JPS6055198B2 - Wastewater treatment and denitrification method - Google Patents

Wastewater treatment and denitrification method

Info

Publication number
JPS6055198B2
JPS6055198B2 JP12817277A JP12817277A JPS6055198B2 JP S6055198 B2 JPS6055198 B2 JP S6055198B2 JP 12817277 A JP12817277 A JP 12817277A JP 12817277 A JP12817277 A JP 12817277A JP S6055198 B2 JPS6055198 B2 JP S6055198B2
Authority
JP
Japan
Prior art keywords
sewage
tank
wastewater
soil
capillary siphon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12817277A
Other languages
Japanese (ja)
Other versions
JPS5462653A (en
Inventor
正 新見
寿眞子 薮本
正彰 新見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP12817277A priority Critical patent/JPS6055198B2/en
Publication of JPS5462653A publication Critical patent/JPS5462653A/en
Publication of JPS6055198B2 publication Critical patent/JPS6055198B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Treatment Of Biological Wastes In General (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】 本発明は汚水の処理兼脱窒方法に関する。[Detailed description of the invention] The present invention relates to a method for treating and denitrifying wastewater.

従来行なわれている活性汚泥法や散水枦床法のような汚
水の生物的処理法では汚水の総窒素の除去率は非常に低
く、他の高級処理法といわれていjる濾過、凝集、活性
炭吸着法などでも汚水中の燐の除去は可能でも総窒素の
除去は非常に困難である。
Conventional biological treatment methods for wastewater, such as the activated sludge method and the sprinkling bed method, have a very low removal rate of total nitrogen from wastewater. Although it is possible to remove phosphorus from wastewater using adsorption methods, it is extremely difficult to remove total nitrogen.

僅かに実施可能な汚水の脱窒方法として土壌浄化法が期
待されるが、それもアンモニア性窒素を硝酸にまで酸化
するだけで、総窒素の除去は期待できないのが実状であ
る。
The soil purification method is expected to be a slightly viable denitrification method for wastewater, but the reality is that it only oxidizes ammonia nitrogen to nitric acid and cannot be expected to remove the total nitrogen.

この土壌浄化法の改良法としてトレンチ溝方式に毛管サ
イフオン浸潤法を追加した新らしい汚水の処理方法並に
装置が本発明者新見等によつて発明(特許第54244
?,第58261汚,第590927号)されているが
、これらの発明も汚水の総窒素を除去するまでには到ら
ず、もつぱら有機物の分解、大腸菌などの殺菌を目標と
するものである。また特許第610783号の人工浄化
砂も汚水処理における硝化能を促進するだけにとどまり
、汚水の総窒素を除去することは可能でない。このよう
に従来の汚水処理技術では汚水の総窒素の除去が低いと
いう欠点があつたが、この欠点を解決したのが本発明で
ある。
As an improvement to this soil purification method, a new sewage treatment method and device were invented by Niimi et al. (Patent No. 54244), which added a capillary siphon infiltration method to the trench method.
? , No. 58261, No. 590927), but these inventions do not go so far as to remove the total nitrogen from sewage, but only aim at decomposing organic matter and sterilizing Escherichia coli. Moreover, the artificial purifying sand of Patent No. 610783 only promotes nitrification ability in wastewater treatment, and is not capable of removing total nitrogen from wastewater. As described above, conventional sewage treatment techniques had the disadvantage that removal of total nitrogen from sewage was low, but the present invention solves this disadvantage.

すなわち、本発明は不透水性の槽を土中に埋設し、その
槽の内部からその上端を越えて堆積された層状をなすよ
うな毛管サイフオン運動を促進せしめる材料の層を設け
、また上記槽の底面から土壌表面に到る間に有孔管を設
け、この有孔管を汚水導入管に連結し、有孔管より汚水
を汚水面が上記槽の上面より底面に到る適当な位置にあ
るように供給したのち、汚水の供給をとめ、上記毛管サ
イフオン運動を促進せしめる材料の層における毛管サイ
フオン運動により汚水が上記槽外に排出されて汚水面が
適当に下つたとき再び汚水の供給を上記の如く行なつた
のち、再び汚水の供給をとめ毛管サイフオン運動により
汚水を上記槽外に排出させるというように汚水の供給と
排出を繰り返すことを特徴とする汚水の処理兼脱窒方法
である。
That is, the present invention involves burying a water-impermeable tank in the ground, providing a layer of material that promotes capillary siphon movement in a layered manner deposited from the inside of the tank over its upper end, and A perforated pipe is provided between the bottom of the tank and the soil surface, and this perforated pipe is connected to a sewage introduction pipe, and the sewage is transferred from the perforated pipe to an appropriate position where the sewage surface reaches the bottom from the top of the tank. After supplying the sewage to a certain level, the supply of sewage is stopped, and when the sewage is discharged out of the tank due to the capillary siphon movement in the layer of material that promotes the capillary siphon movement and the sewage level has fallen appropriately, the supply of sewage is restarted. After carrying out the above-mentioned process, the supply of wastewater is stopped again and the wastewater is discharged outside the tank by capillary siphon movement.This method is characterized by repeating the supply and discharge of wastewater. .

