JPS6057935B2 - Continuous casting mold - Google Patents

Continuous casting mold

Info

Publication number
JPS6057935B2
JPS6057935B2 JP14533882A JP14533882A JPS6057935B2 JP S6057935 B2 JPS6057935 B2 JP S6057935B2 JP 14533882 A JP14533882 A JP 14533882A JP 14533882 A JP14533882 A JP 14533882A JP S6057935 B2 JPS6057935 B2 JP S6057935B2
Authority
JP
Japan
Prior art keywords
mold
cooling water
molten steel
continuous casting
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14533882A
Other languages
Japanese (ja)
Other versions
JPS5935856A (en
Inventor
一吉 中井
章一 日和佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14533882A priority Critical patent/JPS6057935B2/en
Publication of JPS5935856A publication Critical patent/JPS5935856A/en
Publication of JPS6057935B2 publication Critical patent/JPS6057935B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 本発明は連続鋳造用鋳型に係り、詳しくは、連続鋳造時
に溶鋼湯面の変化に応じて鋳型の冷却ゾーンを変化調整
できる連続鋳造用鋳型に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuous casting mold, and more particularly to a continuous casting mold that can change and adjust the cooling zone of the mold according to changes in the molten steel level during continuous casting.

連鋳々型は約70077!771の長さを有し、鋳型内
壁は高い熱伝導率を有す銅又は銅合金により構成され、
鋳型内溶鋼は鋳型壁内部に供給される冷却水により間接
的に冷却作用を受け、鋳型壁に接する部分から漸次凝固
が進行し、凝固殼の厚さが内部溶鋼の静圧に耐える程度
まで成長を図り、鋳型下方に引抜かれてゆく。この鋳型
による冷却の良否は鋳片の表面品質に−重大な影響を及
ぼすほか、ブレイクアウト等の事故原因ともなりこれら
冷却は第1図に示す如く行なわれている。
The continuous mold has a length of about 70077!771, and the inner wall of the mold is made of copper or copper alloy with high thermal conductivity.
The molten steel in the mold is indirectly cooled by the cooling water supplied inside the mold wall, and solidification progresses gradually from the part in contact with the mold wall, and the thickness of the solidified shell grows to the extent that it can withstand the static pressure of the molten steel inside. The mold is pulled out downwards. The quality of cooling by the mold has a significant effect on the surface quality of the slab, and can also cause accidents such as breakouts. Cooling is performed as shown in FIG. 1.

すなわち、鋳型1の内壁を内方に傾斜させ鋳型1の下方
から上方に冷却水が流れるように冷却水;供給口7、排
出口8を有するバックフレーム2を鋳型背面に固設し、
この供給口7ならびに排出口8間の冷却水通路に高速で
冷却水を流すことで冷却を行なつている。
That is, a back frame 2 having a cooling water supply port 7 and a discharge port 8 is fixed to the back of the mold so that the inner wall of the mold 1 is inclined inward so that the cooling water flows from below to above the mold 1.
Cooling is performed by flowing cooling water at high speed through the cooling water passage between the supply port 7 and the discharge port 8.

しかしながら、この鋳型であると、モールドパウダー6
を使用して溶鋼3を連続鋳造する場合、モールドパウダ
ーの特性にもよるが溶鋼3上で溶融されたパウダー6が
鋳型1によつて冷却され、鋳型1の壁上で固化し、所謂
スラグベア5が形成される。このスラグベア5が形成さ
れると、鋳型1と凝固シェル4との間のモー”ルドパウ
ダー6の供給が阻害され、元来この間はモールドパウダ
ー6によつて潤滑状態が保持されているのであるが、こ
の潤滑が悪化し、鋳造品の品質の悪化や、拘束性ブレー
クアウトが誘発される。本発明は上記欠点の解決を目的
とし、具体的には、鋳型内の湯面レベルに応じて冷却水
による冷却ゾーンを変化調整できる連続鋳造用鋳型を提
案する。
However, with this mold, mold powder 6
When continuously casting molten steel 3 using a mold powder, the powder 6 molten on the molten steel 3 is cooled by the mold 1 and solidified on the wall of the mold 1, forming a so-called slag bear 5. is formed. When this slag bear 5 is formed, the supply of mold powder 6 between the mold 1 and the solidified shell 4 is obstructed, and a lubricated state is originally maintained by the mold powder 6 during this period. , this lubrication deteriorates, leading to deterioration in the quality of the cast product and to induction of restraint breakout.The present invention aims to solve the above-mentioned drawbacks. We propose a continuous casting mold that can change and adjust the water cooling zone.

