JPS6056145A - Reduction of nonuniform fuel-injection amount during idling - Google Patents

Reduction of nonuniform fuel-injection amount during idling

Info

Publication number
JPS6056145A
JPS6056145A JP16446883A JP16446883A JPS6056145A JP S6056145 A JPS6056145 A JP S6056145A JP 16446883 A JP16446883 A JP 16446883A JP 16446883 A JP16446883 A JP 16446883A JP S6056145 A JPS6056145 A JP S6056145A
Authority
JP
Japan
Prior art keywords
cylinder
period
injection amount
fuel injection
top dead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16446883A
Other languages
Japanese (ja)
Other versions
JPH0737774B2 (en
Inventor
Shoichi Yamaguchi
正一 山口
Teruo Nakada
輝男 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP58164468A priority Critical patent/JPH0737774B2/en
Publication of JPS6056145A publication Critical patent/JPS6056145A/en
Publication of JPH0737774B2 publication Critical patent/JPH0737774B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To prevent the generation of vibration on idling by detecting the period on the speed increase side in the period ranging from the top dead center of each cylinder to the top dead center of the next injection cylinder and controlling the fuel injection amount of said cylinder in the next cycle according to the result of the comparison between said period and the average period. CONSTITUTION:A 4-cylinder engine is equipped with an engine revolution-number sensor 12 and a needle-valve lift sensor 13 installed onto a fuel injection valve, in order to detect the period ranging from A to B (A is the top dead center of the first cylinder, C is the top dead center of the second cylinder, and B is the point where the revolution speed is the largest between the both top dead centers A and B). The period E1 is calculated from the outputs of these sensors 12 and 13 in a controller 16 and compared with the average period E determined according to the idling revolution speed. When the period of the first cylinder varies, a control sleeve mechanism 15 is controlled to control the fuel injection amount for the first cylinder in the next cycle on the basis of the information.

Description

【発明の詳細な説明】 本発明は電子制御式ディーゼルエンジンにおけるアイド
リング時の振動を改善するアイドリンク時の燃料噴射不
均量低減方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for reducing uneven fuel injection during idling to improve vibration during idling in an electronically controlled diesel engine.

最近、ディーゼル乗用車がその経済性のために実施化さ
れているが、それに搭載されているディーゼルエンジン
から発生する振動、騒音が大きな問題となっている。特
にアイドリンク時には燃料噴射が均一でないと、それが
振動を大きくする要因の一つとなり乗心地を悪くしてい
る。
Recently, diesel passenger cars have been put into practice due to their economic efficiency, but the vibrations and noise generated from the diesel engines installed in them have become a major problem. Particularly when the engine is idling, if the fuel injection is not uniform, this is one of the factors that increases vibration and worsens ride comfort.

燃料噴射ポンプにおける噴射不均量は主にプランジャか
らの燃料出口′通路及びデリバリ/ヘルプ部の製作上の
バラツキに起因しており、他に燃料パイプ、噴射/スル
のバラツキも上げられる。この不均量を左右する機構は
機械式ポンプ、電子制御式ポンプ共4同一のため、不均
量そのものは変らない。□ ところで燃才1噴射ポンプの不均量は、ガへすを一定に
しておいても前記のように噴射筒を構成する部品の製品
バラツキにより発生し、そのために低速回転から高速回
転までの全域に亘って調整しており、低速域で不均量幅
を縮めると高速域で拡がり、高速域で縮めると低速域で
拡がる特性を持っているので従来より全域で妥協出来る
レベルに調整してきた。
The uneven amount of injection in a fuel injection pump is mainly caused by manufacturing variations in the fuel outlet passage from the plunger and the delivery/help part, and also variations in the fuel pipe and the injection/throttle. Since the mechanism that influences this amount of unevenness is the same for both mechanical pumps and electronically controlled pumps, the amount of unevenness itself does not change. □ Incidentally, even if the fuel injection pump is kept constant, the uneven amount of fuel injector pumps occurs due to product variations in the parts that make up the injection cylinder, as described above, and therefore, the amount of fuel is not uniform throughout the entire range from low speed rotation to high speed rotation. Since it has the characteristic that if the width of the non-uniformity is reduced in the low-speed range, it will expand in the high-speed range, and if it is reduced in the high-speed range, it will spread in the low-speed range, so we have adjusted it to a level that can compromise across the entire range.