以下、本発明の構成および効果について詳細に説明する
。本発明においては不透水性の槽を土中に埋設する。
Hereinafter, the configuration and effects of the present invention will be explained in detail. In the present invention, an impermeable tank is buried in the soil.

槽の大きさは処理される汚水の水質によつて決められる
が、通常巾は30〜100cm位、長さは1m以上、好
ましくは1WL〜50TrI,位、深さは10〜100
cm位、好ましくは30〜1(1)d位の槽が適当であ
る。例えば台所や浴湯からの排水のような窒素濃度の低
い汚水の処理には巾30cm1長さ10〜100m1深
さ10〜(イ)d1好ましくは30〜印dの槽が適当で
あり、また例えば家畜のし尿のような窒素濃度の高い汚
水を処理する場合には、沈澱槽や貯溜槽と組合わせ巾6
0〜100cm1長さ10〜1007TL1深さ100
C71となるべく細長い構造の槽が好ましい。槽の材料
としては、例えばコンクリート、ゴム膜、合成樹脂膜(
例えばポリエチレン膜など)などが用いられ、コンクリ
ート槽の場合は現地打またはプレハブ組立で埋設が行な
われる。槽の埋設は槽の上端が土壌表面から10〜10
0cmの位置、好ましくは20〜50C77!の位置に
あるように埋設するのがよい。
The size of the tank is determined by the quality of the wastewater to be treated, but usually the width is about 30 to 100 cm, the length is 1 m or more, preferably 1 WL to 50 TrI, and the depth is 10 to 100 cm.
A tank of about 30 to 1(1) cm in size is suitable. For example, a tank with a width of 30 cm, a length of 10 to 100 m, a depth of 10 to (a) d, and preferably 30 to d is suitable for treating sewage with a low nitrogen concentration, such as wastewater from kitchens and baths. When treating wastewater with a high nitrogen concentration such as livestock excrement, it is necessary to use a sedimentation tank or storage tank with a width of 6.
0~100cm1 length 10~1007TL1 depth 100
A tank with an elongated structure such as C71 is preferable. Examples of tank materials include concrete, rubber membrane, synthetic resin membrane (
For example, polyethylene membranes, etc.) are used, and in the case of concrete tanks, burying is done by pouring on-site or by prefabricated assembly. When burying the tank, the upper end of the tank should be 10 to 10 meters below the soil surface.
0cm position, preferably 20-50C77! It is best to bury it so that it is located at

つぎに、上記槽の内部からその上端を越えて堆積された
層状をなすような毛管サイフオン運動を促進せしめる材
料の層を設ける。
A layer of material is then provided which promotes capillary siphon movement in a layered manner deposited from the interior of the vessel over its top.

この材料としては、例えばパーライト、泥炭、クリンカ
ー(火力発電所で生産される石炭灰)、火山礫、レンガ
砂などの人工浄化砂、連通空隙を有するスポンジ性樹脂
、団粒構造を有する土壌、珊瑚礁の石粒、軽石粒、粗砂
、砂利からなる群から選ばれる1つまたは2以上が用い
られる。
Examples of this material include perlite, peat, clinker (coal ash produced at thermal power plants), volcanic lapilli, artificially purified sand such as brick sand, spongy resin with continuous voids, soil with an aggregate structure, and coral reefs. One or more selected from the group consisting of stone grains, pumice grains, coarse sand, and gravel are used.

この毛管サイフオン運動を促進せしめる材料の層は、上
記の土中に埋設した槽の内部からその上端を越えて層状
に堆積される。この場合、槽の上端を越える程度は槽の
上端より5cm以上、好ましくは5〜20cmであるの
がよい。つぎに上記槽の底面から土壌表面に到る間、好
適には上記毛管サイフオン運動を促進せしめる材料の層
中に有孔管を設け、この有孔管を汚水導入管に連結する
A layer of material that promotes capillary siphon movement is deposited in layers from the interior of the buried tank above the top thereof. In this case, the amount exceeding the upper end of the tank is preferably 5 cm or more, preferably 5 to 20 cm from the upper end of the tank. A perforated pipe is then provided between the bottom of the tank and the soil surface, preferably in the layer of material that promotes capillary siphon movement, and this perforated pipe is connected to the sewage inlet pipe.

