JPS6055699B2 - Engine parts with contact surfaces - Google Patents

Engine parts with contact surfaces

Info

Publication number
JPS6055699B2
JPS6055699B2 JP56113019A JP11301981A JPS6055699B2 JP S6055699 B2 JPS6055699 B2 JP S6055699B2 JP 56113019 A JP56113019 A JP 56113019A JP 11301981 A JP11301981 A JP 11301981A JP S6055699 B2 JPS6055699 B2 JP S6055699B2
Authority
JP
Japan
Prior art keywords
layer
metal
powder
particle size
ceramic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56113019A
Other languages
Japanese (ja)
Other versions
JPS5815742A (en
Inventor
武海 山田
寛己 岡本
正昭 水品
玉太郎 佐藤
和夫 村上
貢司 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP56113019A priority Critical patent/JPS6055699B2/en
Publication of JPS5815742A publication Critical patent/JPS5815742A/en
Publication of JPS6055699B2 publication Critical patent/JPS6055699B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

【発明の詳細な説明】 本発明は排気弁、シリンダヘッド等の触火面を有する
エンジン部品に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to engine parts having contact surfaces such as exhaust valves and cylinder heads.

ディーゼルエンジン等の熱エンジンでは、その燃焼排
ガスの廃熱を過給器にて回収し、熱の有効利用を図つて
いるが、このようなエンジンから生ずる熱エネルギーの
一部は触火面を構成する部品から機外に放散し、その分
だけエネルギーを損失することになる。
In heat engines such as diesel engines, the waste heat of the combustion exhaust gas is recovered in a supercharger to effectively utilize the heat, but a portion of the thermal energy generated from such engines is absorbed by the ignition surface. The energy will be dissipated outside the machine from the parts that are used, and that amount of energy will be lost.

このようなことから、エンジンの省エネ化を図るため、
エンジン部品の断熱性を向上させるという試みがなされ
ている。その一例としてSAETPS810070、C
ommins− TARADCOMAdiabatic
TurbocompompoundEnginePro
gram、(byKamo& W、Bry2ik)にお
いて、焼結した固体のセラミックスを排気弁、ピストン
ヘッド、シリンダヘッド、シリンダ ライナ等の触火面
に接着もしくは機械的に接合したものが提案されている
。しかし、このようなセ ラミックスによる断熱構造は
比較的小型のエンジ ンでは実用化の可能性はあるかも
知れないが、コスト面で問題があり、また比較的ボア径
の大きいエンジンにおいては、断熱板の厚さが数ミリ以
上となり、しかも受熱面積が大きくなることから、拘束
される熱ひずみが大きくなつて熱衝撃による損傷が比較
的初期に生じてしまい、また接着或は接合も現在の技術
では信頼性に乏しい等の問題を有している。また他にも
、例えば特開昭55−140764号においては、セラ
ミックスの優れた耐燃性、耐腐食性、耐摩耗性を利用し
て排気弁、シリンダライナ、シリンダヘッド、ピストン
ヘッド等のそのもの自体を焼結して製造するという提案
もJなされているが、このようにして得られる部品は上
記したセラミックス接着方式のもの以上に耐久性に乏し
く、またコスト高になることは明らかであり、その実用
化は到底望み得ない。このように、従来ではエンジン部
品に対するセラミックスの優れた特性に注目した提案が
なされているものの、その実用化には未だ多くの問題を
残している。本発明はこのような現状に鑑み創案された
もので、優れた耐熱性と耐久性とを有し、且つ低コスト
で製造可能なエンジン用部品の提供をその目的とする。
For this reason, in order to make the engine more energy efficient,
Attempts have been made to improve the insulation properties of engine parts. An example is SAETPS810070, C
ommins- TARADCOMAdiabatic
TurbocompondEnginePro
gram, (by Kamo & W, Bry2ik) proposes a structure in which sintered solid ceramics are bonded or mechanically bonded to the contact surfaces of exhaust valves, piston heads, cylinder heads, cylinder liners, etc. However, although this kind of insulation structure using ceramics may have the potential to be put to practical use in relatively small engines, there is a problem in terms of cost, and the insulation structure is not suitable for engines with relatively large bore diameters. Since the thickness of the plate is several millimeters or more and the heat-receiving area is large, the restrained thermal strain becomes large and damage due to thermal shock occurs relatively early, and gluing or joining is difficult with current technology. However, there are problems such as poor reliability. In addition, for example, in JP-A No. 55-140764, the excellent flame resistance, corrosion resistance, and wear resistance of ceramics are utilized to manufacture exhaust valves, cylinder liners, cylinder heads, piston heads, etc. Proposals have also been made to manufacture parts by sintering, but it is clear that the parts obtained in this way are less durable and more expensive than the ceramic bonding method described above, and it is difficult to put it into practical use. There is no hope for it to change. As described above, although proposals have been made that focus on the excellent properties of ceramics for engine parts, many problems still remain in their practical application. The present invention was devised in view of the current situation, and an object of the present invention is to provide engine parts that have excellent heat resistance and durability and can be manufactured at low cost.

