JPS6056131A - Rotational phase converting device of injection pump - Google Patents

Rotational phase converting device of injection pump

Info

Publication number
JPS6056131A
JPS6056131A JP16561083A JP16561083A JPS6056131A JP S6056131 A JPS6056131 A JP S6056131A JP 16561083 A JP16561083 A JP 16561083A JP 16561083 A JP16561083 A JP 16561083A JP S6056131 A JPS6056131 A JP S6056131A
Authority
JP
Japan
Prior art keywords
oil chamber
oil
rotational phase
retard
advance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16561083A
Other languages
Japanese (ja)
Inventor
Sadakatsu Ushio
牛尾 定勝
Kazuo Koga
古賀 一雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP16561083A priority Critical patent/JPS6056131A/en
Publication of JPS6056131A publication Critical patent/JPS6056131A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D1/00Controlling fuel-injection pumps, e.g. of high pressure injection type
    • F02D1/16Adjustment of injection timing
    • F02D1/18Adjustment of injection timing with non-mechanical means for transmitting control impulse; with amplification of control impulse
    • F02D1/183Adjustment of injection timing with non-mechanical means for transmitting control impulse; with amplification of control impulse hydraulic

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • High-Pressure Fuel Injection Pump Control (AREA)

Abstract

PURPOSE:To obtain smooth rotational phase conversion without torque fluctuation by forming both a lead angle side oil chamber and a lag angle side oil chamber so as to convert rotational phase of cam shaft side of an injection pump in relation to crankshaft side and by controlling supply of pressure oil to respective oil chambers. CONSTITUTION:In a rotational phase converting device in which rotational force of a crankshaft is transmitted to the cam shaft 2 of an injection pump 1 after adjustment of rotational phase, one end of a rotational phase converting shaft 4 is spline-connected to a coupling unit 3 formed on one end of the cam shaft 2. A sprocket 9 is spline-connected with torsion to an intermediate portion of the converting shaft 4, and connected to the crankshaft through a timing belt 10. A rotary piston 6 is provided on the other end of the converting shaft 4 and fitted to a cylinder 12 in the base 11 by means of an annular piston 13. The annular piston 13 is advanced or retreated by controlling supply of pressure oil to an oil chamber 14 for lag andle and an oil chamber 15 for lead angle which are formed on both the sides of the piston 13, and injection timing is delayed or advanced.

Description

【発明の詳細な説明】 本発明はエンジンの噴射ポンプに取付けられ、エンジン
側と噴射ポンプのカム軸側との間の回転位相を変換す、
る装置、特に、噴射時期を大幅に遅角あるいは進角する
のに利用される噴射ポンプの回転位相変換装置に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention is attached to an injection pump of an engine, and converts the rotational phase between the engine side and the camshaft side of the injection pump.
The present invention relates to a device for changing the rotational phase of an injection pump, which is used to significantly retard or advance the injection timing.

従来、エンジンの噴射ポンプにはエンジン回転速度に適
した噴射時期を得るためタイマが利用されている。この
タイマはエンジン回転に基づ西発生する油圧や遠心力を
利用し噴射ポンプのカム軸の回転位相を進めたり遅らせ
て所望の噴射タイミングを得ている。この内、回転位相
を油圧のアクチュエータを用いて変換させるものでは、
進角側油室と遅角側油室とを備え、択一的にこれら一方
の油室に圧油を供給することによりカム軸を進角あるい
は遅角させる。ところが、カム軸はポンプ内の各プラン
ジャを抑圧作動させると共(τ、これらより反力を受け
、その反力に基づくトルク変」IIが上述の油室に伝わ
り、その油室内の油圧変動として拡散してしまう。この
油圧変動はポンプの構造にもよるが、かなり犬ぎく、こ
れが噴射タイミング振れを生じさせたり、噴射タイミン
グ変換を不円滑とする不具合がある。なお、従来のタイ
マは最大10°前後の進角あるいは遅角装置であったが
、ここでは最大40°前後の太幅進角あるいは遅角装置
を対象とする。
Conventionally, a timer has been used in an engine injection pump to obtain an injection timing suitable for the engine rotation speed. This timer uses hydraulic pressure and centrifugal force generated based on engine rotation to advance or delay the rotational phase of the camshaft of the injection pump to obtain the desired injection timing. Among these, those that convert the rotational phase using a hydraulic actuator,
The camshaft is provided with an advance side oil chamber and a retard side oil chamber, and the camshaft is advanced or retarded by selectively supplying pressure oil to one of these oil chambers. However, as the camshaft suppresses each plunger in the pump (τ), it receives a reaction force from these, and a torque change based on the reaction force is transmitted to the oil chamber described above, and the change in oil pressure within the oil chamber occurs. This oil pressure fluctuation depends on the structure of the pump, but it is quite harsh and causes problems such as fluctuations in injection timing and uneven injection timing conversion.The conventional timer has a maximum of 10 Previously, we have used advance or retard angle devices around 40 degrees, but here we will focus on wide advance or retard angle devices with a maximum of around 40 degrees.