有孔管は管の全周辺に沢山の小孔が開口したもので、通
常農業用の暗渠排水管に用いるために開発されたもの(
管径は直径50Twtと65順の2種類)を便利に使用
することができるが、これに限られることはない。
Perforated pipes have many small holes around the entire circumference of the pipe, and were usually developed for use in agricultural culvert drainage pipes (
Two types of pipe diameters, 50 Twt and 65 Twt, can be conveniently used, but the pipe diameter is not limited to this.

そして有孔管の材質としてはコルゲート管または塩ビ管
が適当である。つぎに本発明で処理される汚水としては
、例えば台所や浴場の廃水やし尿のような生活廃水、家
畜の糞尿のような家畜廃水、重金属を含まない工業廃水
(例えば食品工場からの廃水)などが挙げられる。
Corrugated pipe or PVC pipe is suitable as the material for the perforated pipe. Next, the wastewater to be treated in the present invention includes, for example, domestic wastewater such as kitchen and bathroom wastewater and night soil, livestock wastewater such as livestock manure, and industrial wastewater that does not contain heavy metals (e.g. wastewater from food factories). can be mentioned.

なお汚水には必要に応じて炭素源、例えばブドウ糖など
の糖類、時によつてはメタノールなどを添加して有孔管
から供給すると、脱窒を促進する効果があるのて好まし
い。本発明ではこれら汚水を例えばポンプにより汚水導
入管に流し、汚水導入管に連結する有孔管より排出させ
る。
It is preferable to add a carbon source, for example, sugars such as glucose, or sometimes methanol, to the wastewater as necessary and supply it through a perforated pipe, since this has the effect of promoting denitrification. In the present invention, the wastewater is passed through a wastewater introduction pipe using, for example, a pump, and is discharged from a perforated pipe connected to the wastewater introduction pipe.

この有孔管から排出された汚水は上記槽が不透水性であ
るので、槽内に湛水し、槽の上面より底面に到る適当位
置に汚水面を形成する。そこで汚水の供給をとめると、
上記毛管サイフオン運動を促進せしめる材料の層におけ
る毛管サイフオン運動により汚水は槽外に排出し、一部
は土壌面からの蒸発および植物根からの蒸散となるが、
その他は土壌中に浸潤し重力水となつて地下水面に到る
。したがつて上記槽内の汚水面は汚水の供給の停止によ
り下がり、場合によつては槽の底面近くまで下がる。こ
こで再び上記のようにして有孔管より汚水を供給すると
槽内の汚水面は上がり、汚水面が適当に上がつたところ
で汚水の供給を停止すると槽内の汚水面は再び下がる。
このように汚水の供給が間断的であると、槽内の汚水面
は高い位置から低い位置の間を上下する。この上下の高
さは、毛管サイフオン運動を促進せしめる材料の種類、
性質および毛管サイフオン運動能力、汚水の量、土壌の
浸潤能などで定まる値であるが、通常1日に20w!n
〜300?位である。また1日に何回汚水面の水位を変
動させるかについては汚水の供給方式によつて異なるの
で一様でないが、汚水の供給および停止による汚水面の
最高水位と最低水位を予め設計し、最高水位になれは汚
水を停止し、最低水位になれば汚水の供給を始めるとい
うようにするのがよい。ところで土壌中において汚水の
総窒素の除去を完全にするためには、硝化と脱窒の双方
を実施するより他はない。
Since the tank is impermeable, the wastewater discharged from the perforated pipe floods the tank and forms a wastewater surface at an appropriate position from the top to the bottom of the tank. When the sewage supply is stopped,
Due to capillary siphon movement in the layer of material that promotes capillary siphon movement, wastewater is discharged outside the tank, and some of it evaporates from the soil surface and transpires from plant roots.
Others infiltrate into the soil and reach the groundwater table as gravity water. Therefore, the sewage level in the tank drops when the supply of sewage is stopped, and in some cases, it drops to near the bottom of the tank. Here, when sewage is again supplied from the perforated pipe as described above, the sewage level in the tank rises, and when the sewage level rises to an appropriate level, when the supply of sewage is stopped, the sewage level in the tank falls again.
If the supply of sewage water is intermittent in this way, the sewage level in the tank fluctuates between a high position and a low position. This vertical height depends on the type of material that promotes capillary siphon movement,
The value is determined by the nature, capillary siphon movement ability, amount of sewage, soil infiltration ability, etc., but normally 20W per day! n
~300? It is the rank. In addition, the number of times a day the water level of the sewage surface is changed is not uniform because it differs depending on the sewage supply method, but the highest and lowest water levels of the sewage surface due to supply and stop of sewage are designed in advance, and the maximum It is best to stop the sewage supply when the water level reaches the lowest level, and start sewage supply when the water level reaches the lowest level. By the way, in order to completely remove the total nitrogen from wastewater in the soil, there is no choice but to carry out both nitrification and denitrification.

