JPS6054846A - Cemented carbide - Google Patents

Cemented carbide

Info

Publication number
JPS6054846A
JPS6054846A JP16252883A JP16252883A JPS6054846A JP S6054846 A JPS6054846 A JP S6054846A JP 16252883 A JP16252883 A JP 16252883A JP 16252883 A JP16252883 A JP 16252883A JP S6054846 A JPS6054846 A JP S6054846A
Authority
JP
Japan
Prior art keywords
cemented carbide
powder
metal
component
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16252883A
Other languages
Japanese (ja)
Other versions
JPH0559185B2 (en
Inventor
深谷 保博
章三 平井
隆 木村
出羽 昭夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP16252883A priority Critical patent/JPS6054846A/en
Publication of JPS6054846A publication Critical patent/JPS6054846A/en
Publication of JPH0559185B2 publication Critical patent/JPH0559185B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は超硬合金に関する。[Detailed description of the invention] The present invention relates to cemented carbide.

サーメット(超硬合金)は、タングステンカーバイド(
we)、タンタルカーバイド(TaC)。
Cermet (cemented carbide) is tungsten carbide (
we), tantalum carbide (TaC).

チタンカーバイド(TiC)、チタンナイトライド(T
iN)等を主成分とした耐食、耐摩耗性に優れた合金で
あるが、それ自身は溶接性が悪く、溶融溶接はほとんど
不可能であった。従って、やむなく炉内ろう付、浸漬ろ
う付、接着剤等によって接合すると、接合不良が生じや
すく、また無欠陥の接合がなされた場合でも、接合強度
が弱く、接合部から剥離する現象を起こしていた。
Titanium carbide (TiC), titanium nitride (T
Although it is an alloy with excellent corrosion and abrasion resistance mainly composed of nitride (iN), etc., it has poor weldability and is almost impossible to melt weld. Therefore, if it is unavoidable to join by furnace brazing, immersion brazing, adhesive, etc., joint failure is likely to occur, and even if a defect-free joint is made, the joint strength is weak and peeling may occur from the joint. Ta.

最近になって、Wc にニッケル(Ni) ?illし
た溶接可能な超硬合金が開発され(特開昭55−919
54,5s−919ss号公報参照)。
Recently, nickel (Ni) has been added to Wc? A weldable cemented carbide was developed.
54, 5s-919ss).

その溶接には、Fe−Ni系捧を用いたアーク溶接法で
施工されているものの溶接金属部に割れが生じやすく、
ざらに超硬合金自体を予熱しないと、超硬合金自身に割
れが生ずるという様々な欠点があった。また、この合金
はN1 を含有している為に、ろう付、拡散溶接等によ
り金鵬と接合するのは可能であるが、その反面、従来の
超硬合金と比較して硬度が低く、本来の超硬合金として
の性質が損なわれ、耐食、耐摩耗性が劣るという欠点が
あった。
Although the welding is carried out using an arc welding method using Fe-Ni type welding, cracks tend to occur in the welded metal part.
If the cemented carbide itself is not roughly preheated, there are various drawbacks such as cracks occurring in the cemented carbide itself. In addition, since this alloy contains N1, it is possible to join it with metal alloys by brazing, diffusion welding, etc. However, on the other hand, its hardness is lower than that of conventional cemented carbide, and the original It had the disadvantage that its properties as a cemented carbide were impaired and its corrosion resistance and wear resistance were poor.

本発明は、金属とろう付、拡散溶接等により接合が可能
であり、且つ従来の超硬合金と同等の耐食、耐摩耗性を
有する超硬合金を提供するものである。
The present invention provides a cemented carbide that can be joined to metals by brazing, diffusion welding, etc., and has corrosion resistance and wear resistance equivalent to conventional cemented carbide.

以下に、本発明の超硬合金の特徴を説明する。The characteristics of the cemented carbide of the present invention will be explained below.

(1)従来の超硬合金(WC,TiC,TaC等IC1
〜5%Co、 Ni等を含有)用原料粉末と、金属含有
量を多くした超硬合金の原料粉末を積層して2層構造と
した後、成形、焼結することによシ、その片面を従来の
超硬合金と同等に耐食。
(1) Conventional cemented carbide (WC, TiC, TaC, etc. IC1)
By laminating the raw material powder for (containing up to 5% Co, Ni, etc.) and the raw material powder of cemented carbide with a high metal content to form a two-layer structure, then molding and sintering, one side of the Corrosion resistance equivalent to conventional cemented carbide.

耐摩耗性に優れたものとし、もう一方の面をろう付、拡
散溶接が可能なものとした2層構造。
It has a two-layer structure with excellent wear resistance and the other side can be brazed or diffusion welded.

(2) 従来の超硬合金用原料粉末と金属含有量を多く
した超硬合金の原料粉末を、連続的にその成分比を変化
させて積層した後、成形、焼結した構造。
(2) A structure in which conventional raw material powder for cemented carbide and raw material powder for cemented carbide with increased metal content are laminated with their component ratios continuously changed, then molded and sintered.