上述のような不具合防止のため、たとえば回転位相変換
装置内の魔擦抵抗により、カム軸に加わるトルク変動を
吸収したり、油室に連通ずる油出入通路に絞りを設けて
急激な油の出入を抑えることにより、カム軸に加わるト
ルク変動を吸収したり、カム軸に加わるトルク変動によ
る油圧変動のピーク値以上の大油圧をアクチュエータに
加え、カム軸に加わるトルク変動を吸収している。
In order to prevent the above-mentioned problems, for example, the torque fluctuations applied to the camshaft are absorbed by the friction resistance in the rotational phase converter, and a restriction is installed in the oil inlet/outlet passage that communicates with the oil chamber to prevent sudden oil ingress/egress. By suppressing this, the torque fluctuations applied to the camshaft are absorbed, and a large hydraulic pressure that is greater than the peak value of oil pressure fluctuation due to torque fluctuations applied to the camshaft is applied to the actuator, thereby absorbing the torque fluctuations applied to the camshaft.

しかし、これら従来装置はそれぞれ大油圧を必要として
おり、専用オイルポンプを必要としコスト高の要因とな
っている。更に、絞りを用いる場合は応答性が低下し易
い。更にまた、摩擦によりポンプトルク変動力を吸収す
るものではアクチュエータ作動距離/位相変換角度が太
きくなり、応答性が悪く、装置のコンパクト化に不利で
ある。
However, each of these conventional devices requires large oil pressure and requires a dedicated oil pump, which is a factor in high costs. Furthermore, when a diaphragm is used, responsiveness tends to decrease. Furthermore, in a device that absorbs the pump torque fluctuation force by friction, the actuator operating distance/phase conversion angle becomes large, the response is poor, and it is disadvantageous for making the device more compact.

本発明は噴射ポンプのカム軸側からのトルク変動を抑制
でとると共に、比較的給油圧が低くても作動できる回転
位相変換装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a rotational phase changing device that suppresses torque fluctuations from the camshaft side of an injection pump and can operate even when the supplied oil pressure is relatively low.

本発明による噴射ポンプの回転位相変換装置は、エンジ
ンのクランクシャフト側に対する噴射ポンプのカム軸側
の回転位相を変換するよう、進角・側油室と遅角側油室
とを形成し、(+れら各油室には逆止弁を介し連通オる
流入路と吐出量制御弁を介し油室の油を吐出する吐出路
とをそれぞれに接続し、上記吐出せ制御弁の閉弁時にク
ランクシャフト側とカム軸側との互いに対向する一対の
油圧受面の接離作動を抑制するよう構成される。
The rotational phase changing device for an injection pump according to the present invention forms an advance/side oil chamber and a retardation side oil chamber so as to change the rotational phase of the camshaft side of the injection pump with respect to the crankshaft side of the engine. + Each of these oil chambers is connected to an inflow passage that communicates through a check valve and a discharge passage that discharges oil from the oil chamber through a discharge amount control valve, so that when the discharge control valve is closed, It is configured to suppress the contact and separation of a pair of mutually opposing hydraulic pressure receiving surfaces on the crankshaft side and the camshaft side.

以下、本発明を添付図面と共に説明する。The present invention will be described below with reference to the accompanying drawings.

則・1図には本発明の一実癩例としての噴射ポンプの回
転位相変換装置(以後単に変換装置と記す)を示した。
Figure 1 shows a rotational phase converter (hereinafter simply referred to as a converter) for an injection pump as an example of the present invention.

この変換装置はディーゼルエンジンの燃料の噴射ポンプ
1に取付けられ、この噴射ポンプのカム軸2に、エンジ
ンのクランクシャフト(図示せず)よりの回転力を回転
位相の調整を行なってから伝達するよう構成される。
This conversion device is attached to a fuel injection pump 1 of a diesel engine, and transmits the rotational force from the engine crankshaft (not shown) to the camshaft 2 of the injection pump after adjusting the rotational phase. configured.

噴射ポンプ1のカム軸2の一端にはストレートスプライ
ンSS を内周壁に形成した筒状の連結部6が一体的に
取付けられる。連結部6には、カム軸2の中心線lの延
長上に位置する回転位相変換軸(以後単に変換軸と記す
)4の一端のスプライン丁S・が噛合っている。この変
換軸は他端に回転ピストン部6を形成し、はぼ中央の外
周壁にねじれスプラインTS を形成する。このねじれ
スプラインTS には、これに噛合するねじれスプライ
ンTS を中央の内周壁に形成したスプロケット9が外
嵌する。このスプロケットには外周歯が形成され、これ
に図示しないクランクシャフトと同一回転タイミングで
駆動する歯付きのタイミングベルト10が噛合い連結さ
れる。なお、スゲロケット9の側面には図示しないスト
ッパが摺接し、これによりスズロケット9の中心線1方
向のずれを阻止している。回転ピストン部6は基体11
内のシリンダ12に環状ピストン16を介し嵌合する。
A cylindrical connecting portion 6 having a straight spline SS formed on the inner peripheral wall is integrally attached to one end of the camshaft 2 of the injection pump 1. A spline tooth S at one end of a rotational phase conversion shaft (hereinafter simply referred to as a conversion shaft) 4 located on an extension of the center line l of the camshaft 2 is engaged with the connecting portion 6 . This conversion shaft forms a rotary piston portion 6 at the other end, and a torsion spline TS on the outer circumferential wall at the center of the shaft. A sprocket 9, which has a torsion spline TS that meshes with the torsion spline TS formed on the inner circumferential wall of the center, is fitted onto the torsion spline TS. This sprocket is formed with outer peripheral teeth, to which a toothed timing belt 10 that is driven at the same rotational timing as a crankshaft (not shown) is meshed and connected. A stopper (not shown) is in sliding contact with the side surface of the tin rocket 9, thereby preventing the tin rocket 9 from shifting in one direction of the center line. The rotating piston part 6 is a base body 11
It fits into the inner cylinder 12 via the annular piston 16.