そして土壌中における硝化は好気状態における好気性微
生物により、一方脱窒は嫌気状態における嫌気性微生物
により行なわれる。そこで上記したように、有孔管より
汚水を供給して上記槽内に湛水させ汚水面が上記槽内の
適当位置にあるようにして汚水の供給を停止すると、汚
水中に溶存酸素がある限りは槽内の汚水面以下は好気状
態となり好気性微生物による硝化が行なわれるが、溶存
酸素が好気性微生物によつて消費され槽内の汚水面下が
嫌気状態になると嫌気性微生物による脱窒が進行し、こ
れは次の汚水が供給されるまでつづき、その間に硝化お
よび脱窒された汚水は上記したように毛管サイフオン運
動を促進せしめる材料の層における毛管サイフオン運動
により槽外に排出され、汚水面は下がる。
Nitrification in soil is carried out by aerobic microorganisms under aerobic conditions, while denitrification is carried out by anaerobic microorganisms under anaerobic conditions. Therefore, as mentioned above, when sewage is supplied through a perforated pipe, the tank is filled with water, and the sewage surface is at an appropriate position in the tank, and the supply of sewage is stopped, there is dissolved oxygen in the sewage. For a long time, the area below the sewage surface in the tank will be in an aerobic state and nitrification will occur by aerobic microorganisms, but if the dissolved oxygen is consumed by aerobic microorganisms and the area below the sewage surface in the tank becomes anaerobic, desorption by anaerobic microorganisms will occur. Nitrification progresses and this continues until the next supply of wastewater, during which time the nitrified and denitrified wastewater is discharged out of the tank by capillary siphon movement in the layer of material that promotes capillary siphon movement as described above. , the sewage level will fall.

汚水面がある程度まで下がつたところで次の汚水が供給
されて汚水面が上がると、汚水中の溶存酸素により槽内
の汚水面下は好気状態になり好気性微生物による硝化が
行なわれるが、溶存酸素が好気性微生物によつて消費さ
れ、槽内の汚水面下が嫌気状態になると嫌気性微生物に
よる脱窒が進行し、これは次の汚水が供給されるまでつ
づき、その間に硝化および脱窒された汚水は上記したよ
うにして槽外に排出される。このように硝化および脱窒
され槽外に排出された汚水はそこで再び土壌微生物によ
り地表近くが好気状態にある場合には好気性微生物によ
り硝化され、また嫌気状態にある楊合には嫌気性微生物
により脱窒され、一部は土壌面からの蒸発および植物根
からの蒸散となるが、その他は土壌中に浸潤し重力水と
なつて地下水面に到る。
Once the sewage level has fallen to a certain level, the next sewage is supplied and the sewage level rises.The area below the sewage surface in the tank becomes aerobic due to the dissolved oxygen in the sewage, and nitrification is carried out by aerobic microorganisms. When dissolved oxygen is consumed by aerobic microorganisms and the surface of the wastewater in the tank becomes anaerobic, denitrification by the anaerobic microorganisms proceeds until the next wastewater is supplied, during which time nitrification and denitrification occur. The nitrified wastewater is discharged outside the tank as described above. The wastewater that has been nitrified and denitrified and discharged outside the tank is nitrified by soil microorganisms again by aerobic microorganisms when near the ground surface is in an aerobic state, and nitrified by aerobic microorganisms when the ground is in an anaerobic state. It is denitrified by microorganisms, and some of it evaporates from the soil surface and transpires from plant roots, but the rest infiltrates into the soil and reaches the groundwater table as gravity water.

この地下水は硝化および脱窒された地下水である。つぎ
に本発明をなお一層よく理解できるように、図面につい
て説明する。
This groundwater is nitrified and denitrified groundwater. In order to further understand the invention, reference will now be made to the drawings.

