JPS6056428B2 - Coated cemented carbide member and its manufacturing method - Google Patents

Coated cemented carbide member and its manufacturing method

Info

Publication number
JPS6056428B2
JPS6056428B2 JP56108503A JP10850381A JPS6056428B2 JP S6056428 B2 JPS6056428 B2 JP S6056428B2 JP 56108503 A JP56108503 A JP 56108503A JP 10850381 A JP10850381 A JP 10850381A JP S6056428 B2 JPS6056428 B2 JP S6056428B2
Authority
JP
Japan
Prior art keywords
elements
cemented carbide
group
phase
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56108503A
Other languages
Japanese (ja)
Other versions
JPS57174402A (en
Inventor
直治 藤森
正明 飛岡
毅 浅井
孝春 山本
雅也 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP56108503A priority Critical patent/JPS6056428B2/en
Publication of JPS57174402A publication Critical patent/JPS57174402A/en
Publication of JPS6056428B2 publication Critical patent/JPS6056428B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/04Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbonitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 切削工具や耐摩工具として広く使用されているいわゆる
超硬合金は、WCをCOで結合したもの及び2種の硬質
相をCOて結合したもの、すなわちWC相と■A,■A
,■a族元素の1種以上なかんずくTi,Ta,Nb,
Wより選ばれた2種以上より形成される複合炭化物相を
COで結合したもの、すなわちWC相と■A,■A,■
a族元素の1種以上なかんずくTl,Ta,Nb,Wよ
り選ばれた2種以上より形成される複合炭化物相をCO
で結合したもの)2種類に大別される。
DETAILED DESCRIPTION OF THE INVENTION So-called cemented carbide, which is widely used as cutting tools and wear-resistant tools, is one in which WC is bonded with CO, and one in which two types of hard phases are bonded by CO, that is, WC phase and ,■A
,■ One or more of group a elements, especially Ti, Ta, Nb,
A composite carbide phase formed from two or more selected from W combined with CO, that is, a WC phase and ■A, ■A, ■
CO is a composite carbide phase formed from one or more group a elements, especially two or more selected from Tl, Ta, Nb, and W.
(combined) are divided into two types.

本発明は後者に属する超硬合金に関するものである。い
わゆる複合炭化物相は通常面心立方構造の1つであるB
1型結晶を有し、(1)式に示す一般式で表わされる。
ただしM■:■a族金属の1種以上 M■:■a族金属の1種以上 M■:■a族金属の1種以上 A,B,C,u,v,wは各原子比を表わすzは金属原
子の原子数の総和と、C,N,Oの原子数.の総和の比
率を表わす量論値てある。
The present invention relates to cemented carbide belonging to the latter category. The so-called composite carbide phase usually has one of the face-centered cubic structures B
It has a type 1 crystal and is represented by the general formula shown in formula (1).
However, M■: ■One or more types of group a metals M■: ■One or more types of group a metals M■: ■One or more types of group a metals A, B, C, u, v, and w are the respective atomic ratios. The expression z is the total number of metal atoms and the number of C, N, and O atoms. There is a stoichiometric value that represents the ratio of the sum of .

A+B+C=1,u+v+w=1なる関係がある。There is a relationship such as A+B+C=1 and u+v+w=1.

一般にB1型結晶を有する硬質相(以下B1型硬質相と
称す)はWCに比べて硬度が高く、鋼に対.する化学的
安定性が優れているため、鋼切削用としてはB1型硬質
相とWC相とが共存する超硬合金が使用されている。
In general, a hard phase having B1 type crystals (hereinafter referred to as B1 type hard phase) has higher hardness than WC, and has a hardness higher than that of steel. Because of its excellent chemical stability, cemented carbide in which a B1 type hard phase and a WC phase coexist is used for cutting steel.

この種合金の性能を決定する要素は次のとおりと考えら
れる。
The factors that determine the performance of this type of alloy are considered to be as follows.

1B1型硬質相とWCの比較 2B1型硬質相の構造 3C0相の性質 4異相の存在(遊離炭素,空孔) 従来各種の改良の試みは、前記1,3,4を中心として
行われてきた。
1. Comparison of B1 type hard phase and WC 2. Structure of B1 type hard phase 3. Properties of C0 phase 4. Existence of different phases (free carbon, vacancies) Conventionally, various attempts at improvement have focused on 1, 3, and 4 above. .