この燃料噴射Fdの調整を電子制御で行っているディー
ゼルエンジンにおいては、該燃料噴射量をエンジン回転
、エンジン負荷、水温等により制御している。しかし、
アイドリング時にはそれとは別にアイドリンク回転数が
一定となるようにニンジン回転でフィードバック制御を
行ない噴射量を加減している。このアイドリング時のフ
ィード八、7り制御は直前のエンジン回転数又はそれ以
前の回転数の加算平均をとって噴射量を制御している。
In a diesel engine in which the fuel injection Fd is adjusted by electronic control, the fuel injection amount is controlled by engine rotation, engine load, water temperature, etc. but,
Separately, during idling, feedback control is performed using carrot rotation to adjust the injection amount so that the idling rotation speed remains constant. This feed control during idling controls the injection amount by taking the average of the immediately preceding engine speed or the previous engine speed.

そのために、もし1気筒目のみ噴射量の不均量幅が大き
い時、その情報が即成の爆発順序である3気筒目に反映
し、その結果良好な制御が得られず都合が悪い。
Therefore, if only the first cylinder has a large injection amount non-uniformity, that information will be reflected in the third cylinder, which is the immediate explosion order, and as a result, good control will not be obtained, which is inconvenient.

本発明はこのような問題を改善しようとするものであり
、その目的は、燃料噴射ポンプの機械的な要素に基づく
不均量幅が高速域で小さく、低速域で大きい方を選び、
アイドリング時の各気筒の・出力側の周期を検出し、そ
の検出値に基づいて燃料噴射量を制御し、アイドリング
時の噴射量の不均量を減少させるようにするアイドリン
グ時の燃料噴射不均量低減方法を提供することである。
The present invention aims to improve such problems, and its purpose is to select the one in which the non-uniformity width based on the mechanical elements of the fuel injection pump is small in the high speed range and large in the low speed range,
Detects the period on the output side of each cylinder during idling, controls the fuel injection amount based on the detected value, and reduces the uneven amount of injection during idling. It is an object of the present invention to provide a method for reducing the amount.

次に本発明の実施例を図面を用いて詳細に説明する。Next, embodiments of the present invention will be described in detail using the drawings.

第1図は4気筒エンジンにおける各気筒の燃料噴射量が
均一・な場合を示し1図において、Aは第1気筒目Q’
) T D C(Top Dead Cente?;上
死点)、Cハ第2 % n I] (7) T D’ 
C、B ハ第1 % 筒口ノT DCと第2気筒目のT
DCとの間の最も回転速度の大きくなった点、Dは点A
B間の回転速度の変化幅、E、はA点からB点までに移
動するのに要する時間、FlはB点から0点までに要す
る時間、E3は点Cから第4気筒のTDCと該0点との
間の最も回転速度大の点までの時間、F3は該回転速度
大の点からt54気筒のTDCの点までの時間である。
Figure 1 shows a case where the fuel injection amount in each cylinder in a four-cylinder engine is uniform. In Figure 1, A is the first cylinder Q'
) T D C (Top Dead Center?), C 2nd % n I] (7) T D'
C, B C 1st % T of tube mouth DC and T of 2nd cylinder
The point where the rotational speed is the highest between DC and D is point A
The range of change in rotational speed between points B, E, is the time required to move from point A to point B, Fl is the time required from point B to point 0, and E3 is the TDC of the fourth cylinder from point C and the corresponding difference. F3 is the time from the point at which the rotational speed is the highest between the zero point and the point at which the rotational speed is the highest to the TDC point of the t54 cylinder.