第1図は土中に埋設した1つの不透水性の槽を縦断し正
面から見た図であり、第2図は同じ槽を縦断し側面から
見た図であり、第3図は土中に埋設した2つの不透水性
の槽を縦断し正面から見た図である。図中、1は土中に
埋設した不透水性の槽であり、2はその槽1の内部から
のその上端を越えて堆積された毛管サイフオン運動を促
進せしめる材料の層(この図面では下部が火山砂、上部
が砂利となつている)であり、3は必要に応じて該層2
と表面土壌4との境界に設けたアミであり、5は汚水導
入管6に連結している有孔管である。アミ3は表面土壌
4が毛管サイフオン運動を促進せしめる材料の層2中に
、また有孔管5中に落下しな”いように設けられるもの
で、表面土壌4の粒子の径と層2の粒子の径とが接近し
ている場合にはアミは必要としない。汚水を汚水導入管
6に流入し有孔管5より排出させると、汚水は槽1内に
湛水し槽1の上面より門底面に到る適当位置に汚水面を
形成する。そして汚水の供給をとめたときの汚水面即ち
最高汚水面が7である。汚水の供給停止後、層2におけ
る毛管サイフオン運動により汚水は槽1外に排出され汚
水面が最低汚水面8に下がつたとき、汚水の供ノ給を行
なつて汚水面を7まで上げる。このようにして有孔管5
よりの汚水の供給および停止により汚水面は7と8の間
を上下し、その間に上述した硝化および脱窒が行われる
のである。9は槽1外に排水された汚水の経路を示すも
ので、一部は土壌表面10からの蒸発および植物11の
根からの蒸散となるが、その他は土壌中に浸潤し重力水
となつて地下水面に到る。
Figure 1 is a vertical cross-sectional view of an impermeable tank buried in the soil and viewed from the front, Figure 2 is a vertical cross-sectional view of the same tank and viewed from the side, and Figure 3 is a vertical view of the same tank buried in the soil. Fig. 2 is a longitudinal cross-sectional view of two impermeable tanks buried in the tank, seen from the front. In the figure, 1 is an impermeable tank buried in the soil, and 2 is a layer of material that promotes capillary siphon movement deposited from the inside of tank 1 over its upper end (in this drawing, the lower part is (volcanic sand, the upper part is gravel), and 3 is the layer 2 as necessary.
and surface soil 4, and 5 is a perforated pipe connected to a wastewater introduction pipe 6. The sill 3 is provided to prevent the surface soil 4 from falling into the layer 2 of the material that promotes capillary siphon movement and into the perforated tube 5. If the diameters of the particles are close to each other, no mesh is required.When wastewater flows into the wastewater introduction pipe 6 and is discharged from the perforated pipe 5, the wastewater floods into the tank 1 and flows from the top of the tank 1. A sewage surface is formed at an appropriate position reaching the bottom surface of the gate.The sewage surface when the sewage supply is stopped, that is, the highest sewage surface is 7.After the sewage supply is stopped, the sewage flows into the tank due to capillary siphon movement in layer 2. 1 When the sewage is discharged outside and the sewage level drops to the lowest sewage level 8, sewage is supplied to raise the sewage level to 7. In this way, the perforated pipe 5
The sewage level rises and falls between 7 and 8 as the sewage water is supplied and stopped, and the above-mentioned nitrification and denitrification occur during this period. 9 shows the route of wastewater drained outside the tank 1. Some of it evaporates from the soil surface 10 and transpires from the roots of plants 11, but the rest infiltrates into the soil and becomes gravity water. reaches the groundwater table.

第3図は傾斜地(例えば道路のり面、山林など)の土壌
に不透水性の槽1を2つ落差を設けて埋設した場合を示
すもので、このようにすると2段目の槽1においては有
孔管5よりの汚水が前段の槽1の処理水によつて稀釈さ
れ、これが硝化、脱窒されて水処理効果は非常に増加す
る。
Figure 3 shows a case where two impermeable tanks 1 are buried in the soil of a slope (for example, a road slope, a mountain forest, etc.) with a head difference. The wastewater from the perforated pipe 5 is diluted by the treated water from the tank 1 in the previous stage, and this is nitrified and denitrified, greatly increasing the water treatment effect.

なお第3図中、12は母岩または自然の不透水層、13
は地下水の移動方向、14は浸出水、15は土止め工を
示す。通常土壌中の硝化、脱窒は1イ当り1E1+こ5
〜50′前後が可能で、本発明による硝化および脱窒に
よる汚水の総窒素の除去率は非常に高いものである。
In Figure 3, 12 is the host rock or natural impermeable layer, 13
14 indicates the moving direction of groundwater, 14 indicates leachate, and 15 indicates the earth retaining structure. Normally, nitrification and denitrification in soil are 1E1 + 5 per liter.
~50' is possible, and the removal rate of total nitrogen from wastewater by nitrification and denitrification according to the present invention is extremely high.