すなわち、本発明は連続鋳造される溶鋼の降下方向と対
向して上向きに冷却水を上昇させて鋳型内壁面を冷却す
る冷却水通路の溶鋼湯面レベルとして予定される最上部
の近傍から下向きに間隔をおいて前記冷却水の排出口を
複数個設け、更に、各排出口には冷却水の調整弁を設け
て成ることを特徴とする。
That is, the present invention raises the cooling water upward opposite to the descending direction of the continuously cast molten steel to cool the inner wall surface of the mold. A plurality of the cooling water discharge ports are provided at intervals, and each discharge port is further provided with a cooling water regulating valve.

以下、本発明について詳しく説明する。The present invention will be explained in detail below.

ます、本発明者等は上記のところの鋳型のもつ欠点につ
いて研究したところ、従来例に係る連続鋳造用鋳型内に
設けられた冷却水通路はその排出口が固定されて変化で
きないこと、すなわち、鋳型冷却水通路の排出口が一定
レベルであるため、溶鋼の湯面レベルの高低によつて溶
融モールドパウダーが冷却されることがわかつた。
First, the present inventors studied the drawbacks of the above-mentioned mold, and found that the cooling water passage provided in the conventional continuous casting mold has a fixed outlet and cannot be changed. It was found that since the outlet of the mold cooling water passage was at a constant level, the molten mold powder was cooled depending on the level of the molten steel.

そこで、湯面レベルの変化に応じで、鋳型内の冷却状況
、つまり冷却ゾーンを変えることができれば上記の問題
が解消できる。本発明は上記知見にもとづいて成立した
ものであつて、鋳型内溶鋼の湯面レベルに応じて、鋳型
上端部における冷却水の量を調節し、溶融モールドパウ
ダーを固化操業することを可能とする。
Therefore, if the cooling situation in the mold, that is, the cooling zone, could be changed in response to changes in the melt level, the above problem could be solved. The present invention was established based on the above knowledge, and it is possible to solidify molten mold powder by adjusting the amount of cooling water at the upper end of the mold according to the level of molten steel in the mold. .

すなわち、第2図は本発明の一つの実施例に係る連続鋳
造用鋳型の一部を示す縦断面図であつて、この鋳型は第
1図に示す従来例の鋳型と同様に銅板等の鋳型1とバッ
クフレーム2との間に冷却水通路14が設けられている
。この冷却水通路14内では溶鋼3の降下時にその降下
方向に対向するよう、冷却水は供給口7から入つて上向
きに流動し、鋳型1の内壁面を冷却する。この鋳型にお
いてその冷却水通路4の上部、つまり、溶鋼3の湯面レ
ベルとして予定される最上部の近傍から下向きに複数個
の排出口、例えば、第2図に示す例ては3つの排出口8
,9,10を設けて、更に、各排出口8,9,10にそ
れぞれ調整弁11,12,13を取付ける。
That is, FIG. 2 is a vertical sectional view showing a part of a continuous casting mold according to an embodiment of the present invention, and this mold is similar to the conventional mold shown in FIG. A cooling water passage 14 is provided between the back frame 1 and the back frame 2. In this cooling water passage 14, the cooling water enters from the supply port 7 and flows upward to cool the inner wall surface of the mold 1 so as to be opposite to the descending direction of the molten steel 3 when it descends. In this mold, a plurality of discharge ports, for example, three discharge ports in the example shown in FIG. 8
, 9, and 10 are provided, and furthermore, regulating valves 11, 12, and 13 are attached to each of the discharge ports 8, 9, and 10, respectively.