図に示すように、アイドリング回転速度に対して各気筒
のTDCの点及びその中間の最大回転速度の点は気筒毎
に変動することなくそれぞれの側に同一の回転速度変化
幅で存在することになる。A点〜B点は、1気筒目の爆
発により回転速度が増加する。又B点〜C点は3気筒目
の圧縮により速度が落ちる。したかって不均量がゼロで
あれば図のようにDの値も一定と考えられる。このこと
は図において、A−Bまでの周期E1は一定ということ
であり、El ”E’!lと書ける。しかし、B−0点
までの周期F1は気筒別の7リクシヨン、圧縮比のバラ
ツキが犬きく影響し、不均量の影響が減少するので、は
ぼ等しくなる。
As shown in the figure, the TDC point of each cylinder and the maximum rotational speed point between them with respect to the idling rotational speed do not vary from cylinder to cylinder and exist with the same rotational speed change width on each side. Become. From point A to point B, the rotational speed increases due to the explosion in the first cylinder. Also, the speed from point B to point C decreases due to compression in the third cylinder. Therefore, if the amount of non-uniformity is zero, the value of D is considered to be constant as shown in the figure. In the figure, this means that the period E1 from A to B is constant and can be written as El "E'!l. However, the period F1 from point B to point B is 7 riction for each cylinder, and there are variations in the compression ratio. has a strong influence, and the influence of the inhomogeneous amount decreases, so they become approximately equal.

第2図は1気筒目のみ不均量幅(変化幅)D′が大きい
場合を示し、A’、B′は第1図のA、Bにそれぞれ相
当する点である。この場合不均量は大きい方なので、出
力はアップし点AB間の移動時間El ′は減少するこ
とになる。
FIG. 2 shows a case where only the first cylinder has a large nonuniform amount width (change width) D', and A' and B' correspond to A and B in FIG. 1, respectively. In this case, since the amount of non-uniformity is large, the output increases and the travel time El' between points AB decreases.

第3図は各気筒の前記Eを検出する為の装置を示し、ク
ランクシャフトllに円板lOを取付け、該円板にはそ
の外周に気筒数に応した突起13がついている。なお、
12はエンジン回転速度センサであり、 tsuaピッ
クアップよりなる。
FIG. 3 shows a device for detecting the above-mentioned E of each cylinder. A disk lO is attached to the crankshaft ll, and the disk has protrusions 13 on its outer periphery corresponding to the number of cylinders. In addition,
12 is an engine rotational speed sensor, which is made of a Tsua pickup.

第4図は制御系をシJくし、12はエンジン回転速度セ
ンサ、14は針弁リフトセンサ、15はコントロールス
リーブ制御機構、16はコントローラである。
FIG. 4 shows the control system, with reference numeral 12 an engine rotational speed sensor, 14 a needle valve lift sensor, 15 a control sleeve control mechanism, and 16 a controller.

針弁リフトセンサ14は噴射タイミングを検知し、噴射
前か、噴射後かを識別するために噴射ノズルに装着する
ものであり、1個信号を検出することにより以下の行程
は自ずと判別出来るので、該側弁リフトセンサ14をこ
の場合は一個第1気蘭目に設ける。これに′より前記E
とFとの区別が出来ることになる。この場合、噴射がT
DC後にあっても前記EとFとの区別は出来る。
The needle valve lift sensor 14 is attached to the injection nozzle to detect the injection timing and identify whether it is before or after injection, and by detecting one signal, the following stroke can be automatically determined. In this case, one side valve lift sensor 14 is provided at the first position. From this, the above E
and F can be distinguished. In this case, the injection is T
E and F can be distinguished even after DC.