そして本発明によると、汚水中の窒素の除去以外に例え
ば有機物は95%、浮遊物質は部%、大腸菌は99%、
動植物油は部%、リンは99%の除去率を示すことがで
きる。なお、地表面に植物を植えたり、表面土壌に土壌
動物の活動を加えると、汚水の処理効果は更に増加する
According to the present invention, in addition to removing nitrogen in wastewater, for example, organic matter is 95%, suspended solids are 99%, Escherichia coli is 99%,
It is possible to show a removal rate of 1% for animal and vegetable oils and 99% for phosphorus. Furthermore, if plants are planted on the ground surface or soil animal activity is added to the surface soil, the wastewater treatment effect will further increase.

本発明により処理され脱窒された処理水は地下水域に貯
溜され地下水汚染を招来することなく再び有効に利用す
ることができる。
The treated water treated and denitrified according to the present invention is stored in an underground water body and can be effectively used again without contaminating the ground water.

つぎに本発明の実施例を示すが、本発明はこれにより制
限されるものではない。
Next, examples of the present invention will be shown, but the present invention is not limited thereto.

実施例 コンクリートを材料とする不透水性の巾30c1n、深
さ0a1長さ10mの槽を、一般の腐植まじりの.関東
ローム土壌中に埋設し、槽の上端を地表より20Cr1
,下方に位置させる。
Example A water-impermeable tank made of concrete with a width of 30cm, a depth of 0a, and a length of 10m was filled with ordinary humus. Buried in Kanto loam soil, with the upper end of the tank raised 20Cr1 from the ground surface.
, located below.

平均直径0.6顛の火山砂を槽の底面よりるdの高さに
まで満たし、この砂層の上辺中央に槽の長辺に平行に径
50Tnの孔あき塩ビ管を設置し、その一方の末端を汚
水導入管に一連結する。この火山砂の層の上方15CI
!tまでに砂山を山形状に積み、さらにその砂利の上面
にアミ目の間隔が2〜3TIr1nになつている合成樹
脂製アミで土壌中で分解しないものを全面にかぶせる。
つぎに水洗便所からの排水(総窒素量ケルダール法で1
00ppm)の汚水導入管および穴あき塩ビ管を通して
の上記槽への供給を、汚水導入管と上記槽との間に設置
したポンプにより3時間おきに開始する。即ち汚水導入
管から孔あき塩ビ管を通しての上記槽への排水の供給を
数分間行ない、ついで3時間排水の供給をとめ、排水の
供給停止3″時間後に再びポンプを数分動かして排水の
供給を行なうようにする。このようにすると汚水面は上
記槽の上端を越えることなく、この間の汚水面の水位変
動の高さはWO前後となる。そして上記槽の上辺より水
平に約2TrL離れたところ迄の全部の浸潤水を採水し
測定できるように実験的に集水装置を設け、毛管運動に
より上記槽外に排出される処理水を集水する。
The tank was filled with volcanic sand with an average diameter of 0.6 square meters to a height of d from the bottom of the tank, and a perforated PVC pipe with a diameter of 50Tn was installed parallel to the long side of the tank at the center of the upper side of this sand layer, and one of the Connect the end to the wastewater inlet pipe. 15 CI above this layer of volcanic sand
! By t, sand piles are piled up in a mountain shape, and the upper surface of the gravel is further covered with a synthetic resin filament that does not decompose in the soil and has a filament interval of 2 to 3 TIr1n.
Next, drain water from the flush toilet (total nitrogen content 1 by Kjeldahl method)
00 ppm) to the tank through the sewage inlet pipe and the perforated PVC pipe is started every 3 hours by a pump installed between the sewage inlet pipe and the tank. That is, wastewater is supplied from the wastewater inlet pipe to the above tank through the perforated PVC pipe for several minutes, then the supply of wastewater is stopped for 3 hours, and after 3" hours after the supply of wastewater has stopped, the pump is operated again for several minutes to supply wastewater. In this way, the sewage surface will not exceed the top of the tank, and the height of the water level fluctuation during this period will be around WO.Then, the sewage surface will not exceed the top of the tank, and the height of the water level fluctuation during this period will be around WO. A water collection device was installed experimentally so that all the infiltrated water up to the point could be sampled and measured, and the treated water discharged outside the tank by capillary movement was collected.

この集水した水の総窒素量をケルダール法で測定すると
10ppm以下であることが認められた。
When the total nitrogen content of this collected water was measured using the Kjeldahl method, it was found to be 10 ppm or less.