このため本発明は触火面に、最表層部をセラミックス粉
末または金属被覆セラミックス粉末による緻密なセラミ
ックス層、最深層部を金属層とし、且つ中間層部を金属
被覆セラミックス粉末、または金属被覆セラミックス粉
末と金属粉末とからなり、構成粉末の粒径が層高方向中
心側で最大となるよう構成され、該粒径構成により少な
くともその一部に多孔質層が形成された層とする溶射層
を形成せしめたものであり、このようにセラミックス及
び多孔質層のもつ優れた断熱性と金属のもつ強靭性とを
複合させた触火面を形成せしめることにより、優れた断
熱性と耐久性が得られるようにしたものである。
Therefore, the present invention provides a contact surface with a dense ceramic layer made of ceramic powder or metal-coated ceramic powder as the outermost layer, a metal layer as the deepest layer, and a metal-coated ceramic powder or metal-coated ceramic powder as the middle layer. and metal powder, the particle size of the constituent powder is maximized on the center side in the layer height direction, and the particle size structure forms a sprayed layer in which a porous layer is formed at least in a part of the layer. In this way, by forming a contact surface that combines the excellent heat insulating properties of ceramics and porous layers with the toughness of metal, excellent heat insulating properties and durability can be obtained. This is how it was done.

以下本発明の実施例を図面に基ついて説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図はディーゼルエンジンを断面した状態で示すもの
てあるが、本発明は触火面を有するエンジン部品に対し
て適用されるものであり、例えばシリンダライナ1、シ
リンダヘッド2、ピストンヘッド3、排気弁牡結気弁5
に対して適用され、それぞれの触火面11,12,13
,14及.び15に対して溶射層が形成される。
Although FIG. 1 shows a diesel engine in a cross-sectional state, the present invention is applied to engine parts having contact surfaces, such as cylinder liner 1, cylinder head 2, piston head 3, Exhaust valve male connection valve 5
applied to the respective contact surfaces 11, 12, 13
, 14 and. A thermally sprayed layer is formed on and 15.

かかる溶射層は、これを最表層部、最深層部及ひ両者間
の中間層部に分けた場合、最表層部がセラミックス粉末
またはその表面に金属(例えば合金)がコーティングさ
れた金属被覆セラミックス町粉末による緻密なセラミッ
クス層で、また最深層部が金属粉末による金属層で、さ
らに中間層部が金属被覆セラミックス粉末、または金属
被覆セラミックス粉末と金属粉末からなり、少なくとも
一部に多孔質層を含む層でそれぞれ構成される。
When such a sprayed layer is divided into the outermost layer, the deepest layer, and an intermediate layer between the two, the outermost layer is a ceramic powder or a metal-coated ceramic layer whose surface is coated with a metal (for example, an alloy). A dense ceramic layer made of powder, the deepest layer is a metal layer made of metal powder, and the intermediate layer is made of metal-coated ceramic powder or metal-coated ceramic powder and metal powder, and includes at least a part of the porous layer. Each consists of layers.

第2図は本発明の溶射層の諸態様を示すもので、Aは最
表層部、Bは中間層部、Cは最深層部をそれぞれ示し、
またDは母材を示す。まず、第2図イに示すものは、最
表層部Aをセラミックス粉末6による緻密なセラミック
ス層とし、また最深層部Cを金属粉末7(例えは合金粉
末)による金属層としている。また中間層部Bは表層側
ほど金属被覆セラミックス粉末6が多く、また下層側ほ
ど金属粉末7が多くなるよう金属被覆セラミックス粉末
8と金属粉末7の配合比を連続的に変化させた溶射層と
なつており、且つこの中間層部Bは、これを構成する粉
末の粒径か連続的に変化し、その中心付近ほど大粒径の
ものが用いられてフおり、この比較的大粒径の粉末によ
つて、その密度/理論密度にも示されるように多孔質層
Eが形成されている。また第2図口のものは、イのもの
と基本的に同様であるが、中間層部Bの金属被覆セラミ
ックス門粉末6及び金属粉末7の配合比及び粒径を断続
的に変化せしめたものである。
FIG. 2 shows various aspects of the sprayed layer of the present invention, where A shows the outermost layer, B shows the middle layer, and C shows the deepest layer.
Further, D indicates a base material. First, in the one shown in FIG. 2A, the outermost layer A is a dense ceramic layer made of ceramic powder 6, and the deepest layer C is a metal layer made of metal powder 7 (for example, alloy powder). In addition, the intermediate layer part B is a sprayed layer in which the blending ratio of the metal-coated ceramic powder 8 and the metal powder 7 is continuously changed so that the metal-coated ceramic powder 6 increases toward the surface layer, and the metal powder 7 increases toward the lower layer. In addition, the particle size of the powder constituting this intermediate layer part B changes continuously, and the particle size is larger near the center. The porous layer E is formed by the powder, as indicated by its density/theoretical density. The opening in Figure 2 is basically the same as the opening in Figure 2, but the blending ratio and particle size of the metal-coated ceramic gate powder 6 and the metal powder 7 in the intermediate layer part B are intermittently changed. It is.