変換軸4、環状ピストン16およびシリンダ12は回転
位相切換部を形成しており、これらは同一の中心線l上
に形成される。環状ピストン16はその内周壁に環状凹
溝131を、外周壁に仕切部材としての環状凸部162
をそれぞれ形成される。環状凹溝161はスラストベア
リング30を介し回転ピストン部6を回転自在に嵌着し
ており、これにより回転ピストン部乙に対し、回転しな
い環状ピストン15は中心線lの方向の押圧力を伝える
ことかできる。なおわ号61 は環状ピストン16を進
角方向Aに押圧する戻しばねを示す。シリンダ12の内
周壁には所定幅の環状四部が形成され、この環状凹部に
環状凸部152が嵌入する。この環状凸部162の抜入
寸法と環状凹部の深さh G’l、はぼ一致しており、
これにより、環状凹部には2つの油室が並設される。な
お、環状凸部162は中心線!方向に最大限り幅だけ摺
動可能である。このL幅は変換軸4の、即ち、ねじれス
プラインTS の中心線方向の移仰r量となる。
The conversion shaft 4, the annular piston 16, and the cylinder 12 form a rotational phase switching section, and are formed on the same center line l. The annular piston 16 has an annular groove 131 on its inner peripheral wall and an annular protrusion 162 as a partition member on its outer peripheral wall.
are formed respectively. The annular groove 161 rotatably fits the rotary piston part 6 via the thrust bearing 30, so that the non-rotating annular piston 15 transmits a pressing force in the direction of the center line l to the rotary piston part B. I can do it. Reference number 61 indicates a return spring that presses the annular piston 16 in the advance direction A. Four annular portions having a predetermined width are formed on the inner circumferential wall of the cylinder 12, and an annular convex portion 152 is fitted into the annular recess. The insertion/removal dimension of the annular convex portion 162 and the depth hG'l of the annular recess are approximately the same.
Thereby, two oil chambers are arranged in parallel in the annular recess. Note that the annular convex portion 162 is the center line! It is possible to slide the maximum width in the direction. This L width becomes the amount of movement r of the conversion shaft 4, that is, the displacement r of the torsion spline TS in the center line direction.

なお、ここでは移動量りをIUm尻に、この移動量によ
り最大の遅角量(進角量)を40°変位させるものが使
用される。ところで環状ピストン16と/リンダ12の
内周壁倶Iとで形成される2つの油室の内、カム軸側の
油室は遅角用油室14とし、反対側は進角用油室15と
し、それぞれ形成される。遅角用油室14は環状凸部1
52と対向すると共に最も進角側に位置する進角側端面
aを形成され、ここに油の出入口141が形成される。
Note that here, the moving amount is IUm, and the moving amount displaces the maximum retard angle amount (advanced angle amount) by 40 degrees. By the way, of the two oil chambers formed by the annular piston 16 and the inner peripheral wall I of the cylinder 12, the oil chamber on the camshaft side is used as the retard oil chamber 14, and the opposite side is used as the advance oil chamber 15. , respectively. The retard oil chamber 14 has an annular convex portion 1
52 and is located at the most advanced side, and an oil inlet/outlet 141 is formed here.

同じく、進角用油室15 は環状凸部132と対向する
と共に最も遅角側に位置する遅角側端面すを形成され、
ここに油の出入口151が形成される。一対の出入口1
41゜151は、給油源としてのエンジンgI+1のオ
イルポンプ16よりの圧油を各逆止弁17,18を介し
て流入させる流入路19.20をそれぞれ連結する。更
に、一対の出入口141. 151は、各油室の油を各
吐出量制御弁23.24を介し、ドレーン側の各吐出口
21.22に導く各吐出路25.26をそれぞれ連結す
る。なお、各吐出路25.26にはその出入口141、
 151への逆流を阻止する逆止弁27,28を数句け
る。各吐出量制御弁25.24は油の吐出口への流れを
阻止できる球弁部231 、 241と、この球弁部を
戻しばね233. 245の弾性力に抗し押圧開放させ
るソレノイド弁部232.、242とで形成される。ソ
レノイド弁部232. 242はコントローラとしての
マイクロコンピュータ(以後単にマイコンと記す)29
側よりデユーティ比を大小変化させた出力信号を受け、
これにより、油圧塞の油圧値をデユーティ比の増加に比
例して小さくするよう作動する。即ち、出力信号が太ぎ
くなるに比例し、環状凸部162は進角方向Aあるいは
遅角方向Bに移動し、進角側端面aあるいは遅角(j1
11端面1) K接近する。
Similarly, the advance oil chamber 15 is formed with a retard side end face facing the annular convex portion 132 and located on the most retard side,
An oil inlet/outlet 151 is formed here. A pair of doorways 1
41° 151 connects inflow passages 19 and 20 through which pressure oil from the oil pump 16 of engine gI+1 as an oil supply source flows in through each check valve 17 and 18, respectively. Furthermore, a pair of entrances and exits 141. Reference numeral 151 connects each discharge passage 25.26 that leads the oil in each oil chamber to each discharge port 21.22 on the drain side via each discharge amount control valve 23.24. In addition, each discharge passage 25, 26 has its entrance/exit 141,
Several check valves 27 and 28 are installed to prevent backflow to 151. Each discharge amount control valve 25, 24 has a ball valve part 231, 241 that can prevent oil from flowing to the discharge port, and a spring 233, which returns the ball valve part. Solenoid valve part 232 which resists the elastic force of 245 and is pressed open. , 242. Solenoid valve section 232. 242 is a microcomputer (hereinafter simply referred to as microcomputer) 29 as a controller.
Receives an output signal with a varying duty ratio from the side,
As a result, the hydraulic pressure value of the hydraulic block is reduced in proportion to the increase in the duty ratio. That is, in proportion to the output signal becoming thicker, the annular convex portion 162 moves in the advance direction A or the retard direction B, and moves toward the advance side end face a or the retard angle (j1
11 End face 1) K approaches.