前記2については実用的な改良の点が少ないのは次の理
由による。B1型硬質相を形成する金属元素は主として
Ti,Ta,Nb,Wである。
The reason why there are few practical improvements regarding the above 2 is as follows. The metal elements forming the B1 type hard phase are mainly Ti, Ta, Nb, and W.

他の元素の添加によつて顕著な性能の向上は難しいとさ
れていること、さらにTi以上に工業的に安価な元素で
の置換が考えにくいこともある。さらに非金属元素の構
成も従来はきわめて限定lされて考えられていた。
It is said that it is difficult to significantly improve performance by adding other elements, and furthermore, it is difficult to imagine replacing with an element that is industrially cheaper than Ti. Furthermore, the composition of nonmetallic elements has conventionally been considered in a very limited manner.

従来このB1型硬質相は非金属元素としてはCのみしか
含有せず、このため複合炭化物と呼ばれ、N,Oは不純
物として排除する方向て製造方法が考えられていた。
Conventionally, this B1 type hard phase contains only C as a nonmetallic element, and is therefore called a composite carbide, and a manufacturing method has been considered to exclude N and O as impurities.

しかし近年Nを添加した場合の効果について検討が行わ
れ、積極的な利用が進められつ)ある。発明者の一部も
既にこれに関する提案を行つてきた。(特開昭51−4
6508)しかしそれでもOを添加することに関して適
当でないと考えるのが、当業者においては常識であつた
。その理由は、酸素の添加によつて焼結時に炭化物との
反応によりCOガスの発生がおこり、このため第1に合
金に空孔が残ること、第2にC,N,Oの総量のコント
ロールが難しいという2つの問題が解決されないためで
あつた。COガスの発生は単にB1型硬質相の分解反応
というだけでなく、CO相を通じての0,Cの拡散によ
る反応であり、そこでNを添加する場合のOを添加する
場合の本質的な問題の違いであつた。
However, in recent years, studies have been conducted on the effects of adding N, and its active use is being promoted. Some inventors have already made proposals in this regard. (Unexamined Japanese Patent Publication No. 51-4
6508) However, it was common knowledge among those skilled in the art that it was still inappropriate to add O. The reason for this is that the addition of oxygen causes the generation of CO gas through a reaction with carbides during sintering, which firstly leaves pores in the alloy, and secondly controls the total amount of C, N, and O. This was because two problems remained unsolved: The generation of CO gas is not only a decomposition reaction of the B1 type hard phase, but also a reaction due to the diffusion of 0,C through the CO phase, and there is a fundamental problem when adding O when adding N. It was different.

発明者はこの点に関し詳細な研究を行い、これ等の問題
を解決して酸素を含有する超硬合金を製造する方法を考
えるに至つた。このようにして作成した良好なる酸素含
有超硬合金は所期の考察通りの良好なる性質を示す。以
下に詳しく述べる。まず、B1型硬質相の組成の変化が
おこることによる性質の変化がある。発明者の一部が、
特開昭51−46508に、B1型硬質相の安定性は、
VECによることを示したが、これにつき更に考察を進
め、以下の如き知見を得た。VEC(ValenceE
lectOrOnCOncentratiOn)は周知
の如く以下の式で与えられる。
The inventor conducted detailed research on this point and came up with a method for manufacturing cemented carbide containing oxygen by solving these problems. The good oxygen-containing cemented carbide produced in this way exhibits good properties as expected. The details are explained below. First, there is a change in properties due to a change in the composition of the B1 type hard phase. Some of the inventors
In JP-A-51-46508, the stability of the B1 type hard phase is
Although it was shown that this was due to VEC, further consideration was given to this and the following findings were obtained. VEC (ValenceE
lectOrOnCOncentratiOn) is given by the following formula, as is well known.

VEC=4A+駅+?+z(4U+5V+6W)WC相
を有する超硬金属において、B1型硬質相の安定性は、
VEC=8.60を境界に、それぞれ以上では不安定と
なる。
VEC=4A+station+? +z(4U+5V+6W) In the cemented carbide having the WC phase, the stability of the B1 type hard phase is as follows:
With VEC=8.60 as the boundary, it becomes unstable above each.