以上のイ及び口では最表層部Aのセラミックス層が平均
粒径7.5μmのセラミックス粉末により略60μmの
厚みをもつて構成され、また最深層部・Cの金属層が平
均粒径15μmの金属粉末により略160μmの厚みを
もつて構成されている。
In A and A above, the ceramic layer in the outermost layer A is made of ceramic powder with an average particle size of 7.5 μm and has a thickness of about 60 μm, and the metal layer in the deepest layer C is made of metal with an average particle size of 15 μm. It is made of powder and has a thickness of approximately 160 μm.

また中間層部Bは平均粒径50pmの金属被覆セラミッ
クス粉末、及び平均粒径が15μM,3Opm,lOO
μmの3種類の金属粉末により略440μmの厚みをも
つて構成され、そのうちの表層側約90μm厚が金属被
覆セラミックス粉末と金属粉末との複合層、深層側約3
50pm厚が前記多孔質層をそれぞれ構成している。以
上のような溶射層は断熱性、強靭性、耐高温腐食性とも
に優れた特性を有しており、ピストンヘッド3、シリン
ダヘッド2、給気弁5、排気弁4に適用される。
Moreover, the intermediate layer part B is made of metal-coated ceramic powder with an average particle size of 50 pm, and an average particle size of 15 μM, 3 Opm, lOO
It has a thickness of approximately 440 μm and is made of three types of metal powders, of which the surface layer has a thickness of about 90 μm and the deep layer has a composite layer of metal-coated ceramic powder and metal powder, and the deeper layer has a thickness of approximately 440 μm.
A thickness of 50 pm constitutes each of the porous layers. The sprayed layer as described above has excellent properties in terms of heat insulation, toughness, and high-temperature corrosion resistance, and is applied to the piston head 3, cylinder head 2, intake valve 5, and exhaust valve 4.

以上の実施例に対し、特に優れた強靭性を得たい場合に
は第2図ハの構造が採られる。
In contrast to the above embodiments, if particularly excellent toughness is desired, the structure shown in FIG. 2C is adopted.

ハは最深層部Cを金属層としている点は前記イ,口と同
様であるが、最表層部Aを比較的小径の金属被覆セラミ
ックス粉末8による緻密なセラミックス層とし、また中
間層部Bのうち表層側を前記最表層部の粉末粒径よりは
大きい粒径の金属被覆セラミックス粉末8によるセラミ
ックス層とし、深層側を粒径が連続的に変化した金属粉
末7による多孔質層Eとしたものである。この場合、最
表層部Aのセラミックス層は平均粒径15μmの金属被
覆セラミックス粉末により略50μmの厚みをもつて構
成され、また最深層部Cの金属層は平均粒径15μmの
金属粉末により略160μmの厚みをもつて構成され、
さらに中間層部Bは略450μmの厚みをもつて構成さ
れ、そのうちの表層側約150p.m厚が平均粒径50
μmの金属被覆セラミックス粉末による前記セラミック
ス層、また深層側約300μm厚が平均粒径15μM,
3Opm,lOOpmの金属粉末による前記多孔質層を
それぞれ構成している。
C is similar to A and A above in that the deepest layer C is a metal layer, but the outermost layer A is a dense ceramic layer made of metal-coated ceramic powder 8 with a relatively small diameter, and the middle layer B is The surface layer side is a ceramic layer made of metal-coated ceramic powder 8 with a particle size larger than the powder particle size of the outermost layer, and the deep layer side is a porous layer E made of metal powder 7 whose particle size continuously changes. It is. In this case, the ceramic layer in the outermost layer A is made of metal-coated ceramic powder with an average particle size of 15 μm and has a thickness of about 50 μm, and the metal layer in the deepest layer C is made of metal powder with an average particle size of 15 μm and has a thickness of about 160 μm. It is constructed with a thickness of
Further, the intermediate layer portion B has a thickness of approximately 450 μm, of which approximately 150 μm on the surface layer side. m thickness is average grain size 50
The ceramic layer is made of metal-coated ceramic powder with a thickness of about 300 μm on the deep side, and has an average particle size of 15 μM.
The porous layers are made of metal powder of 3 Opm and 10 Opm, respectively.

