integrally connected to the left and right upper parts of the vacuum container 1, and both are partitioned by a window plate 8 made of quartz glass. Two high-output low-pressure mercury lamps are installed as ultraviolet lamps 9 in the lamp body 7, and a water-cooled reflective member 10 is provided behind them, and the light from the ultraviolet lamps 9 passes through the window plate 8 and downwards. It is designed to be irradiated by

しかして、給気孔11より酸素を含む清浄なガスを供給
し、紫外線ランプ9を点灯すると紫外線は照射室4内の
被洗浄体5に照射され、表面に付着していた有機汚染物
が分解されて完全に洗浄される。そして洗浄が完了する
と被洗浄体5を取シ出すことなく、直ちにロータリーポ
ンプ3、そし6− て拡散ポンプ2を作動させて照射室4内を減圧する。真
空度が十分上がった後、シリコンウェハーの結晶成長を
させる面に向けて分子線が当たるよう配置された分子線
源13を動作させ、シリコンウェハー上にシリコンをエ
ビタキクヤル成aさせる。この時、被洗浄体5は洗浄終
了後に有機汚染物が浮遊した大気にさらされることなく
、直ちに減圧下の照射室4内でMBEできるので、洗浄
後に再度汚染されず、最も清浄な状態で処理されている
ため欠陥の核となる炭素が存在せず、欠陥の無いシリコ
ン結晶を成長させることができる。
When a clean gas containing oxygen is supplied from the air supply hole 11 and the ultraviolet lamp 9 is turned on, the object to be cleaned 5 in the irradiation chamber 4 is irradiated with ultraviolet rays, and the organic contaminants attached to the surface are decomposed. and thoroughly cleaned. When the cleaning is completed, the rotary pump 3 and the diffusion pump 2 are immediately activated to reduce the pressure in the irradiation chamber 4 without taking out the object 5 to be cleaned. After the degree of vacuum is sufficiently raised, the molecular beam source 13, which is arranged so that the molecular beam hits the surface of the silicon wafer on which crystal growth is to be made, is operated to cause silicon to form on the silicon wafer. At this time, the object to be cleaned 5 can be subjected to MBE immediately after cleaning in the irradiation chamber 4 under reduced pressure without being exposed to the air containing floating organic contaminants, so it will not be contaminated again after cleaning and will be processed in the cleanest state. Because of this, there is no carbon, which can become the nucleus of defects, and it is possible to grow defect-free silicon crystals.

次に、第2図は他の実施例を示すが、この例では照射室
4とMBE室14とが仕切扉15で仕切られてそれぞれ
が減圧できるよう釦なってiる。そして照射室4内で洗
浄後に照射室4内を排気減圧し、仕切扉15を開けて既
に高真空に保持されているMBE室14に被洗浄体5を
移し、仕切扉15を閉じてMBEを行うとともに、照射
室4内に次4− の未処理の被洗浄体5をセットし、給気孔11より酸素
ガスを給気して洗浄が行れる。従って、本寮施例では洗
浄とMBEとを効率よく行うことができる。
Next, FIG. 2 shows another embodiment, in which the irradiation chamber 4 and the MBE chamber 14 are separated by a partition door 15 and each has a button so that the pressure can be reduced. After cleaning in the irradiation chamber 4, the interior of the irradiation chamber 4 is evacuated and depressurized, the partition door 15 is opened and the object to be cleaned 5 is transferred to the MBE chamber 14 which is already maintained at a high vacuum, and the partition door 15 is closed to perform MBE. At the same time, the next untreated object 5 to be cleaned is set in the irradiation chamber 4, and oxygen gas is supplied from the air supply hole 11 to perform cleaning. Therefore, in this dormitory example, cleaning and MBE can be performed efficiently.

なお、これらの実施例では洗浄後の工程がMBEの場合
について説明したが、これに限られるものでなく、例え
ば真空中でガラス基板などにAtを蒸着させる真空蒸着
でも良い。この場合は紫外線洗浄により表面の有機汚染
物の薄層を分解除去することによシ、基板と蒸着物との
剥離を除ぐことかできるが、要は減圧下で処理する工程
であり、被洗浄体5を洗浄後に大気にさらさないもので
あればいずれのものでも良い。
In addition, although the case where the process after cleaning was MBE was explained in these Examples, it is not limited to this, and for example, vacuum evaporation in which At is evaporated onto a glass substrate or the like in a vacuum may be used. In this case, peeling between the substrate and the deposit can be removed by decomposing and removing the thin layer of organic contaminants on the surface using ultraviolet cleaning, but the key is to process under reduced pressure. Any type of cleaning material may be used as long as the cleaning body 5 is not exposed to the atmosphere after cleaning.