不安定となつたB1型硬質相は以下の反応によつてWC
を析出する。(ただしC1〉C″1≦z) この場合、窒素は5価、酸素は6価でVECを高くする
効果が大きく、WCの析出を多くすることが可能である
The B1 type hard phase that has become unstable becomes WC by the following reaction.
is precipitated. (However, C1>C″1≦z) In this case, nitrogen is pentavalent and oxygen is hexavalent, which has a great effect of increasing VEC, and it is possible to increase the precipitation of WC.

このように酸素の添加によつてB1型硬質相はWが少な
い状態でWCと共存することができる。このことによつ
てB1型硬質相の耐熱性は向上し、合金全体の耐熱性の
向上に役立つ。以上のことき長所を切削工具として使用
した場合、次のような効果を生む。
In this way, by adding oxygen, the B1 type hard phase can coexist with WC in a state where W is small. This improves the heat resistance of the B1 type hard phase, which helps improve the heat resistance of the entire alloy. When the above-mentioned advantages are used as a cutting tool, the following effects are produced.

まず耐熱性向上により切刃がより高温度まて耐え得るの
で、従来より高速の切削が可能となる。以上のように、
本発明による超硬合金はそれ自体で使つても良い性質を
示すが、硬質物質の薄膜を被覆したいわゆる被覆超硬合
金の地金として使用した場合、顕著な効果を示すことが
判明した。
First, improved heat resistance allows the cutting edge to withstand higher temperatures, making it possible to cut at higher speeds than before. As mentioned above,
Although the cemented carbide according to the present invention exhibits good properties when used by itself, it has been found that it exhibits remarkable effects when used as a base metal for so-called coated cemented carbide coated with a thin film of a hard material.

なお、上記被覆超硬合金の地金として使用する場合は、
超硬合金基体中に遊離炭素を適当量存在する場合、靭性
向上にはさらに好都合てある。次に本発明による被覆超
硬合金用母材としての超硬合金組成の限定範囲について
述べる。発明者等の研究によれば、非金属元素中0,N
は多量に存在すると、金属層とのぬれ性が悪化し焼結性
を損ねる。
In addition, when using it as a base metal for the above-mentioned coated cemented carbide,
It is further advantageous to improve toughness when a suitable amount of free carbon is present in the cemented carbide substrate. Next, the limited range of the cemented carbide composition as a base material for coated cemented carbide according to the present invention will be described. According to research by the inventors, 0, N among nonmetallic elements
If present in a large amount, the wettability with the metal layer deteriorates, impairing sinterability.

このためv+w<0.5であることを要する。酸素の含
有量については、wが0.005以下では効果を示さな
いが、前述のごとく0.5以上では焼結性に問題があり
好ましくない。
Therefore, it is necessary that v+w<0.5. Regarding the oxygen content, if w is less than 0.005, no effect will be shown, but as mentioned above, if it is more than 0.5, there will be a problem in sinterability, which is not preferable.

よつて0.005から0.5の範囲が適当であるが0.
01から0.1の範囲では切削工具として最もよい性質
を示す。B1型固溶体はA=B=0では生成しないこと
は当然てあり、A+B〉0である必要があるが、耐熱性
を要求される楊合はA+B〉0.5が好ましい。
Therefore, a range of 0.005 to 0.5 is appropriate, but 0.005 to 0.5 is appropriate.
A value in the range of 0.01 to 0.1 exhibits the best properties as a cutting tool. It is a matter of course that a B1 type solid solution is not produced when A=B=0, and it is necessary that A+B>0, but when heat resistance is required, A+B>0.5 is preferable.

更に、A,B,Cについては、0.5〉A〉0,0.3
〉B≧0,0.95〉C〉0なる条件で、U,v,w,
zに関しては、0.5≦u≦0.95,0≦v≦0.4
5,0.005≦v+w<0.5,0.005〈w<0
.5,1≧z≧0.6なる条件の場合で最も性能の良い
合金が得られる。
Furthermore, for A, B, and C, 0.5〉A〉0,0.3
〉B≧0,0.95〉C〉0, U, v, w,
Regarding z, 0.5≦u≦0.95, 0≦v≦0.4
5, 0.005≦v+w<0.5, 0.005<w<0
.. An alloy with the best performance can be obtained under the condition of 5,1≧z≧0.6.