このように鋳型の冷却水通路を構成すると、溶鋼湯面レ
ベルの変化にかかわらず、従来例の鋳型と相違して、鋳
型内壁面は良好に冷却され、所謂スラグベア等が生じな
い。一般に、連続鋳造用鋳型はすでに第1図によつて示
した通り冷却水通路は縦方向に平行状に多数形成され、
その頂部に冷却水の排出口が形成されるのに対し、下部
に冷却水の供給口が形成され、これら排出口と供給口を
有するバックフレームは鋳型背面にボルト止め等の手段
で固設されている。
By configuring the mold cooling water passage in this way, unlike conventional molds, the mold inner wall surface is cooled well and so-called slag bears do not occur, regardless of changes in the molten steel level. Generally, as already shown in FIG. 1, continuous casting molds have a large number of cooling water passages formed in parallel in the vertical direction.
A cooling water outlet is formed at the top, while a cooling water supply port is formed at the bottom, and the back frame with these outlet and supply ports is fixed to the back of the mold by means such as bolting. ing.

従つて、この構造の鋳型では各部の抜熱能力は、鋳型の
上部ならびに下部の間、巾方向に渡つて等しい。
Therefore, in a mold having this structure, the heat extraction capacity of each part is equal between the upper and lower parts of the mold in the width direction.

このため、注入される溶鋼の鋳型内レベルは、注入及び
引抜条件の変化によつて変動するにも拘らず、第1図に
示す如く、溶鋼湯面レベルの位置が低い場合には従来例
の鋳型では湯面レベル以上のところでも均一に冷却され
ているため、その表面に溶融しているモールドパウダー
が冷却されて固化し、スラグベアが形成される。その結
果、スラグベアの発生部位より下位へはモールドパウダ
ーの供給が止まり、上記問題が生じる。これに対し、本
発明に係る鋳型においては冷却水通路の排出口が高さ方
向に複数配設され、鋳型内湯面レベルの変動に応じて、
上記冷却水排出口からの排出水量が変化するため、第1
図に示す如く湯面レベルが低下しても、それに応じて上
部の抜熱能力が低下させることができる。更に詳しく説
明すると、本発明に係る鋳型では第2図に示す如く冷却
水は3つの排出口8,9,10から成り、各排出口はそ
の流量を調整するために調整弁11,12,13が設け
られている。
For this reason, even though the level of injected molten steel in the mold fluctuates due to changes in injection and drawing conditions, when the molten steel surface level is low as shown in Figure 1, the level of the molten steel in the mold is low. Since the mold is uniformly cooled even above the molten metal level, the mold powder molten on its surface is cooled and solidified, forming slag bears. As a result, the supply of mold powder stops below the site where slag bears occur, causing the above-mentioned problem. On the other hand, in the mold according to the present invention, a plurality of discharge ports of the cooling water passage are arranged in the height direction, and according to fluctuations in the mold level,
Since the amount of water discharged from the cooling water outlet changes,
As shown in the figure, even if the hot water level falls, the heat removal capacity of the upper part can be reduced accordingly. To explain in more detail, in the mold according to the present invention, as shown in FIG. 2, the cooling water consists of three outlets 8, 9, and 10, and each outlet has a regulating valve 11, 12, 13 to adjust its flow rate. is provided.