このような構造の溶射層は最表層部Aが金属被覆セラミ
ックス粉末で構成され、しかも中間層部Bの表層側も金
属被覆セラミックス粉末で、また深層側が金属粉末でそ
れぞれ構成されているのて、その被覆金属及び金属粉末
で優れた強靭性を得ることができ、このためシリンダラ
イナ1、ピストンヘッド3に適している。
In the sprayed layer having such a structure, the outermost layer A is made of metal-coated ceramic powder, and the surface layer of the middle layer B is also made of metal-coated ceramic powder, and the deeper layer is made of metal powder. Excellent toughness can be obtained with the coated metal and metal powder, and therefore it is suitable for the cylinder liner 1 and piston head 3.

第2図二は強靭性及び耐熱性に重点を置いた場合の構造
を示すもので、この場合には最表層部A1中間層部Bと
もに金属被覆セラミックス粉末8により構成せしめたも
のである。
FIG. 2 shows a structure where emphasis is placed on toughness and heat resistance; in this case, both the outermost layer A and the middle layer B are made of metal-coated ceramic powder 8.

即ち最表層部Aは比較的小径の金属被覆セラミックス粉
末による、また中間層部Bは粒径が連続的に変化した金
属被覆セラミックス粉末によるセラミックス層となつて
おり、この中間層部Bが多孔質層Eを構成している。こ
の場合、最表層部Aは平均粒径15μmの金属被覆セラ
ミックス粉末により略70μmの厚みをもつて構成され
、また最深層部Cの金属層は平均粒径15μm1金属粉
末により略160pmの厚みをもつて構成され、さらに
中間層部Bは平均粒径15μM,3OμM,lOOpm
の金属被覆セラミックス粉末により略300μmの厚み
をもつて構成されている。
That is, the outermost layer A is made of metal-coated ceramic powder with a relatively small diameter, and the middle layer B is a ceramic layer made of metal-coated ceramic powder whose particle size continuously changes.This middle layer B is porous. It constitutes layer E. In this case, the outermost layer A is made of metal-coated ceramic powder with an average particle size of 15 μm and has a thickness of about 70 μm, and the metal layer in the deepest layer C is made of metal powder with an average particle size of 15 μm and has a thickness of about 160 μm. Furthermore, the intermediate layer part B has average particle diameters of 15μM, 3OμM, and lOOpm.
It has a thickness of about 300 μm and is made of metal-coated ceramic powder.

このような構造の溶射層は最表層部Aと中間層部Bが総
て金属被覆セラミックス粉末による構成されているので
、その被覆金属による強靭性とセラミックスによる耐熱
性とを同時に得ることができ、シリンダライナ1等に適
している。
In the sprayed layer having such a structure, the outermost layer A and the middle layer B are entirely made of metal-coated ceramic powder, so it is possible to simultaneously obtain the toughness of the coating metal and the heat resistance of ceramics. Suitable for cylinder liner 1 etc.

以上のような構成において、多孔質層Eを形成する中間
層部は、これを構成する粉末の粒径が連続的または断続
的に変化し、その中間層部Bの中心付近で粒径が最大と
なり、従つてまた論理密度に対する実際の密度の比もこ
の中心付近で最小となつている。
In the above configuration, in the intermediate layer forming the porous layer E, the particle size of the powder constituting this changes continuously or intermittently, and the particle size reaches its maximum near the center of the intermediate layer B. Therefore, the ratio of actual density to logical density is also at a minimum near this center.