上記条件以外ては強度が低下するか耐熱性が低下して実
用価値が薄い。
Under conditions other than the above, the strength or heat resistance decreases and the practical value is low.

従来の真空焼結法においては、酸素人りの超硬合金が作
成できなかつたのは、真空中ではB1型硬質相が不安定
であるためてあつた。
In the conventional vacuum sintering method, oxygen-filled cemented carbide could not be produced because the B1 type hard phase is unstable in a vacuum.

これに関して発明者は詳細なる研究の結果、昇温中1部
を一酸化炭素雰囲気とすれば、該B1型硬質相は酸素を
含有しても安定てあるという知見を得た。
In this regard, as a result of detailed research, the inventor has found that the B1 type hard phase is stable even if it contains oxygen if part of the temperature is raised in a carbon monoxide atmosphere.

酸素を含有させるという目的てはないが、一酸化炭素中
て焼結を行うという提案もある。
There is also a proposal to perform sintering in carbon monoxide, although the purpose is not to incorporate oxygen.

該提案のU.S.Patent3999953号が、発
明者等の知見によれば、該焼結では不十分で、厳密には
最終焼結温度において、真空雰囲気であることを必要と
する。それはほS゛完全に開口孔がなくなつた状態にお
いて、空孔を完全になくすには十分なる脱ガスが必要と
考えられるからである。よつて開口孔がなくなる液相出
現温度以上ては真空とすべきであるが、該温度以上に昇
温する場合は、B1型硬質相の組成の安定のため、一酸
化炭素分圧下におくことが望ましい。
The proposed U. S. According to the findings of the inventors of Patent No. 3999953, this sintering is insufficient, and strictly speaking, a vacuum atmosphere is required at the final sintering temperature. This is because sufficient degassing is considered to be necessary to completely eliminate the pores in a state where the pores are almost completely eliminated. Therefore, a vacuum should be applied above the liquid phase appearance temperature at which no open pores exist, but if the temperature is raised above this temperature, it should be placed under carbon monoxide partial pressure in order to stabilize the composition of the B1 type hard phase. is desirable.

しかし最高焼結温度までには真空雰囲気とする必要があ
る。真空度はよい方が脱ガスを十分に行うことができる
が、10−1T0rr以下程度で十分である。しかし、
一酸化炭素雰囲気は、600℃以下ては(2)式に示す
分解反応をおこし炭素数を増大せしめる。このことによ
つて合金全体の非金属元素の総量が制御不可能となるた
め好ましくないので、一酸化炭素雰囲気とするのは60
0℃以上でなくてはならない。このようにして作成され
た超硬合金は耐熱性とともに靭性にも優れ、特に靭性の
要求される研削なしで使用されるチツプブレーカーつき
の被覆超硬合金母材として好性能を示す。
However, it is necessary to create a vacuum atmosphere up to the maximum sintering temperature. The better the degree of vacuum, the more sufficient degassing can be achieved, but a degree of 10-1 T0rr or less is sufficient. but,
A carbon monoxide atmosphere causes a decomposition reaction shown in equation (2) below 600° C., increasing the number of carbon atoms. This is undesirable because the total amount of nonmetallic elements in the entire alloy cannot be controlled, so it is not preferable to use a carbon monoxide atmosphere.
Must be above 0°C. The thus produced cemented carbide has excellent heat resistance and toughness, and exhibits particularly good performance as a coated cemented carbide base material with a chip breaker that is used without grinding, which requires toughness.

さらに原料に用いるB1型硬質相に酸素を含有ノしてい
ることは、本発明のために必ずしも必要ではない。
Furthermore, it is not necessarily necessary for the present invention that the B1 type hard phase used as a raw material contains oxygen.