コントローラ16はマイコンより構成され、アイドリン
グ回転速度より平均的なEを記憶させると共に、第1気
筒目の周期E1から割り出したエンジンの回転速度を入
力するRAM (1)、同様に第3気筒目のRAM(2
)、第4気筒目のRAM (3) 、第2気筒目のRA
M (4)等を有し、前記エンジン回転速度センサ12
、針ゴfリフトセンサ14からの信号により前記Eの周
期を算出し、もし、1気筒11のEのみが変動している
場合は、その情報に基ついて次回の1気筒目への燃料噴
射量を、コントロールスリーブ機構を制御し、該コント
ロールスリーブの位置を調整することによって加減する
The controller 16 is composed of a microcomputer, and stores the average E from the idling rotation speed, as well as a RAM (1) that inputs the engine rotation speed determined from the period E1 of the first cylinder, and a RAM (1) for inputting the engine rotation speed calculated from the cycle E1 of the first cylinder. RAM (2
), 4th cylinder RAM (3), 2nd cylinder RA
M (4) etc., and the engine rotation speed sensor 12
, the cycle of E is calculated based on the signal from the needle lift sensor 14, and if only E of one cylinder 11 is changing, the next fuel injection amount to the first cylinder is determined based on that information. is adjusted by controlling a control sleeve mechanism and adjusting the position of the control sleeve.

第5図は噴射量の算出方法を説明するものであり、(A
)は各気筒の周期Eがら割出されたエンジンンの回転速
度G1 、Hl 、11.Jlとそれを記憶する対応す
る各RAM(1)〜RAM(4)を丞し、Sはコントロ
ーラ16およびコントロールスリーブの位置を制御する
ための時間である。T1は第1気筒目の噴射直前の状態
を示し、T2は第3気筒、T5は第4気筒、TIは第2
気筒目のそれぞれの噴射直前を示めす。この各T1〜T
5後における各気筒のEをめたのが(B)図である。
Figure 5 explains the method of calculating the injection amount, and (A
) are the engine rotational speeds G1, Hl, 11. Jl and the corresponding RAM(1) to RAM(4) that store it, and S is the time for controlling the position of the controller 16 and the control sleeve. T1 indicates the state immediately before injection in the first cylinder, T2 indicates the state in the third cylinder, T5 indicates the state in the fourth cylinder, and TI indicates the state in the second cylinder.
It shows just before injection for each cylinder. Each of these T1-T
Figure (B) shows the E of each cylinder after 5 hours.

燃料噴射量は周期Eに比例するので、このようにして得
られるデータからの噴射量制御は、比例積分制御方式を
用いると下式で表わされる。
Since the fuel injection amount is proportional to the period E, the injection amount control based on the data obtained in this manner is expressed by the following equation using the proportional-integral control method.

Q (TI ) −Q (TI ) +KP・ΔQ(Tt) 但し、Q (TI ) =Q (T −1)+Ki・Δ
Q (TI ) ここで、 Q(TI)・・・T1時点の噴射量 Q (T)・・・T1時点の積分項から算出される噴射
量 Kp・・・比例項のゲイン Ki・・・積分項のケイン Q(Tl)・・・T】゛時点の誤差から算出される噴射
量 この時ΔQ (TI )はエンジン回転数の誤差から算
出する。
Q (TI) −Q (TI) +KP・ΔQ(Tt) However, Q (TI) =Q (T −1)+Ki・Δ
Q (TI) Here, Q (TI)... Injection amount Q at time T1 (T)... Injection amount Kp calculated from the integral term at time T1... Gain Ki of proportional term... Integral Injection amount calculated from the error at the time point Q (Tl)...T] In this case, ΔQ (TI) is calculated from the error in the engine speed.

ΔQ (T、+ ) =Qs−(N−G1 )Qs・・
・エンジン回転速度の差を噴射量へ変換する時の係数 N・・・アイドリング時の目標回転速度算出されたQ 
(TI )は次回の1気筒目への噴射量である。
ΔQ (T, +) = Qs-(N-G1)Qs...
・Coefficient N when converting the difference in engine rotational speed to injection amount... Q calculated for the target rotational speed during idling
(TI) is the next injection amount to the first cylinder.