このことから、本実施例によると、総窒素量100pp
mの水洗便所よりの排水が10ppm以下に脱窒された
ことがわかる。
From this, according to this example, the total nitrogen amount is 100 pp.
It can be seen that the wastewater from the flush toilets of 300 m was denitrified to 10 ppm or less.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の説明図であり、第1図は土中に埋設した
1つの不透水性の槽を縦断し正面から見た図であり、第
2図は同じ槽を縦断し側面から見た図であり、第3図は
土中に埋設した2つの不透水性の槽を縦断し正面から見
た図である。 1・・・・・・不透水性の槽、2・・・・・・毛管サィ
フオン運動を促進せしめる材料の層、3・・・・・・ア
ミ、4・・・・・・表面土壌、5・・・・・・有孔管、
6・・・・・・汚水導入管、7・・・・・・最高汚水面
、8・・・・・・最低汚水面、9・・・・・・槽1外に
排出された汚水の経路、10・・・・・・土壌表面、1
1・・・・・・植物、12・・・・・・母岩または自然
の不透水層、13・・・・・・地下水の移動方向、14
・・・・・・浸出水、15・・・・・・土止め工。
The drawings are explanatory diagrams of the present invention; Figure 1 is a vertical cross-sectional view of one impermeable tank buried in the soil and seen from the front, and Figure 2 is a vertical cross-sectional view of the same tank seen from the side. FIG. 3 is a longitudinal cross-sectional view of two impermeable tanks buried in the soil and viewed from the front. 1... Impermeable tank, 2... Layer of material that promotes capillary siphon movement, 3... Ame, 4... Surface soil, 5 ...perforated pipe,
6... Sewage introduction pipe, 7... Maximum sewage level, 8... Minimum sewage level, 9... Route of sewage discharged outside tank 1. , 10... Soil surface, 1
1... Plants, 12... Host rock or natural impermeable layer, 13... Direction of movement of groundwater, 14
...Leachate, 15...Earth retaining work.

Claims (1)

【特許請求の範囲】 1 不透水性の槽を土中に埋設し、その槽の内部からそ
の上端を越えて堆積された層状をなすような毛管サイフ
オン運動を促進せしめる材料の層を設け、また上記槽の
底面から土壌表面に到る間に有孔管を設け、この有孔管
を汚水導入管に連結し、有孔管より汚水を汚水面が上記
槽の上面より底面に到る適当位置にあるように供給した
のち、汚水の供給をとめ、上記毛管サイフオン運動を促
進せしめる材料の層における毛管サイフオン運動により
汚水が上記槽外に排出されて汚水面が適当に下つたとき
再び汚水の供給を上記の如く行なつたのち、再び汚水の
供給をとめ毛管サイフオン運動により汚水を上記槽外に
排出させるというように汚水の供給と排出を繰り返すこ
とを特徴とする汚水の処理兼脱窒方法。 2 槽の上端が土壌表面から10〜100cmの位置、
好ましくは20〜50cmの位置にあるように不透水性
の槽を埋設する特許請求の範囲第1項記載の汚水の処理
兼脱窒方法。 3 毛管サイフオン運動を促進せしめる材料の層を、そ
の上面が槽の上端より5cm以上上の位置にあるように
設ける特許請求の範囲第1項記載の汚水の処理兼脱窒方
法。 4 毛管サイフオン運動を促進せしめる材料の層を、そ
の上面が槽の上端より5〜20cm上の位置にあるよう
に設ける特許請求の範囲第3項記載の汚水の処理兼脱窒
方法。 5 毛管サイフオン運動を促進せしめる材料としてパー
ライト、泥炭、クリンカー、火山礫、レンガ砂などの人
工浄化砂、連通空隙を有するスポンジ性樹脂、団粒構造
を有する土壌、珊瑚礁の石粒、軽石粒、粗砂、砂利から
なる群から選ばれる1つまたは2以上が用いられる特許
請求の範囲第1項記載の汚水の処理兼脱窒方法。 6 汚水として炭素源を添加した汚水を有孔管より供給
する特許請求の範囲第1項記載の汚水の処理兼脱窒方法
[Claims] 1. An impermeable tank is buried in the soil, and a layer of material that promotes capillary siphon movement is deposited from the inside of the tank over its upper end, and A perforated pipe is provided between the bottom of the tank and the soil surface, and this perforated pipe is connected to a sewage introduction pipe, and the sewage is delivered from the perforated pipe to an appropriate position where the sewage surface reaches the bottom from the top of the tank. After the sewage is supplied as shown in , the supply of sewage is stopped, and when the sewage is discharged out of the tank by the capillary siphon movement in the layer of material that promotes the capillary siphon movement, and the sewage level has fallen appropriately, the sewage is supplied again. A method for treating and denitrifying sewage characterized by repeating the supply and discharge of the sewage by stopping the supply of the sewage again and discharging the sewage to the outside of the tank by capillary siphon movement. 2. The top of the tank is 10 to 100 cm from the soil surface,
The method for treating and denitrifying wastewater according to claim 1, wherein a water-impermeable tank is buried preferably at a distance of 20 to 50 cm. 3. The wastewater treatment and denitrification method according to claim 1, wherein the layer of material that promotes capillary siphon movement is provided so that its upper surface is located at least 5 cm above the upper end of the tank. 4. The wastewater treatment and denitrification method according to claim 3, wherein the layer of material that promotes capillary siphon movement is provided so that its upper surface is located 5 to 20 cm above the upper end of the tank. 5. Materials that promote capillary siphon movement include perlite, peat, clinker, volcanic lapilli, artificially purified sand such as brick sand, sponge resin with continuous voids, soil with aggregate structure, coral reef stone grains, pumice grains, and coarse grains. The wastewater treatment and denitrification method according to claim 1, wherein one or more selected from the group consisting of sand and gravel are used. 6. The wastewater treatment and denitrification method according to claim 1, wherein wastewater to which a carbon source has been added is supplied as wastewater through a perforated pipe.
JP12817277A 1977-10-27 1977-10-27 Wastewater treatment and denitrification method Expired JPS6055198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12817277A JPS6055198B2 (en) 1977-10-27 1977-10-27 Wastewater treatment and denitrification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12817277A JPS6055198B2 (en) 1977-10-27 1977-10-27 Wastewater treatment and denitrification method