第1図に、WC−CO(10重量%)合金と(WO.4
5TlO.55)Cl.O−CO(12.8重量%)の
合金の圧粉体を、一酸化炭素分圧100T0rrの雰囲
気中で、0〜3時間加熱した場合の圧粉体全体の酸素量
の変化を示している。
Figure 1 shows the WC-CO (10% by weight) alloy and (WO.4
5TlO. 55) Cl. It shows the change in the amount of oxygen in the entire compact when a compact of O-CO (12.8% by weight) alloy is heated for 0 to 3 hours in an atmosphere with a carbon monoxide partial pressure of 100T0rr. .

このように単なるWC−CO合金では酸素は含有されな
いが、B1型硬質相を持つ合金では、CO雰囲気から酸
素が浸入する。このように元来酸素を含有していないB
1型硬質相に酸素を添加することも可能である。このよ
うな酸素の移動を可能とするのは、一酸化炭素雰囲気は
酸素ポテンシャルが高いことによつていると考えられる
。このように加熱昇温過程中に酸素を含有させて得た合
金も酸素含有合金として良好なる性質を示す。
As described above, a simple WC-CO alloy does not contain oxygen, but an alloy having a B1 type hard phase allows oxygen to enter from the CO atmosphere. In this way, B which does not originally contain oxygen
It is also possible to add oxygen to the type 1 hard phase. It is believed that the carbon monoxide atmosphere has a high oxygen potential, which makes such oxygen transfer possible. An alloy obtained by including oxygen during the heating and temperature raising process also exhibits good properties as an oxygen-containing alloy.

発明者の知見によれば、酸素含有量の少ない合金の作成
においては、このように加熱昇温中に酸素を含有せしめ
る方が生産経費上安価であり好ましい。
According to the inventor's findings, in producing an alloy with a low oxygen content, it is preferable to include oxygen during heating and temperature rise in this way because it is cheaper in terms of production costs.

以下実施例に本発明品の効果を示す。実施例1平均粒径
1μのWC83.5重量%、平均粒径2μの(MO.4
5TlO.45TaO.l)ClO.5重量%、及び(
WO.45TlO.45TaO.l)(CO.9OO.
l)1.010.6重量%、平均粒径1μのCO鍾量%
を湿式ボールミルで5時間混合し、原料粉末を作成した
The effects of the product of the present invention will be shown in Examples below. Example 1 83.5% by weight of WC with an average particle size of 1μ, (MO.4
5TlO. 45TaO. l) ClO. 5% by weight, and (
W.O. 45 TlO. 45TaO. l) (CO.9OO.
l) 1.010.6% by weight, CO amount% with average particle size 1μ
were mixed in a wet ball mill for 5 hours to create a raw material powder.

この粉末をSNG432のチップに型押し(圧力1.5
t/d),表1に示す焼結条件で焼結して合金チップを
作成した。焼結温度は1425℃、焼結のま)の合金に
通常の化学蒸着法でTlCを4μ、その上層にTiN2
μを被覆した。これらのチップ(形状はSNU432)
を長手方向に溝加工したSCM3(HB28O)の旋削
を行い性能を比較した。
This powder was embossed onto the SNG432 chip (pressure 1.5
t/d), and sintered under the sintering conditions shown in Table 1 to produce alloy chips. The sintering temperature was 1425℃, and 4μ of TlC was applied to the alloy (while still sintering) using the usual chemical vapor deposition method, and the upper layer was TiN2.
μ was coated. These chips (shape is SNU432)
Turning was performed on SCM3 (HB28O) with grooves machined in the longitudinal direction, and the performance was compared.

切削速度:80wL/Min 切り込み:2WL 送 りニ0.25薗/Rev 切削式験の結果は、Cは3分で、Dは4分で欠損するの
に対してA,Bの本発明品は1紛切削後も良好てあつた
Cutting speed: 80wL/Min Depth of cut: 2WL Feed rate: 0.25mm/Rev The results of the cutting test show that C broke in 3 minutes and D broke in 4 minutes, whereas A and B of the present invention It remained good even after cutting one piece.

なお、本発明品AにおいてWCの代りにWの一部をMO
て置換した炭化物を用いても同等の好性能を示した。
In addition, in the product A of the present invention, a part of W is MO instead of WC.
Comparable performance was also obtained using a carbide substituted with .