この様に1気t、’6 [I爆発による回転速度情報は
次回の1%筒口への噴射量算出に用いる。これを各気筒
毎に行ない、もともとメカニカル的に持っている各気筒
の不均量幅を噴射量制御によりカバーするものである。
In this way, the rotational speed information from the 1st, '6[I explosion is used to calculate the next injection amount to the 1% cylinder mouth. This is done for each cylinder to cover the mechanically uneven amount range of each cylinder by controlling the injection amount.

このとき、噴射量制御アクチュエータにはロータリやソ
レノイドを用い、コントロールスリーブを随時作動させ
る。
At this time, a rotary or a solenoid is used as the injection amount control actuator, and the control sleeve is operated at any time.

以上に示した算出方法で、一時的な回転のフラツキが、
かえって次回の回転変動へつながるfif能性が考えら
れる1ljrは、ΔQ(TI)の算出に他の気筒の回転
速度を多少反映するとよい。
With the calculation method shown above, temporary rotational fluctuations can be
For 1ljr, which is considered to have a fif possibility that may lead to the next rotational fluctuation, it is better to reflect the rotational speeds of other cylinders to some extent in the calculation of ΔQ(TI).

たとえば、 ΔQ (TI ) −QS (N (4G+ HzIt
−JI)1 この場合は第5図の時間Sの間にQ (T)を算出する
必要がある。
For example, ΔQ (TI) −QS (N (4G+HzIt
-JI)1 In this case, it is necessary to calculate Q (T) during time S in FIG.

アイドリング回転が60Orpmの時は5〜47m5e
cに相当するため、その間に算出しアクチュエータを動
かす必要がある。
When the idling rotation is 60 Orpm, it is 5 to 47 m5e.
c, it is necessary to calculate and move the actuator during that time.

もし、アクチュエータの応答性により追従できない時は
、 ΔQ (TI )=QS (N (4GI H+−1,
−JO)) Jo:JIの1周期前の第2気筒の値 これにより、S〜loOmsecとなる以上詳細に説明
したように、本発明は、各気筒のTDCから次の噴射気
筒のTDCに亘る期間の増速側の周期を検出し、該周期
と平均的な周期とを比較し、その比較値に対応して当該
気筒の次回の燃料噴射量を制御するようにしたので、ア
イドリング時の燃料不均量°が低減できアイドリング時
の振動が改善される。また、機械的要因に基づく燃料噴
射ポンプの不均量幅を高速回転域に的を絞って調整出来
るため、その領域の不均量も同時に低減することか出来
ることになる。
If tracking is not possible due to the responsiveness of the actuator, ΔQ (TI) = QS (N (4GI H+-1,
-JO)) Jo: the value of the second cylinder one cycle before JI. This results in S~loOmsec. As explained in detail above, the present invention can be applied to the TDC of each cylinder to the TDC of the next injection cylinder. The period on the speed increasing side of the period is detected, this period is compared with the average period, and the next fuel injection amount for the relevant cylinder is controlled according to the comparison value, so the fuel consumption during idling is Unevenness can be reduced and vibrations during idling can be improved. Furthermore, since the width of the uneven amount of the fuel injection pump based on mechanical factors can be adjusted by focusing on the high speed rotation range, the amount of unevenness in that region can also be reduced at the same time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は各気筒の燃料噴射量か均一な場合の回転速度変
動を説明する図、第2図は不均一な場合の回転速度変動
を説明する図、第3図は気筒検出装置の説明図、第4図
は制御系のプロ、り図、第5図は周期の計算力法の説明
図である。 IA中、A、C,A’・・・TDC,E、、、E、、E
】 ′・・・周期、12・・・エンジン回転速度センサ
、16・・・コン;・ローラ。 特許出願人 いすダ自動車株式会社 代 理 人 弁理士 辻 實 外1名
Figure 1 is a diagram explaining the rotational speed fluctuation when the fuel injection amount of each cylinder is uniform, Figure 2 is a diagram explaining the rotational speed fluctuation when it is uneven, and Figure 3 is an illustration of the cylinder detection device. , Fig. 4 is a professional diagram of the control system, and Fig. 5 is an explanatory diagram of the period calculation method. During IA, A, C, A'...TDC, E, , E,, E
]'...Period, 12...Engine rotation speed sensor, 16...Controller;・Roller. Patent applicant Representative of Isuda Motors Co., Ltd. Patent attorney Minoru Tsuji and 1 other person