従つて、例えば、鋳型内の溶鋼湯面レベルが排出口8,
9の間にある場合には、調整弁13は閉じ、30%程度
の冷却水を排出口8から排出し、残りは排出口9から流
出させる。このため、モールドパウダーの浮遊する位置
の抜熱能力は削減され、溶融パウダー6の固化は抑制さ
れて、スラグベアが生じない。また、溶鋼の湯面レベル
が排出口9,10の間に低下したときには、調整弁13
は全開となり、冷却水は排出口8からは10%、排出口
9からは20%、排出口から残りが流出するように制御
し、同様の効果を達成する。なお、これらの制御は湯面
レベルを自動的に検出し、その検出信号によつて各調整
弁を制御する・と、容易に自動的に行なうことが可能で
ある。次に、第1図に示す従来例の鋳型と第2図に示す
本発明に係る鋳型とを用いて、220×(900〜15
50)順のスラブを連続鋳造し、この際の表面欠陥発生
率、拘束性ブレークアウト発生率を求めた・ところ、次
の通りであつた。(1)表面欠陥発生率 従来例 0.25% 本発明 0.05% (2)拘束性ブレークアウト発生率 j 従来例 1.粛/1000ストランド 本発
明 0渇件/1000ストランドなお、鋳造条件は次
の通りである。
Therefore, for example, if the molten steel surface level in the mold is at the outlet 8,
9, the regulating valve 13 is closed, approximately 30% of the cooling water is discharged from the outlet 8, and the remainder is discharged from the outlet 9. Therefore, the heat removal capacity of the mold powder floating position is reduced, the solidification of the molten powder 6 is suppressed, and slag bears do not occur. Further, when the level of molten steel drops between the discharge ports 9 and 10, the regulating valve 13
is fully opened, the cooling water is controlled so that 10% of the cooling water flows out from the outlet 8, 20% from the outlet 9, and the rest flows out from the outlet to achieve the same effect. Note that these controls can be easily and automatically performed by automatically detecting the hot water level and controlling each regulating valve based on the detected signal. Next, using the conventional mold shown in FIG. 1 and the mold according to the present invention shown in FIG.
50) The successive slabs were continuously cast, and the surface defect occurrence rate and restraint breakout occurrence rate were determined as follows. (1) Surface defect occurrence rate Conventional example 0.25% Present invention 0.05% (2) Restrictive breakout occurrence rate j Conventional example 1. 0 strands/1000 strands The present invention 0 strands/1000 strands The casting conditions are as follows.

溶鋼成分:C/0.05〜0.45 Mn/0.20〜1.50 Si/0.03〜0.35 P/0.0155〜0.150 S/0.003〜0.030 鋳込速度:0.9〜1.8m1/MinMolten steel composition: C/0.05-0.45 Mn/0.20~1.50 Si/0.03~0.35 P/0.0155~0.150 S/0.003~0.030 Casting speed: 0.9~1.8m1/Min

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例に係る連続鋳造用鋳型の一部の縦断面図
、第2図は本発明の一つの実施例に係る連続鋳造用鋳型
の一部の縦断面図である。 符号、1・・・・・・鋳型銅板、2・・・・・・バック
フレーム、3・・・・・・溶鋼、4・・・・・・凝固シ
ェル、5・・・・・・スラグベア、6・・・・・・モー
ルドパウダー、7・・・・・・冷却水供給口、8,9,
10・・・・・・冷却水排出口、11,12,13・・
・・・・調整弁、14・・・・冷却水通路。
FIG. 1 is a longitudinal sectional view of a part of a continuous casting mold according to a conventional example, and FIG. 2 is a longitudinal sectional view of a part of a continuous casting mold according to an embodiment of the present invention. Code, 1...Mold copper plate, 2...Back frame, 3... Molten steel, 4... Solidified shell, 5... Slag bear, 6...Mold powder, 7...Cooling water supply port, 8,9,
10... Cooling water outlet, 11, 12, 13...
...Adjustment valve, 14...Cooling water passage.