この密度比は多孔質層に要求される断熱性及び強靭性を
考慮して0.50−0.96の範囲で調整することが好
ましく、より具体的には0.8前後の値が好適な範囲と
して選定される。また以上のようにして中間層部Bの中
心付近で粒径を最大とし、その表層側及び深層側で粒径
を比較的小さいものとすることにより、中心付近の脆い
多孔質部分を補強している。また、溶射層を形成する各
粉末について、例えばセラミックス粉末としては、Al
2O3・TiO2系セラミックス粉末、ZrO2・Y2
O3系セラミックス粉末等が、また金属粉末としては、
50Cr−50Ni粉末、80〜Cr−20Ni粉末、
20A1−30Cr−50Ni粉末等の高融点合金粉末
が、さらに、金属被覆セラミックス粉末としては、50
Cr−50Ni又は80Cr一20Ni等で被覆したセ
ラミックス粉末等が使用されるが、必ずしもこれらに限
定されるものではない。
This density ratio is preferably adjusted within the range of 0.50-0.96, taking into consideration the heat insulation properties and toughness required of the porous layer, and more specifically, a value of around 0.8 is preferable. Selected as a range. In addition, by making the grain size maximum near the center of the intermediate layer part B and making the grain size relatively small on the surface side and deep side as described above, the brittle porous portion near the center can be reinforced. There is. In addition, regarding each powder forming the thermal spray layer, for example, as a ceramic powder, Al
2O3/TiO2 ceramic powder, ZrO2/Y2
O3 ceramic powder, etc., and metal powder,
50Cr-50Ni powder, 80~Cr-20Ni powder,
A high melting point alloy powder such as 20A1-30Cr-50Ni powder is further used as a metal-coated ceramic powder.
Ceramic powder coated with Cr-50Ni or 80Cr-20Ni or the like is used, but is not necessarily limited to these.

また溶射層の厚みは必要とされる高靭性、及び断熱性に
応じて適宜選択されるが、その最大厚は靭性等の面から
約1?程度に抑えられるのが好ましい。
The thickness of the sprayed layer is appropriately selected depending on the required high toughness and heat insulation properties, but the maximum thickness is approximately 1mm thick from the viewpoint of toughness etc. It is preferable that it be suppressed to a certain degree.

また粉末の粒径は経験的に言つて3μm以上が均一な溶
融層を作る上て好ましく、また層厚との関係から言つて
、150μm以下のものが採用される。また、以上のよ
うな溶射層はプラズマ溶射、火炎溶射等により形成せし
められ、溶射の条件は粉末の種類、粒径及ひ必要とされ
る多孔質層の気孔率等に応じて適宜決定される。
Also, empirically speaking, it is preferable for the particle size of the powder to be 3 .mu.m or more in order to form a uniform molten layer, and from the viewpoint of the layer thickness, a particle size of 150 .mu.m or less is used. Further, the sprayed layer as described above is formed by plasma spraying, flame spraying, etc., and the spraying conditions are appropriately determined depending on the type of powder, particle size, and porosity of the required porous layer. .

以上のような構造の溶射層をその触火面に有す)るエン
ジン部品は、その最表層部Aを緻密なセラミックス(セ
ラミックス粉末または金属被覆セラミックス粉末による
)で構成せしめることにより強度及び耐食性に優れたも
のとし、また中間層部Bと金属とセラミックスとにより
構成せしめると7ともに、最深層部Cを金属のみにより
構成せしめることにより、耐食性等を確保しつつ母材と
の密着性を確保し且つ層全体を強靭性に優れたものとす
ることができる。
Engine parts (which have a sprayed layer with the above structure on their contact surfaces) have improved strength and corrosion resistance by having their outermost layer A made of dense ceramics (based on ceramic powder or metal-coated ceramic powder). The intermediate layer B is made of metal and ceramics, and the deepest layer C is made of metal only, thereby ensuring corrosion resistance and adhesion to the base material. Moreover, the entire layer can be made to have excellent toughness.

特に中間層部は、その構成粉末として金属被覆セラミッ
クス粉末を含んでいるフため、最表層部Aと最深層部C
との間にあつてセラミックス材と金属との結合状態を良
好にし層全体の強靭性を得るのに役立つている。加えて
、中間層部Bに形成される多孔質層により優れた断熱性
を得ることができ、これによつて触火面からのエンジン
機外への熱放散を効果的に抑止することができるととも
に、このような優れた断熱性を有する多孔質層は、構成
粉末の粒径が層高方向中心側で最大となるような中間層
部の粒径構成、換言すれば表層側及び深層側の粒度が小
さい層高方向の粒度構成により補強されるため、優れた
断熱性を得さしめつつ十分な強度が確保される。第3図
は第2図イに示す如き溶射層をその触火面に形成せしめ
た弁棒の使用時における温度分布を示すもので、そのテ
ストエンジンの条件は以下の通りである。
In particular, the middle layer contains metal-coated ceramic powder as its constituent powder, so the outermost layer A and the deepest layer C
It serves to improve the bonding state between the ceramic material and the metal, thereby increasing the toughness of the entire layer. In addition, the porous layer formed in the intermediate layer part B can provide excellent heat insulation properties, thereby effectively suppressing heat dissipation from the contact surface to the outside of the engine. In addition, a porous layer with such excellent heat insulating properties has a particle size structure in the middle layer where the particle size of the constituent powder is maximum on the center side in the layer height direction, in other words, on the surface layer side and deep layer side. Since it is reinforced by the particle size structure in the layer height direction where the particle size is small, sufficient strength is ensured while providing excellent heat insulation properties. FIG. 3 shows the temperature distribution during use of a valve rod having a sprayed layer formed on its contact surface as shown in FIG. 2A, and the conditions of the test engine were as follows.