Claims (1)

【特許請求の範囲】[Claims] 各気筒のTDCから次の噴射気筒のTDCに亘る期間の
増速側の周期を検出し、該周期と平均的な周期とを比較
し、その比較値に対応して当該気筒の次回の燃料噴射量
を制御することを特徴とするアイドリング時の燃料噴射
不均量低減方法。
The period on the acceleration side in the period from the TDC of each cylinder to the TDC of the next injection cylinder is detected, the period is compared with the average period, and the next fuel injection of the cylinder is determined according to the comparison value. A method for reducing uneven fuel injection amount during idling, characterized by controlling the amount.
JP58164468A 1983-09-07 1983-09-07 Fuel injection amount control device Expired - Lifetime JPH0737774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58164468A JPH0737774B2 (en) 1983-09-07 1983-09-07 Fuel injection amount control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58164468A JPH0737774B2 (en) 1983-09-07 1983-09-07 Fuel injection amount control device

Publications (2)

Publication Number Publication Date
JPS6056145A true JPS6056145A (en) 1985-04-01
JPH0737774B2 JPH0737774B2 (en) 1995-04-26

Family

ID=15793748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58164468A Expired - Lifetime JPH0737774B2 (en) 1983-09-07 1983-09-07 Fuel injection amount control device

Country Status (1)

Country Link
JP (1) JPH0737774B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134726A (en) * 1979-03-14 1980-10-20 Lucas Industries Ltd Method of controlling fuel of internal combustion engine and system for using said method
JPS5968543A (en) * 1982-10-08 1984-04-18 Nippon Denso Co Ltd Control method of internal-combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134726A (en) * 1979-03-14 1980-10-20 Lucas Industries Ltd Method of controlling fuel of internal combustion engine and system for using said method
JPS5968543A (en) * 1982-10-08 1984-04-18 Nippon Denso Co Ltd Control method of internal-combustion engine

Also Published As

Publication number Publication date
JPH0737774B2 (en) 1995-04-26

Similar Documents

Publication Publication Date Title
US6209519B1 (en) Method and arrangement for controlling the quiet running of an internal combustion engine
JPH0650077B2 (en) Fuel injection amount control method for internal combustion engine
US4799467A (en) Throttle valve control system for an internal combustion engine
JPH10184420A (en) Control method for fuel injection amount of diesel engine
JPS62265445A (en) Fuel controller for engine
US6446596B1 (en) Method of operating an internal combustion engine
JPS6098146A (en) Fuel control method of internal-combustion engine
JPS6056145A (en) Reduction of nonuniform fuel-injection amount during idling
JPH09177587A (en) Abnormality judging device for fuel injection control device
EP0394290A1 (en) Method and device for sensing the direction of crankshaft rotation in a diesel engine.
JP2687768B2 (en) Engine control device
JP3864424B2 (en) Fuel injection control device
JP4349339B2 (en) Injection quantity control device for internal combustion engine
WO2006006301A1 (en) Engine speed controller of internal combustion engine, and internal combustion engine comprising it
JPS6217342A (en) Fuel injection control system
JPH0778375B2 (en) Fuel injection control device for diesel engine
JP2692529B2 (en) Engine crank angle time converter
JP2910411B2 (en) Control device for internal combustion engine
JPH04237845A (en) Fuel injection timing control device of diesel engine
JP2692500B2 (en) Engine crank angle time converter
JP3139280B2 (en) Fuel injection control system for diesel engine
JP3195479B2 (en) Fuel injection control system for diesel engine
JP3513013B2 (en) Fuel injection control device for internal combustion engine
JPH07243366A (en) Fuel injection pump device of diesel engine
JP3635726B2 (en) Fuel injection control device for internal combustion engine