なお、符号65は一対の流入H19,20を択一的に油
圧源側に切換接続する切換弁を示しており、この弁は後
述のマイコン29に接続される。また、環状ピストン1
6にはその移動量を検出し出力するポジションセッサ3
2が数例けもれ、この出力信号はマイコン29に入力さ
れる。マイコン29はエンジン回転センサ66やスロッ
トル開度セッサ34より出力信号を受けることができる
。杓号ろ7.38は環状ピストンに取付けられるシール
リ/グを示している。
Note that reference numeral 65 indicates a switching valve that selectively connects the pair of inflows H19 and 20 to the hydraulic pressure source side, and this valve is connected to a microcomputer 29, which will be described later. In addition, the annular piston 1
6 is a position sensor 3 that detects and outputs the amount of movement.
2 is omitted in several cases, and this output signal is input to the microcomputer 29. The microcomputer 29 can receive output signals from the engine rotation sensor 66 and the throttle opening sensor 34. 7.38 indicates a sealing ring attached to the annular piston.

エンジンの作動と共に噴射ポツプ1はタイミングベルト
10よりの回転力を変換装置を介しカム軸2に受け、所
定タイミングで作動する。この場合、切換弁65の上流
側には約2kg/ffi の油圧が加わる。一方、マイ
コン29はエノジノ回転速度とスロットル開度に対応す
る目標タイミングを内蔵するマツプに基づぎ取り出し、
この目標値にポジションセッサ62からフィードバック
された遅角(進角)址が一致するよう制御操作する。即
ち、目標値より遅角量が少ない時(進角量が大ぎい時)
、まず、マイコン29は切換弁35を進角用油室15に
切換える出力信号を発する。同時に、ツレ、ノイド弁部
242に出力信号を与え、遅角用油室15の油を吐出さ
せる。逆に、遅角量が大きい時(進角量が少ない時)、
切換弁35を遅角用油室14に切換え、同時に、ソレノ
イド弁部232に出力信号を与え、遅角用油室1千の油
を吐出させる。これにより、環状ピストン13と変換軸
4は一体的に進角方向Aあるいは遅角方向Bに作動し、
更に、スズロケット9と変換軸4との中心線方向の相対
的位置が変動し、ねじれXプライノTS の働きでカム
軸2側をスゲロケ、7ト9即ち、エンジンのクラ/クシ
ャフト(図示せず)側に対し、進角あるいは遅角させる
As the engine operates, the injection pop 1 receives rotational force from a timing belt 10 via a converter to the camshaft 2, and operates at a predetermined timing. In this case, a hydraulic pressure of approximately 2 kg/ffi is applied to the upstream side of the switching valve 65. On the other hand, the microcomputer 29 takes out the target timing corresponding to the engine rotation speed and throttle opening based on the built-in map.
A control operation is performed so that the retard (advance) angle fed back from the position sensor 62 coincides with this target value. In other words, when the amount of retard angle is less than the target value (when the amount of advance angle is too large)
First, the microcomputer 29 issues an output signal to switch the switching valve 35 to the advance oil chamber 15. At the same time, an output signal is given to the nodule valve section 242 to discharge oil from the retarding oil chamber 15. Conversely, when the amount of retardation is large (when the amount of advance is small),
The switching valve 35 is switched to the retard oil chamber 14, and at the same time, an output signal is given to the solenoid valve section 232 to discharge 1,000 oil from the retard oil chamber. As a result, the annular piston 13 and the conversion shaft 4 operate integrally in the advance direction A or the retard direction B.
Furthermore, the relative position of the tin rocket 9 and the conversion shaft 4 in the center line direction changes, and due to the action of the torsion ) side, advance or retard the angle.