Claims (1)

【特許請求の範囲】[Claims] 1 連続鋳造される溶鋼の降下方向と対向して上向きに
冷却水を上昇させて鋳型内壁面を冷却する冷却水通路の
溶鋼湯面レベルとして予定される最上部の近傍から下向
きに間隔をおいて前記冷却水の排出口を複数個設け、更
に、各排出口には冷却水の調整弁を設けて成ることを特
徴とする連続鋳造用鋳型。
1 At intervals downward from the vicinity of the top of the cooling water passage, which is intended to be the molten steel surface level, in which cooling water is raised upward opposite to the descending direction of molten steel to be continuously cast to cool the inner wall surface of the mold. A mold for continuous casting, characterized in that a plurality of the cooling water discharge ports are provided, and each discharge port is further provided with a cooling water regulating valve.
JP14533882A 1982-08-20 1982-08-20 Continuous casting mold Expired JPS6057935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14533882A JPS6057935B2 (en) 1982-08-20 1982-08-20 Continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14533882A JPS6057935B2 (en) 1982-08-20 1982-08-20 Continuous casting mold

Publications (2)

Publication Number Publication Date
JPS5935856A JPS5935856A (en) 1984-02-27
JPS6057935B2 true JPS6057935B2 (en) 1985-12-17

Family

ID=15382859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14533882A Expired JPS6057935B2 (en) 1982-08-20 1982-08-20 Continuous casting mold

Country Status (1)

Country Link
JP (1) JPS6057935B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2148374T3 (en) * 1994-06-06 2000-10-16 Danieli Off Mecc METHOD FOR CONTROLLING THE DEFORMATIONS OF THE SIDE WALLS OF A GLASS, AND CONTINUOUS CAST GLASS.
EP0686446B1 (en) * 1994-06-06 2000-08-16 DANIELI & C. OFFICINE MECCANICHE S.p.A. Continuous-casting crystalliser with increased heat exchange and method to increase the heat exchange in a continuous-casting crystalliser
DE69518360T2 (en) * 1994-06-06 2000-12-28 Danieli Off Mecc Continuous casting mold with improved heat exchange and method for increasing the heat exchange of a continuous casting mold

Also Published As

Publication number Publication date
JPS5935856A (en) 1984-02-27

Similar Documents

Publication Publication Date Title
US4072180A (en) Process and mould for casting multiple articles
US3552478A (en) Method for starting and maintaining the supply of metal to a downward operating continuous casting mold
US4986336A (en) Twin-roll type continuous casting machine
US6003589A (en) Strip casting apparatus
US6012508A (en) Strip casting
US6125917A (en) Strip casting apparatus
JPS6057935B2 (en) Continuous casting mold
EP0293601A2 (en) Method of manufacturing hollow billet and apparatus therefor
US4016924A (en) Method of continuous casting with weighted float-distributor
AU2004295039A1 (en) Sequential casting method for the production of a high-purity cast metal billet
JPH0342144A (en) Method for cooling mold for continuous casting and mold thereof
US4355680A (en) Method and apparatus for continuous casting of hollow articles
JP7397499B2 (en) Molten metal casting method using impact pad in tundish
JPH06114510A (en) Method and apparatus for continuously pouring molten metal restraining mixture of non-metallic inclusion
JPH06292946A (en) Method and device for vertical continuous casting of metal hot top
SU921671A1 (en) Apparatus for horisontal continuous casting
AU731277B2 (en) Strip casting
JPH0688104B2 (en) Water-cooled mold for semi-continuous casting
KR19980053471A (en) Tundish structure to ensure clean steel production during ladle-dundy time eccentric injection of the playing process
JPS5835050A (en) Tundish for continuous casting having heating function for molten metal
JPH0620602B2 (en) Mold for continuous casting
JPH0866751A (en) Continuous casting method and immersion nozzle
JPS60115351A (en) Continuous casting method
JPS6345900B2 (en)
JPH0255141B2 (en)