このように被覆超硬合金部材の地金としては、本発明は
著しい効果を示した。
As described above, the present invention has shown remarkable effects as a base metal for coated cemented carbide members.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はWC−CO(10重量%)と(WO.45Ti
O.55)Cl.O−CO(12.8重量%)の圧粉体
をPcO=100T0rr中て0〜3時間加熱した時の
圧粉中の酸素含有量を示す。
Figure 1 shows WC-CO (10% by weight) and (WO.45Ti).
O. 55) Cl. The figure shows the oxygen content in the powder compact when O-CO (12.8% by weight) powder compact is heated in PcO=100T0rr for 0 to 3 hours.

Claims (1)

【特許請求の範囲】 1 Bl型結晶構造を有し分子式が (M_AIV、M_BV、M_CVI)(C_u、N_v、
O_w)zただし、MIV:第IVa族元素の1種以上MV
:第Va族元素の1種以上 MVI:第VIa族元素の1種以上 A、B、C、u、v、wはそれぞれの原子比率を表わし
、A+B+C=1、u+v+w=1の関係があり、0.
5>A>0、0.3>B≧0、0.95>C>0、A+
B>0、0.5≦u≦0.95、0≦v≦0.45、0
.005<w<0.5、0.005≦v+w<0.5、
1≧z≧0.6である。 である硬質相とWC相の2種の硬質相と鉄族金属の結合
相から成る超硬合金部材を母材とし、その表面に1〜2
0μのIVa、Va、VIa族元素の炭化物、窒化物、酸化
物、硼化物および/またはそれ等の複合物およびAl_
2O_3、AlN等の1種または2種以上を、1層もし
くは2層以上に被覆したことを特徴とする被覆超硬合金
部材。 2 Bl型結晶構造を有し分子式が (M_AIV、M_BV、M_CVI)(C_u、N_v、
O_w)zただし、MIV:第IVa族元素の1種以上MV
:第Va族元素の1種以上 MVI:第VIa族元素の1種以上 A、B、C、u、v、wはそれぞれの原子比率を表わし
、A+B+C=1、u+v+w=1の関係があり、0.
5>A>0、0.3>B≧0、0.95>C>0、A+
B>0、0.5≦u≦0.95、0≦v≦0.45、0
.005<w<0.5、0.005≦v+w<0.5、
1≧z≧0.6である。 である硬質相とWC相の2種の硬質相と鉄族金属の結合
相から成る超硬合金部材を母材とし、その表面に1〜2
0μのIVa、Va、VIa族の元素の炭化物、窒化物、酸
化物、硼化物および/またはそれ等の複合物およびAl
_2O_3、AlN等の1種または2種以上を、1層も
しくは2層以上に被覆したことを特徴とする被覆合金部
材を製造するにあたり、その超硬合金部材をいわゆる粉
末冶金法により製造し、その焼結工程において、600
℃以上の昇温過程の一部または全部では5Torr以上
の一酸化炭素分圧の雰囲気とし、液相出現温度以上の一
部または全部を、10Torr以下の真空雰囲気とする
ことによつて製造することを特徴とする被覆超硬合金部
材の製造法。
[Claims] 1 It has a Bl type crystal structure and the molecular formula is (M_AIV, M_BV, M_CVI) (C_u, N_v,
O_w)z However, MIV: MV of one or more group IVa elements
: One or more Group Va elements MVI: One or more Group VIa elements A, B, C, u, v, w represent their respective atomic ratios, and there is a relationship of A+B+C=1, u+v+w=1, 0.
5>A>0, 0.3>B≧0, 0.95>C>0, A+
B>0, 0.5≦u≦0.95, 0≦v≦0.45, 0
.. 005<w<0.5, 0.005≦v+w<0.5,
1≧z≧0.6. The base material is a cemented carbide member consisting of two types of hard phases, a hard phase and a WC phase, and a binder phase of an iron group metal.
0 μ of carbides, nitrides, oxides, borides and/or composites of IVa, Va, VIa group elements and Al_
A coated cemented carbide member characterized by being coated with one or more layers of one or more of 2O_3, AlN, etc. 2 It has a Bl type crystal structure and the molecular formula is (M_AIV, M_BV, M_CVI) (C_u, N_v,
O_w)z However, MIV: MV of one or more group IVa elements
: One or more Group Va elements MVI: One or more Group VIa elements A, B, C, u, v, w represent their respective atomic ratios, and there is a relationship of A+B+C=1, u+v+w=1, 0.
5>A>0, 0.3>B≧0, 0.95>C>0, A+
B>0, 0.5≦u≦0.95, 0≦v≦0.45, 0
.. 005<w<0.5, 0.005≦v+w<0.5,
1≧z≧0.6. The base material is a cemented carbide member consisting of two types of hard phases, a hard phase and a WC phase, and a binder phase of an iron group metal.
0 μ of carbides, nitrides, oxides, borides and/or composites of elements of group IVa, Va, VIa and Al
In manufacturing a coated alloy member characterized by being coated with one or more layers of one or more of _2O_3, AlN, etc., the cemented carbide member is manufactured by a so-called powder metallurgy method, and its In the sintering process, 600
Manufacture by using an atmosphere with a carbon monoxide partial pressure of 5 Torr or more during part or all of the temperature raising process above ℃, and using a vacuum atmosphere of 10 Torr or less during part or all of the temperature increase process above the liquid phase appearance temperature. A method for producing a coated cemented carbide member characterized by:
JP56108503A 1981-07-11 1981-07-11 Coated cemented carbide member and its manufacturing method Expired JPS6056428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56108503A JPS6056428B2 (en) 1981-07-11 1981-07-11 Coated cemented carbide member and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56108503A JPS6056428B2 (en) 1981-07-11 1981-07-11 Coated cemented carbide member and its manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP52159299A Division JPS594498B2 (en) 1977-12-29 1977-12-29 Cemented carbide parts and their manufacturing method