この時一方の油室の油が流出し環状凸部132が移動す
ると、カム軸2側より伝わるボ/プ変動応力に伴って生
ずるスプライン@俊振動カによって、反対側油室に逆止
弁17. 18を通して油が流入し、環状ピスト/16
が移動できる〇 このように、変換装置は遅角用油室14と進角用油室1
5とに釈−的に圧油を供給することにより噴射ボ/プ1
のカム軸2の回転位相を変換でき噴射タイミングを遅角
あるいは進角させる。特に、両吐出量制餌1弁23.2
4が共に閉弁状態(である時、両油圧室は密閉状態とな
り、環状凸部162はその移動を抑制される。即ち、カ
ムN+ 2側からのボ/プ変動応力に伴なって生ずる進
角あるいQ」遅角方向A、Bへの押圧力を変換軸4や環
状ピスト/13が受けても、これら部材が振動を吸収し
、カム軸側から伝わる振動が噴射タイミングをずらした
り、振れを生じさせたりすることがない。なお、矛?図
には噴射ボ/グのカム軸が受けるトルク変動曲線の一例
を示しており、カム角で660度の間に4回(4気筒エ
ノジンとする)トルク値が正、負に変動し、これに基づ
き、環状ピストン16も進角方向へと遅角方向Bにピス
トン作動力を変動させることが明らかである。
At this time, when the oil in one oil chamber flows out and the annular convex portion 132 moves, the check valve 17 is moved to the opposite side oil chamber by the spline @ rapid vibration force generated due to the bo/p fluctuation stress transmitted from the camshaft 2 side. .. Oil flows in through 18, and the annular piston/16
can be moved. In this way, the conversion device has two parts: the retard oil chamber 14 and the advance oil chamber 1.
By supplying pressure oil to the injection port 1 and 5,
The rotational phase of the camshaft 2 can be changed to retard or advance the injection timing. In particular, both discharge volume control feed 1 valve 23.2
4 are both in the closed state (when both hydraulic chambers are in a sealed state, the movement of the annular convex portion 162 is suppressed. In other words, the movement of the annular convex portion 162 is suppressed. Even if the conversion shaft 4 and the annular piston/13 receive pressure in the retard directions A and B, these members absorb the vibrations, and the vibrations transmitted from the camshaft side shift the injection timing. The diagram shows an example of the torque fluctuation curve that the camshaft of the injection cylinder receives, and it shows that the torque fluctuation curve is applied to the camshaft of the injection engine 4 times during 660 degrees at the cam angle. It is clear that the torque value changes between positive and negative values, and based on this, the annular piston 16 also changes the piston operating force in the advance direction and the retard direction B.

更に、田・1図の変換装置は圧油をエンジン側のオイル
ポンプより受けており、あえて高圧ポンプを必要としな
い。しかも絞りを用いておらず、応答性に優れる。更に
、各油路のオイルは変動トルク(カム軸からの)により
順次吐出側に流れることになり、給油圧がわずかでも(
場合によりゼロでもよい)自己ポンプ作用が働き変換装
置を作動させることができる。また、このように低油圧
で作動できるため、環状ピストン16側の変換軸4の作
動距離りに対する最大位相変換角度θの比:L/θを小
さく設定でき、この点でも応答性が良く、コンパクト化
にも適する。
Furthermore, the conversion device shown in Figure 1 receives pressure oil from the oil pump on the engine side, so there is no need for a high-pressure pump. Moreover, it does not use an aperture and has excellent responsiveness. Furthermore, the oil in each oil passage will flow sequentially to the discharge side due to fluctuating torque (from the camshaft), so even if the supply oil pressure is small (
The self-pumping action (which may be zero depending on the case) can operate the conversion device. In addition, since it can operate with low oil pressure in this way, the ratio of the maximum phase conversion angle θ to the working distance of the conversion shaft 4 on the annular piston 16 side: L/θ can be set small, and in this respect, it also has good responsiveness and is compact. It is also suitable for

端・1図に示した変換装置は変換軸4と環状ピスト/1
6をスラストベアリングろ0を介し別体として連結して
いたが、これを牙6図に示すように一体化して作成して
もよい。なお、剖・6図の変換装置は1.!1図中の部
材と同等の部材を含むため、ここでは混同を生じない範
囲で同一符号を併用する。
The conversion device shown in Figure 1 consists of a conversion shaft 4 and an annular piston/1.
6 are connected as separate bodies through the thrust bearing filter 0, but they may be made integrally as shown in FIG. In addition, the conversion device for autopsy/6 diagrams is 1. ! 1 includes the same members as those in FIG. 1, so the same reference numerals are used here to the extent that they do not cause confusion.

カム軸2には一体的にストレートスプラインSSを形成
したボス部40を連結する。このボス部には、内周壁に
ストレートスプラインSS を形成された変換軸41の
一端が外嵌する。この変換軸の外周面は2段に形成され
、スズロケット9と一体の回転筒42に内嵌する。回転
筒42ばその夕(周面の一部にベアリング46を外嵌し
、これにより基体44に枢支される。この外周面の他の
部分は基体44に形成されたシリンダ壁45に回転自在
に内嵌する。変換軸41 の−側部にはねじれスゲライ
ンTS が形成され、これは回転筒42の内周壁のねじ
れスプラインTS に噛合っている。変換軸410大径
部側の外周面には環状凸部46か形成され、これはその
高さbに等しい深さの回転筒内の環状四部に嵌入する。
A boss portion 40 integrally formed with a straight spline SS is connected to the camshaft 2. One end of the conversion shaft 41, which has a straight spline SS formed on its inner circumferential wall, is fitted onto this boss portion. The outer peripheral surface of this conversion shaft is formed in two stages, and is fitted into a rotary cylinder 42 that is integrated with the tin rocket 9. A bearing 46 is fitted onto a part of the circumferential surface of the rotary cylinder 42, and the rotary cylinder 42 is pivotally supported by the base body 44.The other part of the rotary cylinder 42 is rotatably mounted on a cylinder wall 45 formed on the base body 44. A twisted spline TS is formed on the negative side of the conversion shaft 41, and this meshes with a twisted spline TS on the inner peripheral wall of the rotating cylinder 42.A twisted spline TS is formed on the negative side of the conversion shaft 41, and this meshes with the twisted spline TS on the inner peripheral wall of the rotating cylinder 42. An annular convex portion 46 is formed, which fits into an annular portion within the rotary cylinder having a depth equal to its height b.