以上説明した様に本発明は、被洗浄体を照射室内に支持
し、酸素あるいは酸素を含む雰囲気中で紫外線ランプの
光を照射して表面に付着する有機汚染物表どを分解して
洗浄し、洗浄後に照射室内を減圧し、この照射室内又は
これに接続する真空容器で被洗浄体に対してMBEや真
空蒸着などの次工程を実施するようにしたので、被洗浄
f&に+trび汚染されることなく、高い清浄度のもと
て次工程を実施することができる。
As explained above, the present invention supports the object to be cleaned in an irradiation chamber and irradiates it with light from an ultraviolet lamp in oxygen or an atmosphere containing oxygen to decompose and clean organic contaminants adhering to the surface. After cleaning, the pressure inside the irradiation chamber was reduced, and the next process such as MBE or vacuum evaporation was carried out on the object to be cleaned in this irradiation chamber or in a vacuum container connected to it. The next process can be carried out with high cleanliness without any problems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の実施例に使用される装置の概
略を示す断面図である。 1・・・真空容器 2・・・拡散ポンプ3・・・ロータ
リーポンプ 4・・・照射室5・・・被洗浄体(シリコ
ンウェハー)7・・・灯体 8・・・窓板 9・・・紫
外線ランプ10・・・反射部材 11・・・給気孔 1
2・・・排気孔13・・・分子線源 出願人 ウシオ電機株式会社 代理人 弁理士 田原寅之助 7− 第1図 第2図
FIGS. 1 and 2 are sectional views schematically showing an apparatus used in an embodiment of the present invention. 1...Vacuum container 2...Diffusion pump 3...Rotary pump 4...Irradiation chamber 5...Object to be cleaned (silicon wafer) 7...Lamp body 8...Window plate 9...・Ultraviolet lamp 10... Reflective member 11... Air supply hole 1
2...Exhaust hole 13...Molecular beam source Applicant USHIO INC. Patent attorney Toranosuke Tahara 7- Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 被洗浄体を照射室内に支持し、酸素あるいは酸素を含む
雰囲気中で紫外線ランプの光を照射して表面に付着する
有機汚染物などを分解して洗浄し、洗浄後に照射室内を
減圧し、この照射室内あるいは、これと接続された真空
容器内で被洗浄体に対してMBE(分子線エピタキシャ
ル成lk)や真空蒸着などの次工程を実施することを特
徴とする紫外線洗浄方法。
The object to be cleaned is supported in an irradiation chamber and irradiated with light from an ultraviolet lamp in oxygen or an atmosphere containing oxygen to decompose and clean organic contaminants adhering to the surface.After cleaning, the pressure inside the irradiation chamber is reduced and the An ultraviolet cleaning method characterized by performing a subsequent process such as MBE (molecular beam epitaxial formation) or vacuum evaporation on an object to be cleaned in an irradiation chamber or a vacuum container connected to the irradiation chamber.
JP16514883A 1983-09-09 1983-09-09 Ultraviolet washing method Pending JPS6057937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16514883A JPS6057937A (en) 1983-09-09 1983-09-09 Ultraviolet washing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16514883A JPS6057937A (en) 1983-09-09 1983-09-09 Ultraviolet washing method

Publications (1)

Publication Number Publication Date
JPS6057937A true JPS6057937A (en) 1985-04-03

Family

ID=15806791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16514883A Pending JPS6057937A (en) 1983-09-09 1983-09-09 Ultraviolet washing method

Country Status (1)