なお、温度測定は弁棒に熱電対を埋め込み、この熱電対
を介して行つたものである。シリンダ数;3気筒 シリンダ径;400Tfr!nφ 回転数;514rpm 出 力;1950PS (定格75%負荷) 図において、Iは溶射層、■は母材を示すものであるが
、aで示す本発明の弁棒はbで示す溶射層がない従来の
弁棒に較べ良好な断熱性を示しているのが判る。
Note that temperature measurement was performed via a thermocouple embedded in the valve stem. Number of cylinders: 3 cylinders Cylinder diameter: 400Tfr! nφ Rotation speed: 514 rpm Output: 1950 PS (75% rated load) In the figure, I indicates the sprayed layer and ■ indicates the base material, but the valve stem of the present invention, indicated by a, does not have the sprayed layer, indicated by b. It can be seen that it exhibits better heat insulation properties than conventional valve stems.

以上の如き断熱性を有する本発明のエンジン部品を用い
た場合、エンジンの排気温度を約50〜150℃上昇さ
せることができ、このため過給器において回収される熱
量を従来のエンジンより5%以上も増大させることがで
きる。
When using the engine parts of the present invention having heat insulating properties as described above, the exhaust temperature of the engine can be increased by about 50 to 150 degrees Celsius, and therefore the amount of heat recovered in the supercharger can be reduced by 5% compared to conventional engines. It is also possible to increase the amount by more than 100%.

また、これに伴い、排気管等の断熱補強を併せて行うこ
とにより、エンジン機関の熱効率を従来の50%程度か
ら60%程度まで向上させ得ることができる。また、.
従来のピストンヘッド、シリンダヘッド、シリンダライ
ナ等は、これらの耐久性を確保するための内壁側を水冷
していたが、本発明のエンジン部品では、その断熱層(
多孔質層)により母材温度を従来に較べ約100〜25
0℃下げることができるた!め、母材自体の耐久性を確
保することがてき、このため冷却方式を油冷または空冷
とすることも可能となり、これによつて更に排熱回収率
を増大させることも可能となる。なお、本発明で採用す
る溶射層の構造はエンジくン部品に限らず、一般的な断
熱を目的とした装置、部品、例えばゴミ焼却炉の熱回収
装置、その他の熱交換装置等、各種装置、部品に適用す
ることができる。
In addition, along with this, the thermal efficiency of the engine can be improved from about 50% to about 60% compared to the conventional method by reinforcing the heat insulation of the exhaust pipe and the like. Also,.
In conventional piston heads, cylinder heads, cylinder liners, etc., the inner walls were water-cooled to ensure their durability, but in the engine parts of the present invention, the heat insulating layer (
Porous layer) lowers the base material temperature by approximately 100 to 25% compared to conventional
It was possible to lower the temperature by 0℃! Therefore, the durability of the base material itself can be ensured, and for this reason, it is also possible to use oil cooling or air cooling as the cooling method, thereby making it possible to further increase the exhaust heat recovery rate. The structure of the sprayed layer adopted in the present invention is not limited to engine parts, but can also be applied to various devices such as devices and parts for general heat insulation, such as heat recovery devices for garbage incinerators, other heat exchange devices, etc. , can be applied to parts.

以上述べた本発明によれば、触火面にセラミックス及び
金属による溶射層を形成せしめ、しかもその溶射層の最
表層部を緻密なセラミックスで構成せしめることにより
、強度及び耐食性に優れたものとし、また中間層部を金
属とセラミックスとにより構成せしめるとともに、最深
層部を金属のみにより構成せしめることにより、耐食性
等を確保しつつ母材との密着性を確保し且つ層全体を強
靭性に優れたものとすることができる。
According to the present invention described above, a sprayed layer of ceramics and metal is formed on the contact surface, and the outermost layer of the sprayed layer is made of dense ceramics, thereby providing excellent strength and corrosion resistance. In addition, by making the intermediate layer part consist of metal and ceramics, and making the deepest layer part consist only of metal, it is possible to ensure corrosion resistance, adhesion with the base material, and to make the entire layer excellent in toughness. can be taken as a thing.