この変換軸41と@転油42との間vtc2つの油室が
並設され、一方のスプロケット9側が遅角時に油圧を受
ける遅角用油室47に、、他方が進角時に油圧を受ける
進角用油室48にそれぞれ形成される。遅角用油室47
および進角用油室48はそれぞれシリンダ壁45側の出
入口471 、 481に連通し、これら出入口471
. 481は矛1図で説明したと同一の流入路19、 
20および吐出路25.26を連結する。なお、遅角用
油室47の最も進角方向A側端に進角0Ill端面aが
、進角用油室48の最も遅角方向B ljl端に遅角側
端面すがそれぞれ形成され、この間を環状凸部46 が
最大移動量りだけ摺動できる。
Two oil chambers (vtc) are installed in parallel between this conversion shaft 41 and the oil transfer 42, one of which is a retard oil chamber 47 that receives oil pressure when retarding, and the other oil chamber 47 that receives oil pressure when advancing. They are respectively formed in the corner oil chambers 48. Retard oil chamber 47
The advancing oil chamber 48 communicates with the entrances and exits 471 and 481 on the cylinder wall 45 side, respectively.
.. 481 is the same inlet passage 19 as explained in Figure 1;
20 and discharge passages 25,26 are connected. Note that an advance 0Ill end face a is formed at the end of the retard oil chamber 47 closest to the advance direction A, and a retard side end face a is formed at the end of the advance oil chamber 48 closest to the retard direction Bljl. The annular protrusion 46 can slide by the maximum amount of movement.

変換軸41の遅角方向Bの端部にはベアリング49を介
しポジ7ヨ/セ/す32のロンドロ21が連結される。
The end of the conversion shaft 41 in the retard direction B is connected to the rotor 21 of the position 7 Y/S 32 via a bearing 49.

閏75図の変換装置は、タイミ/グベAOおよびスプロ
ケット9を介し回転筒42にクランクシャフト(図示せ
ず)側の回転を受ける。そして現状タイミングより遅角
させるには遅角用油室47に、進角させるには進角用油
室48にそれぞれ圧油を供給し、変換軸41を各方向に
移動させる。この際両ねじれスプライン丁S が働き、
回転筒即ちクランク/ナフト側に対する変換軸、即ちカ
ム軸2側の回転位相を変換でき、これにより噴射タイミ
ングを遅角あるいは進角させる。
The conversion device shown in Figure 75 receives rotation from the crankshaft (not shown) in the rotary cylinder 42 via the timing/gube AO and sprocket 9. Then, pressure oil is supplied to the retard oil chamber 47 to retard the current timing, and to the advance oil chamber 48 to advance the timing, and the conversion shaft 41 is moved in each direction. At this time, the double twisted spline S works,
The rotational phase of the conversion shaft, that is, the camshaft 2 side, relative to the rotating cylinder, that is, the crank/naft side, can be changed, thereby retarding or advancing the injection timing.

この変換装置の場合、】・1図で説明したスラストベア
リング60を必要としないがシリンダ壁45内の部材が
全て回転するため、このシリンダ壁内の潤滑油の循環を
確実に行なうため温情油路を適切に設ける必要性が高い
In the case of this conversion device, the thrust bearing 60 explained in Fig. 1 is not required, but since all the members inside the cylinder wall 45 rotate, a warm oil passage is required to ensure the circulation of lubricating oil inside the cylinder wall. There is a strong need to provide appropriate support.

牙4図には変換装置の他の実癩例を示した。、二の装置
は牙1図に示した変換装置と異/Iす、ねじれスズライ
ンも′用いない。即ち、クランクシャフト■11と一体
に回転するスプロケット9は中心軸5゜を延出し、これ
にインナロータ51をスズライン結合する。なお、スゲ
ロケット9はベアリング52を介し基体に枢支される。
Fig. 4 shows another example of a conversion device. The second device differs from the converter shown in FIG. 1 in that it also does not use twisted tin lines. That is, the sprocket 9, which rotates together with the crankshaft 11, has a central axis extending 5 degrees, to which the inner rotor 51 is connected by a tin line. Note that the sedge rocket 9 is pivotally supported on the base body via a bearing 52.

中心軸5oの中央には摺動自在にり/グ材56が外嵌し
、このリング材の外ml側にはベアリング54を介しポ
ジ7ヨ/セ/す62のロッドが連結される。
A slidable ring member 56 is fitted around the center of the center shaft 5o, and a rod 62 in position 7 is connected to the outer side of the ring member via a bearing 54.