(3) WC,T:LC,TaC等の超硬質粉末に、 
、Co、 Ni等の金属粉末を連続的に増加させて積層
した後、成形、焼結した構造。
(3) WC, T: Super hard powder such as LC, TaC, etc.
A structure in which metal powders such as , Co, and Ni are continuously increased and layered, then molded and sintered.

上記のような構造を有する超硬合金では、その片面は従
来の超硬合金と同等の硬度を有する為に、耐食、耐摩耗
性に優れ、もう一方の面は、金属成分に富む為にろう付
、拡散溶接等による接合が容易となる。従って、従来の
超硬合金の性質を損なうことなぐ、接合性に優れた超硬
合金の具現が可能となる。
In cemented carbide with the above structure, one side has the same hardness as conventional cemented carbide, so it has excellent corrosion and abrasion resistance, and the other side has a rich metal component, so it has excellent corrosion resistance and wear resistance. This makes it easier to join by bonding, diffusion welding, etc. Therefore, it is possible to realize a cemented carbide with excellent bondability without impairing the properties of conventional cemented carbide.

このような構造を有す−る超硬合金は、スクリュー遠心
分離機、スクリューコンベア等ノブレード、抄紙機サク
ションボックス、フォーミングシュー等に適用できる。
Cemented carbide having such a structure can be applied to blades such as screw centrifuges and screw conveyors, paper machine suction boxes, and forming shoes.

次に、本発明を図面にょシ詳述する。Next, the present invention will be explained in detail with reference to the drawings.

第1図は、本発明の超硬合金の様態を示す断面図である
。図中1片面1は、従来の超硬合金と同じく、WC,T
iC,TaC,TiN等の超硬質材料をベースにして、
これにCo、 Ni等の金属成分を1〜5俤の範囲で含
有させた組成であシ、耐食。
FIG. 1 is a sectional view showing an aspect of the cemented carbide of the present invention. In the figure, one side 1 is WC, T, like conventional cemented carbide.
Based on ultra-hard materials such as iC, TaC, and TiN,
The composition contains metal components such as Co and Ni in an amount of 1 to 5, making it corrosion resistant.

耐摩耗性を付与した面である。一方、反対側の面2は、
上記WC,TiC,TaC,TiN等の超硬質材料をベ
ースにして、これにCo、 Ni等の金属成分を10〜
50%の範囲で含有さぜた組成であシ、他の金属との接
合が容易な而である。
This is a surface with wear resistance. On the other hand, the opposite side 2 is
Based on the above-mentioned ultra-hard materials such as WC, TiC, TaC, TiN, etc., metal components such as Co, Ni, etc.
The composition has a content of 50% and is easy to bond with other metals.

第1図(A)では、Co、 Ni等の金属成分が1〜5
係の範囲の組成の超硬合金粉末3と、Co、Ni等の金
属成分が10〜50%の範囲の組成の超硬合金粉末4を
、板厚全体に占める4の割合を1係以上、90チ以下に
なるように積層して2゜層構造とし、ラバープレス金型
プレス等で成形した後、焼結して製作したものである。
In Figure 1 (A), the metal components such as Co and Ni are 1 to 5.
A cemented carbide powder 3 having a composition in the range of It is manufactured by laminating layers of 90 inches or less to form a 2° layer structure, molding with a rubber press or the like, and then sintering.

また、第1図(B)では、1から2に向かってCo、 
Ni等の金属成分が連続的に順次増加するように積層し
た後、第1図(A)と同様に焼結したものである。第1
図(B)の積層方法としては、超硬質材料の粉末に予め
1〜5係のCo、 Ni等の金属成分を混合した超硬合
金粉末と、同様[10〜50チのCo、 Ni等金属成
分を超硬質材料の粉末と混合した超硬合金粉末の2wA
類を連続的に成分比を変化させて積層してもよいし、超
硬質月料の粉末と金属成分の粉末を別個に準備し、これ
らを同様に連続的に成分比を変化させて積層してもより
In addition, in FIG. 1(B), from 1 to 2, Co,
After the metal components such as Ni were laminated in such a manner that they were successively increased, they were sintered in the same manner as in FIG. 1(A). 1st
The lamination method shown in Figure (B) is to use a cemented carbide powder prepared by pre-mixing a metal component such as 1 to 5 parts of Co, Ni, etc. to a powder of an ultra-hard material, and a similar method [10 to 50 parts of a metal component such as Co, Ni, etc.] to be used. 2wA of cemented carbide powder whose ingredients are mixed with powder of superhard material
Alternatively, super-hard moon powder and metal component powder may be prepared separately, and these may be laminated by continuously changing the component ratio in the same way. More than anything.

上記のように本発明による超硬合金は、1の面は従来の
超硬合金と同等である為、耐食性。
As mentioned above, the cemented carbide according to the present invention has the same corrosion resistance as the conventional cemented carbide in one aspect.

耐摩耗性等の過酷な性能が要求される個所に用い、2の
面は金属成分に富む為に、鉄鋼材料。
It is used in places where severe performance such as wear resistance is required, and the second side is made of steel because it is rich in metal components.