特に、中)間層部は、金属被覆セラミックス粉末をその
構成粉末として含むため、最表層部と最深層部との間に
あつてセラミックス材と金属との結合状態を確保し、層
全体の強靭性を適切に得さしめるものである。加えて、
中間層部に形成される多孔質層に・より優れた断熱性を
得ることができ、これによつて触火面自体を耐久性に優
れたものとすることができるとともに、その断熱効果に
より触火面からのエンジン機外への熱放散を効果的に抑
止することができ、このため従来に較ベエンジンの排気
温j度を大幅に上昇させ、その熱回収を効果的に行うこ
とができ、同時にエンジン機関の熱効率を従来より大き
く引き上げることができる。加えて、このような優れた
断熱性を有する多孔質層は、構成粉末の粒径が層高方向
中心側で最大となるような中間層部の粒径構成、換言す
れは表層側及び深層側の粒度が小さい層高方向の粒度構
成により補強されるため、優れた断熱性を得さしめつつ
十分な強度が確保され、触火面自体の耐久性をより優れ
たものとなし得る。また上記断熱効果によりエンジン部
品の母材温度を下げ、その母材自体の耐久性をも確保す
ることができる。しかも本発明は以上のような特徴を有
しながら、通常の溶射方式で極めて低コスト製造するこ
とができ、以上のことからその工業的利用価値が高い発
明である。
In particular, since the intermediate (intermediate) layer contains metal-coated ceramic powder as its constituent powder, it ensures the bond between the ceramic material and the metal between the outermost layer and the deepest layer, ensuring the strength of the entire layer. It allows people to enjoy their sexuality appropriately. In addition,
The porous layer formed in the intermediate layer can have better heat insulation properties, which makes the touch surface itself highly durable, and its heat insulation effect makes it easier to heat the touch. It is possible to effectively suppress heat dissipation from the fire surface to the outside of the engine, and for this reason, compared to the conventional method, the exhaust temperature of the engine can be significantly increased and the heat can be recovered effectively. At the same time, the thermal efficiency of the engine can be significantly increased compared to conventional methods. In addition, a porous layer with such excellent heat insulating properties has a particle size structure in the middle layer where the particle size of the constituent powder is maximum on the center side in the layer height direction, in other words, on the surface layer side and deep layer side. Since it is reinforced by the particle size structure in the layer height direction where the particle size is small, sufficient strength is ensured while providing excellent heat insulation properties, and the durability of the contact surface itself can be improved. Further, the heat insulating effect lowers the temperature of the base material of the engine parts and also ensures the durability of the base material itself. Furthermore, while the present invention has the above-mentioned characteristics, it can be manufactured at extremely low cost using a normal thermal spraying method, and for the above reasons, it is an invention with high industrial utility value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のエンジン部品が適用されたエンジン構
造を示す断面図である。 第2図イ〜二は本発明が採用する溶射層の諸態様を示す
説明図である。第3図は本発明をエンジンの弁棒に適用
した実験例における弁棒内温度分布を示すものである。
図において、6はセラミックス粉末、7は金属粉末、8
は金属被覆セラミックス粉末、Aは最表層部、Bは中間
層部、Cは最深層部、Dは母材、Eは多孔質層を各示す
FIG. 1 is a sectional view showing an engine structure to which the engine parts of the present invention are applied. FIGS. 2A to 2B are explanatory diagrams showing various aspects of the sprayed layer employed in the present invention. FIG. 3 shows the temperature distribution within the valve stem in an experimental example in which the present invention was applied to the valve stem of an engine.
In the figure, 6 is ceramic powder, 7 is metal powder, 8 is
1 indicates metal-coated ceramic powder, A indicates the outermost layer, B indicates the intermediate layer, C indicates the deepest layer, D indicates the base material, and E indicates the porous layer.