インナロータ51は矛5図に示すように1800 を介
し、2つのロータ55を、その外周面上0)0字溝に嵌
合させ、こりロータと一体的に移動できる。
As shown in Figure 5, the inner rotor 51 can move integrally with the stiff rotor by fitting the two rotors 55 into grooves on the outer circumferential surface of the inner rotor 51 via a 1800.

イ/ナローク51はアウタロータ56の内周!561[
内嵌し、2つのロータ55はその一部を仕切部材として
用い、これを内周壁56102つの凹部に嵌入させ、各
凹部を2つの油室に分割する。この2つの油室は遅角時
に油を受ける遅角用油室57と進角時に油を受ける進角
用油室58とをそれぞれ形成する。このアウタロータは
矛4図に示すように、噴射ポンプのカム軸2と一体の回
転筒70に一体的に支持される。即ち、回転筒70のス
プロケット側端はこの部分に固定するリング板71す用
いアウタロータ56を支持する。更に、回転筒70には
遅角用油室57と進角用油室58の各出入口571 、
 581 K接続する連結路59.60を形成され、こ
の両連結路は回転筒の外周面が摺接する基体側の7す/
ダ壁61に達する。このシリング壁61には環状の2つ
の凹462.65が凹設され、これに常時連結路59゜
6U が連通できる。2つの凹溝62.66は牙1図で
説明したと同一の流入路19.20や吐出路25゜26
 が連結される。
I/Narrow 51 is the inner circumference of the outer rotor 56! 561 [
Parts of the two rotors 55 are used as partition members, which are fitted into two recesses of the inner circumferential wall 5610, and each recess is divided into two oil chambers. These two oil chambers form a retard oil chamber 57 that receives oil during retard and an advance oil chamber 58 that receives oil during advance. As shown in Figure 4, this outer rotor is integrally supported by a rotating cylinder 70 that is integrated with the camshaft 2 of the injection pump. That is, the sprocket side end of the rotary cylinder 70 supports the outer rotor 56 using a ring plate 71 fixed to this part. Furthermore, the rotary cylinder 70 has respective entrances and exits 571 for the retard oil chamber 57 and the advance oil chamber 58,
Connecting paths 59 and 60 are formed to connect 581 K, and both connecting paths are connected to the 7th/
It reaches the da wall 61. Two annular recesses 462, 65 are formed in this sill wall 61, and a connecting path 59.6U can be communicated with these at all times. The two grooves 62 and 66 are the same inflow passage 19 and 20 and discharge passage 25 and 26 as explained in Fig. 1.
are concatenated.

士、述のリング材56は中心軸50と共に回転し、かつ
、中心線lの方向に移動できる検出片64を突出する。
The ring material 56 mentioned above rotates together with the central shaft 50 and protrudes a detection piece 64 that can move in the direction of the center line l.

この検出片は先端をインナロータ51とアウタロータ5
6との間の位相検出穴69に突入させる。
The tip of this detection piece is connected to the inner rotor 51 and the outer rotor 5.
6 into the phase detection hole 69 between the two.

この穴はアウタロータ56側の凹溝とインナロータ51
 の外周面で形成される。しかも、ツ・6図に示すよう
に、インナロータ51にはその外周面上に中心線l方向
の長溝65が、アウタロータ56にはその中心線lとは
傾斜する方向の傾斜溝66が、それぞれ形成される。こ
れら両溝に摺動自在に検出片64からのビン67が嵌合
する。このような摺動拳構により、インナロータ、即ち
クランク7ヤフトに対するアウタロータ、即ち、カム輔
20回転位相を中心線4の方向の変位に変換することが
でき、この回転位相値をポジションセンサ32が検出で
キル。
This hole is the concave groove on the outer rotor 56 side and the inner rotor 51
It is formed by the outer peripheral surface of. Moreover, as shown in Fig. 6, the inner rotor 51 has a long groove 65 in the direction of the center line l on its outer circumferential surface, and the outer rotor 56 has an inclined groove 66 in a direction inclined with respect to the center line l. be done. A pin 67 from the detection piece 64 is slidably fitted into both of these grooves. With such a sliding fist structure, the rotational phase of the outer rotor, that is, the cam 20, relative to the inner rotor, that is, the crank 7 shaft, can be converted into a displacement in the direction of the center line 4, and the position sensor 32 detects this rotational phase value. Kill it.

牙4図に示した変換装置は、遅角用油室5ノと進角用油
室58が回転方向に並設されるため、両油室に圧油を供
給すれば遅角方向Bあるいは進角方向Aに直接カム軸2
側が変位でき、特にねじれスプラインTS を必要とし
ない利府がある。
In the converter shown in Fig. 4, the retard oil chamber 5 and the advance oil chamber 58 are arranged side by side in the rotation direction, so if pressure oil is supplied to both oil chambers, the retard direction B or the advance angle can be changed. Camshaft 2 directly in angular direction A
There is a Rifu whose sides can be displaced and which does not particularly require a torsion spline TS.

なお矛3図および牙4図に示した変倹装置も牙1図に示
した変換装置と同様にカム軸2側からのボング変廣1応
力に伴なう進角あるいは遅角方向への押圧力、の振動を
吸収でき、噴射タイミングの振れやずれを防止できる。
Similarly to the converting device shown in Fig. 3 and Fig. 4, the converting device shown in Fig. 3 and Fig. 4 also accepts pressure in the advance or retard direction due to stress from the camshaft 2 side. It can absorb pressure vibrations and prevent fluctuations and deviations in injection timing.