Publications (2)

Publication Number Publication Date
JPS5462653A JPS5462653A (en) 1979-05-19
JPS6055198B2 true JPS6055198B2 (en) 1985-12-04

Family

ID=14978177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12817277A Expired JPS6055198B2 (en) 1977-10-27 1977-10-27 Wastewater treatment and denitrification method

Country Status (1)

Country Link
JP (1) JPS6055198B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6249399U (en) * 1985-09-13 1987-03-26
JPS63146696A (en) * 1986-12-10 1988-06-18 Matsushita Electric Ind Co Ltd Manufacture of flat speaker
JPS6419691U (en) * 1987-07-22 1989-01-31

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575892U (en) * 1980-06-10 1982-01-12
JPS5826071Y2 (en) * 1981-02-09 1983-06-04 淑人 鈴木 Gray water underground diffusion tank

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6249399U (en) * 1985-09-13 1987-03-26
JPS63146696A (en) * 1986-12-10 1988-06-18 Matsushita Electric Ind Co Ltd Manufacture of flat speaker
JPS6419691U (en) * 1987-07-22 1989-01-31

Also Published As

Publication number Publication date
JPS5462653A (en) 1979-05-19

Similar Documents

Publication Publication Date Title
US7510649B1 (en) Top loading vertical flow submerged bed wastewater treatment system
US6652743B2 (en) System and method for removing pollutants from water
US5337516A (en) Treatment of polluted water using wetland plants in a floating habitat
US6592761B2 (en) Biological waste water treatment system
WO1998058881A1 (en) Method and apparatus for biological treatment of waste water
Rozkošný et al. Natural technologies of wastewater treatment
FR3031516A1 (en) WASTEWATER TREATING DEVICE OF VERTICAL PERCOLATION PLANT FILTER TYPE COMPRISING AN ACTIVE AERATION SYSTEM OF A SATURATED LOWER LAYER
KR20160146491A (en) Constructed wetland sewage treatment system
CN202729890U (en) Vertical flow constructed wetland
JPS6055198B2 (en) Wastewater treatment and denitrification method
CA2372331C (en) System and method for removing pollutants from water
CN112144765B (en) Green roof and rainwater purification coupled system for sponge city construction
US11623876B2 (en) PhAGR basin
JP2605175B2 (en) Improved toilet tank
Bouwer Renovating municipal wastewater by high‐rate infiltration for ground‐water recharge
JP4370699B2 (en) Wastewater treatment equipment
DE19737542C1 (en) Biological filter or treatment plant for domestic waste water
WO1990002710A1 (en) Wastewater treatment system
Ritter et al. Treatment of dairy cattle wastes by a barriered landscape wastewater renovation system
KR101372569B1 (en) Leachate cleaning device having bifurcation device
KR0169210B1 (en) Apparatus for purifying waste water by using a filter bed and a discharge type capillary siphoning trench
RU58118U1 (en) DEVICE FOR BIOLOGICAL SEWAGE TREATMENT
JP3438200B2 (en) Wastewater treatment tank, wastewater treatment equipment and wastewater treatment method
JPH1181394A (en) Utility system of rainwater, etc.
Kalenik et al. Sewage treatment in gravel with assisting dolomite layer