Claims (1)

【特許請求の範囲】[Claims] 1 触火面に、最表層部をセラミックス粉末又は金属被
覆セラミックス粉末による緻密なセラミックス層、最深
層部を金属層とし、且つ中間層部を、金属被覆セラミッ
クス粉末、または金属被覆セラミックス粉末と金属粉末
とからなり、構成粉末の粒径が層高方向中心側で最大と
なるよう構成され、該粒径構成により少なくともその一
部に多孔質層が形成された層とする溶射層を形成せしめ
てなる触火面を有するエンジン用部品。
1 On the contact surface, the outermost layer is a dense ceramic layer made of ceramic powder or metal-coated ceramic powder, the deepest layer is a metal layer, and the middle layer is metal-coated ceramic powder or metal-coated ceramic powder and metal powder. The particle size of the constituent powder is maximized on the center side in the layer height direction, and the particle size structure forms a sprayed layer in which a porous layer is formed at least in a part of the layer. Engine parts with contact surfaces.
JP56113019A 1981-07-21 1981-07-21 Engine parts with contact surfaces Expired JPS6055699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56113019A JPS6055699B2 (en) 1981-07-21 1981-07-21 Engine parts with contact surfaces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56113019A JPS6055699B2 (en) 1981-07-21 1981-07-21 Engine parts with contact surfaces

Publications (2)

Publication Number Publication Date
JPS5815742A JPS5815742A (en) 1983-01-29
JPS6055699B2 true JPS6055699B2 (en) 1985-12-06

Family

ID=14601397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56113019A Expired JPS6055699B2 (en) 1981-07-21 1981-07-21 Engine parts with contact surfaces

Country Status (1)

Country Link
JP (1) JPS6055699B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925058A (en) * 1982-08-04 1984-02-08 Toyota Motor Corp Cylinder for internal combustion engine
JPS6058824U (en) * 1983-09-30 1985-04-24 いすゞ自動車株式会社 Insulation structure of engine combustion chamber wall
JPS60184949A (en) * 1984-03-05 1985-09-20 Isuzu Motors Ltd Exhaust port of internal-combustion engine having inner face applied with heat insulating material
EP0217991A1 (en) * 1985-10-04 1987-04-15 Repco Limited Ceramic material coatings
JPS6166846A (en) * 1984-09-11 1986-04-05 Isuzu Motors Ltd Cylinder head for ceramics insulating engine
JPS61268850A (en) * 1985-05-23 1986-11-28 Isuzu Motors Ltd Construction of heat insulating wall in heat engine or the like
DE8816295U1 (en) * 1988-03-02 1989-07-06 Heinzel, Winfried, 7758 Meersburg Coated plate for household appliances
WO1993005194A1 (en) * 1991-09-05 1993-03-18 Technalum Research, Inc. Method for the production of compositionally graded coatings
JP4644332B2 (en) * 2000-04-06 2011-03-02 有限会社小川節夫研究所 Exterior wall material
DE102012025283A1 (en) * 2012-12-21 2014-06-26 Mahle International Gmbh Piston useful for an internal combustion engine comprises a piston head comprising a piston base and a peripheral piston junk and a piston shaft
JP6168034B2 (en) * 2014-11-21 2017-07-26 トヨタ自動車株式会社 Thermal spray coating, engine having the same, and method for forming thermal spray coating
US10480448B2 (en) * 2016-03-09 2019-11-19 Ford Motor Company Cylinder bore having variable coating

Also Published As

Publication number Publication date
JPS5815742A (en) 1983-01-29

Similar Documents

Publication Publication Date Title
US8813734B2 (en) Heat-insulating structure
US10519854B2 (en) Thermally insulated engine components and method of making using a ceramic coating
US5384200A (en) Thermal barrier coating and method of depositing the same on combustion chamber component surfaces
EP0261726B1 (en) Pistons
JPH0250173B2 (en)
JPS6055699B2 (en) Engine parts with contact surfaces
JP2004507620A (en) Thermal insulation coating system for turbine parts
JPH0131030B2 (en)
JPS5842149B2 (en) A combination between a ceramic part and a metal part
GB2125516A (en) Ceramic insert for metal piston
US4648308A (en) Internal combustion engine piston and a method of producing the same
US10851711B2 (en) Thermal barrier coating with temperature-following layer
US20190194812A1 (en) Gap-filling sealing layer of thermal barrier coating
JPH0350830B2 (en)
JP6065389B2 (en) Thermal insulation structure and manufacturing method thereof
US4775548A (en) Method for producing ceramic composition having low friction coefficient at high operating temperatures
JP2920004B2 (en) Cast-in composite of ceramics and metal
US4892849A (en) Ceramic composition having low friction coefficient at high operating temperatures
JPS6027820B2 (en) Method for manufacturing combustion chamber components for internal combustion engines
JPH028894B2 (en)
JPH0223767Y2 (en)
US10578049B2 (en) Thermal barrier coating for engine combustion component
JPH0726187B2 (en) Method of forming adiabatic sprayed layer
JPS646274B2 (en)
JPH01142246A (en) Combustion-chamber component of internal combustion engine on which heat-insulating coating is executed