【図面の簡単な説明】[Brief explanation of the drawing]

周・1図は本発明の一実症例としての変換装置の概略構
成図、」・2図は同上装置がカム軸から受るトルク変動
曲線、牙6図および矛4図は本発明の各々異なる他の実
症例としての変換装置の要部断面図(ただし第4図は牙
5図のY−Y線断面として示される)、閏・5図は牙4
図のχ−X線断面図、矛6図は牙4図の変換装置に用い
る位相検出穴65の概略説明図をそれぞれ示している。
Figure 1 is a schematic configuration diagram of a conversion device as an example of the present invention, Figure 2 is a torque fluctuation curve that the same device receives from the camshaft, Figure 6 and Figure 4 are different diagrams of the present invention. A sectional view of the main part of the conversion device as another actual case (however, Fig. 4 is shown as a cross section along the Y-Y line of Fig. 5), and Fig. 5 is a cross-sectional view of Fang 4.
The χ-X line cross-sectional view in the figure and Figure 6 are schematic illustrations of the phase detection hole 65 used in the converter shown in Figure 4, respectively.

Claims (1)

【特許請求の範囲】[Claims] エンジンのクランクシャフトと噴射ポンプのカム軸との
間の回転位相切換部に、択一的な油圧の切換供給を受け
る進角用油室と遅角用油室とを仕切部材を介し並設し、
上記進角用油室の遅角側端面ある(・は遅角用油室の進
角側端面に対し、仕切部材を接離させることにより、噴
射ポンプの回転位相を変換する装置において、上記進角
用油室および遅角用油室には給油源に逆止弁を介して連
通ずる流入路と吐出量制御弁を介し油室の油を吐出する
吐出路とをそれぞれ接続し、上記吐出量制御弁の閉弁時
に、上記仕切部材に対する遅角側端面あるいは進角側端
面の接離作動を抑制することを特徴とする噴射ポンプの
回転位相変換装置。
An advance oil chamber and a retard oil chamber, which receive an alternative hydraulic pressure switching supply, are arranged in parallel via a partition member in the rotational phase switching section between the engine crankshaft and the camshaft of the injection pump. ,
The retard side end face of the advance oil chamber is used in a device that changes the rotational phase of the injection pump by moving a partition member toward and away from the advance side end face of the retard oil chamber. The angle oil chamber and the retard oil chamber are connected to an inlet passage that communicates with an oil supply source via a check valve, and a discharge passage that discharges oil from the oil chamber via a discharge amount control valve, so that the above-mentioned discharge amount can be controlled. A rotational phase changing device for an injection pump, characterized in that when a control valve is closed, movement of the retard side end face or the advance side end face toward and away from the partition member is suppressed.
JP16561083A 1983-09-08 1983-09-08 Rotational phase converting device of injection pump Pending JPS6056131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16561083A JPS6056131A (en) 1983-09-08 1983-09-08 Rotational phase converting device of injection pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16561083A JPS6056131A (en) 1983-09-08 1983-09-08 Rotational phase converting device of injection pump

Publications (1)

Publication Number Publication Date
JPS6056131A true JPS6056131A (en) 1985-04-01

Family

ID=15815630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16561083A Pending JPS6056131A (en) 1983-09-08 1983-09-08 Rotational phase converting device of injection pump

Country Status (1)

Country Link
JP (1) JPS6056131A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059148A1 (en) * 2002-12-26 2004-07-15 Yanmar Co., Ltd. Hydraulic timer unit and fuel injection pump with the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059148A1 (en) * 2002-12-26 2004-07-15 Yanmar Co., Ltd. Hydraulic timer unit and fuel injection pump with the same

Similar Documents

Publication Publication Date Title
US5247914A (en) Intake- and/or exhaust-valve timing control system for internal combustion engines
US4131096A (en) Valve timing mechanisms
JP2570766Y2 (en) Valve timing control device for internal combustion engine
GB2217812A (en) Variable camshaft phasing mechanism
JPH0960508A (en) Valve timing adjusting device for internal combustion engine
JP2613875B2 (en) Valve timing control device for internal combustion engine
JPH07238806A (en) Variavle valve timing device
US5263443A (en) Hydraulic phaseshifter
US5803029A (en) Valve performance controller for internal combustion engine
SK16982000A3 (en) Device for adjusting the phase position of a shaft
US4570439A (en) Exhaust control system for 2-cycle engines
US5931126A (en) Valve timing control device
JPH0533617A (en) Valve timing controller for internal combustion engine
US5535705A (en) Variable valve timing system having rotational vibration damper
JPH03286104A (en) Valve opening/closing timing control device
JP2988101B2 (en) Valve timing control device
JPS6349108B2 (en)
JPS6056131A (en) Rotational phase converting device of injection pump
US20060096562A1 (en) Reed valve with multiple ports
JP2958151B2 (en) Valve timing control device for internal combustion engine
US5179918A (en) Timing-range gear
JP3627340B2 (en) Valve timing control device
US6138623A (en) Device for adjusting the phase angle of a camshaft
JP3499070B2 (en) Valve timing control device
JP2895710B2 (en) Valve timing control device