Publications (2)

Publication Number Publication Date
JPS57174402A JPS57174402A (en) 1982-10-27
JPS6056428B2 true JPS6056428B2 (en) 1985-12-10

Family

ID=14486420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56108503A Expired JPS6056428B2 (en) 1981-07-11 1981-07-11 Coated cemented carbide member and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS6056428B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58126974A (en) * 1981-12-16 1983-07-28 カーボロイ インコーポレーテッド Coated product and manufacture
JPS61110770A (en) * 1984-11-01 1986-05-29 Sumitomo Electric Ind Ltd Sintered hard alloy tool for hot working
JPH0768623B2 (en) * 1985-10-25 1995-07-26 日立ツール株式会社 Surface coated cemented carbide

Also Published As

Publication number Publication date
JPS57174402A (en) 1982-10-27

Similar Documents

Publication Publication Date Title
US6093479A (en) Coated hard alloy blade member
JP3052586B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance
JPH06228700A (en) Cemented carbide
JPH07103468B2 (en) Coated cemented carbide and method for producing the same
US5694639A (en) Titanium based carbonitride alloy with binder phase enrichment
US6207262B1 (en) Coated cemented carbide endmill having hard-material-coated-layers excellent in adhesion
US5589223A (en) Process for producing cermet cutting tools having both longitudinal and granular crystal structures
JPS594498B2 (en) Cemented carbide parts and their manufacturing method
KR100778265B1 (en) Coated cemented carbide with binder phase enriched surface zone
JPS6159391B2 (en)
JP4170402B2 (en) Titanium-based carbonitride alloy with nitrided surface region
JPS6056428B2 (en) Coated cemented carbide member and its manufacturing method
JPS6059195B2 (en) Manufacturing method of hard sintered material with excellent wear resistance and toughness
JPS5914534B2 (en) Tough cermet with a softened surface layer
JPS6242988B2 (en)
JP2800571B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance
JPH05171442A (en) Coated sintered hard alloy and its manufacture
JPH0222453A (en) Surface-treated tungsten carbide-base sintered hard alloy for cutting tool
JPS5917176B2 (en) Sintered hard alloy with hardened surface layer
JPS63286549A (en) Nitrogen-containing titanium carbide-base sintered alloy having excellent resistance to plastic deformation
JPH0397866A (en) Coated cemented carbide tool
JPS6046334A (en) Preparation of tungsten carbide base sintered hard alloy
JPS6312135B2 (en)
JPH0513762B2 (en)
JPS63505B2 (en)