Country Link
JP (1) JPS6057937A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60107821A (en) * 1983-11-16 1985-06-13 Hitachi Ltd Molecular-beam crystal growth device
JPS61284925A (en) * 1985-06-10 1986-12-15 Sony Corp Manufacture of semiconductor device
JPS6298730A (en) * 1985-10-25 1987-05-08 Toshiba Corp Ultraviolet ray irradiator
JPS6314434A (en) * 1986-07-04 1988-01-21 Dainippon Screen Mfg Co Ltd Substrate surface processing and equipment therefor
JPH0454551U (en) * 1990-09-10 1992-05-11
JPH05293617A (en) * 1992-04-17 1993-11-09 Nippon Steel Corp Device for automating continuous casting work
US6037270A (en) * 1994-06-30 2000-03-14 Kabushiki Kaisha Toshiba Method of manufacturing semiconductor device and methods of processing, analyzing and manufacturing its substrate
WO2002047142A1 (en) * 2000-12-05 2002-06-13 Tokyo Electron Limited Method and apparatus for treating article to be treated

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54125967A (en) * 1978-03-23 1979-09-29 Matsushita Electric Ind Co Ltd Crystal growth method
JPS56278A (en) * 1979-06-13 1981-01-06 Matsushita Electronics Corp Method and apparatus for plasma ethcing of aluminum
JPS5852827A (en) * 1981-09-25 1983-03-29 Hitachi Ltd Dry etching and device thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54125967A (en) * 1978-03-23 1979-09-29 Matsushita Electric Ind Co Ltd Crystal growth method
JPS56278A (en) * 1979-06-13 1981-01-06 Matsushita Electronics Corp Method and apparatus for plasma ethcing of aluminum
JPS5852827A (en) * 1981-09-25 1983-03-29 Hitachi Ltd Dry etching and device thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60107821A (en) * 1983-11-16 1985-06-13 Hitachi Ltd Molecular-beam crystal growth device
JPS61284925A (en) * 1985-06-10 1986-12-15 Sony Corp Manufacture of semiconductor device
JPS6298730A (en) * 1985-10-25 1987-05-08 Toshiba Corp Ultraviolet ray irradiator
JPS6314434A (en) * 1986-07-04 1988-01-21 Dainippon Screen Mfg Co Ltd Substrate surface processing and equipment therefor
JPH0415614B2 (en) * 1986-07-04 1992-03-18 Dainippon Screen Mfg
JPH0454551U (en) * 1990-09-10 1992-05-11
JPH05293617A (en) * 1992-04-17 1993-11-09 Nippon Steel Corp Device for automating continuous casting work
US6037270A (en) * 1994-06-30 2000-03-14 Kabushiki Kaisha Toshiba Method of manufacturing semiconductor device and methods of processing, analyzing and manufacturing its substrate
WO2002047142A1 (en) * 2000-12-05 2002-06-13 Tokyo Electron Limited Method and apparatus for treating article to be treated
US7208428B2 (en) 2000-12-05 2007-04-24 Tokyo Electron Limited Method and apparatus for treating article to be treated

Similar Documents

Publication Publication Date Title
KR100478663B1 (en) Method of and apparatus for cleaning semiconductor device
US4936940A (en) Equipment for surface treatment
JP2008506268A (en) Processing method and apparatus by irradiation under reduced pressure
JPS6057937A (en) Ultraviolet washing method
JP2680202B2 (en) Vapor phase growth method and apparatus
JPS6235811B2 (en)
JPS60129136A (en) Irradiating apparatus of ultraviolet rays
JP3394130B2 (en) Method for manufacturing organic electroluminescence element and apparatus for manufacturing organic electroluminescence element
JP2003344601A (en) Device and method for cleaning optical element and method for manufacturing it
JPH09263944A (en) Film forming device
JPH09306892A (en) Cleaning method and semiconductor manufacturing apparatus
JP2002184742A (en) Dry cleaning device
JPH049373B2 (en)
JP3457059B2 (en) Container cleaning method and cleaning device
JPH0622220B2 (en) Resist ashing method
JPH01225127A (en) Method of purifying substrate and heater for substrate
JPH06343938A (en) Adhering substance cleaning method and apparatus therefor
JPH0663379A (en) Vacuum storehouse
JPS6139524A (en) Cleaning device for semiconductor wafer
JPS6075327A (en) Ultraviolet ray generating device and material treating device using it
JPH0768162A (en) Method for cleaning off deposit and device therefor
JPH0417673A (en) Sputtering apparatus
JP3460855B2 (en) Cleaning method and cleaning device
JPS63108722A (en) Substrate surface treating apparatus
JPH0517291A (en) Treatment of substrate for deposition of diamond thin film