非鉄材料等とろう付、拡散溶接等によシ接合するのが容
易であるので、バックプレートとの接合面として用いる
It is easy to join with nonferrous materials by brazing, diffusion welding, etc., so it is used as the joint surface with the back plate.

従来、超硬合金は大型の物が製作不可能な点。Conventionally, it has been impossible to manufacture large objects using cemented carbide.

価格が高い点等よシ、耐食、耐摩耗性等の必要な部分の
みに金属製のバックプレートとろう付。
To avoid the high price, the metal back plate is brazed only to the necessary parts such as corrosion resistance and wear resistance.

拡散溶接等で接合して用いていたのであるが、その成分
中95%以上が炭化物、窒化物等の非金属成分である為
、ろう何時のろう切れ、拡散溶接時の密着不足等により
接合欠陥の発生が多かった。しかし、本発明の超硬合金
では、接合面となる片面はGo、 Ni等金属成分を1
0チ以上。
They were used by joining by diffusion welding, etc., but since more than 95% of the components are non-metallic components such as carbides and nitrides, bonding defects may occur due to breakage of the solder or lack of adhesion during diffusion welding. There were many occurrences. However, in the cemented carbide of the present invention, one side that will be the joint surface is made of metal components such as Go and Ni.
More than 0chi.

50%以下含有しているので、ろうの流れ、原子の拡散
が良好で、接合性が格段に優れる。該金属成分の含有量
が10チ未満では、前記ろうの流れ、原子の拡散性を確
保することが難かしい。−万、50チを越すと、製作時
の焼結性を確保することが難かしくなり、焼結時の欠陥
が発生し易くなる。
Since the content is 50% or less, the flow of the solder and the diffusion of atoms are good, and the bonding performance is extremely excellent. If the content of the metal component is less than 10 inches, it is difficult to ensure the flow of the solder and the diffusibility of atoms. If the thickness exceeds -10,000 or 50 inches, it becomes difficult to ensure sinterability during manufacturing, and defects are likely to occur during sintering.

また、上記接合面とは反対側の面は、従来の超硬合金と
同等の耐食、耐摩耗性を付与する為であり、該金属成分
の含有量が5係を超えた物は、上記性質に劣る為通常用
いられない。また金属成分がo、1係以下の物は、焼結
が難しく、気孔等の欠陥が多くなる。
In addition, the surface opposite to the above-mentioned joint surface is intended to provide corrosion resistance and wear resistance equivalent to that of conventional cemented carbide, and those with a content of more than 5% of the metal component have the above-mentioned properties. It is not normally used because it is inferior to Furthermore, materials with a metal component of less than 0.1 are difficult to sinter and have many defects such as pores.

このような金属成分としては、通常Co、 Ni等が使
用されるが、極くまれにMo、 Ti等を使用すること
もある。しかし、コスト、焼結性の点よ” r co、
 Niを使用することが好ましい。
As such metal components, Co, Ni, etc. are usually used, but in very rare cases, Mo, Ti, etc. are also used. However, in terms of cost and sinterability,
Preferably, Ni is used.

第1図(B)では、板厚方向の成分比の変化が連続的で
ある為、焼結時に割れ、剥離等の欠陥が生ずる余地がな
いのは言うまでもないが、第1図(A)の様に2層構造
にした場合でも、3と4は成分比は異なるが、基本的な
組成は同一であシ、一体物として焼結して製作するρで
、3と4が剥離することもない。この際、第1図(A)
の場合の板厚比で4の占める割合が1係未満では、前記
ろうの流れ、原子の拡散性を確保することが難かしぐ、
また90係を越すと、30′層厚が少なくなシ過ぎて良
好な耐食性、耐摩耗性性を保持することができなくなる
In Figure 1 (B), the change in the component ratio in the thickness direction is continuous, so it goes without saying that there is no room for defects such as cracking or peeling during sintering. Even in the case of a two-layer structure, 3 and 4 have different component ratios, but the basic composition is the same, and 3 and 4 may separate due to ρ being manufactured by sintering them as one piece. do not have. At this time, Fig. 1 (A)
If the proportion of 4 in the plate thickness ratio is less than 1 part, it is difficult to ensure the flow of the solder and the diffusivity of atoms.
If the thickness exceeds 90, the thickness of the 30' layer becomes too small to maintain good corrosion resistance and wear resistance.

尚、第1図(A)の場合、2層構造となっているが、更
に3と4の間に成分比の異なる中間的成分を持つ中間層
を介在させることもできる。
Although the case of FIG. 1A has a two-layer structure, an intermediate layer having an intermediate component having a different component ratio may be interposed between layers 3 and 4.

以下に、実施例を示す。Examples are shown below.

実施例1 we に20係のN1 を混合し、これに成形助剤とし
てパラフィンを0.4係添加した粉末原料を常温にて3
 kg/−”の圧力を加えて、板厚2■の板を製作した
Example 1 A powder raw material prepared by mixing 20 parts of N1 with we and adding 0.4 parts of paraffin as a forming aid to this was mixed at room temperature with 3 parts of N1.
A plate with a thickness of 2 cm was produced by applying a pressure of 1 kg/-''.

別個にwCに3係のN1 を混合し2、これに上記と同
様にパラフィンを0.4%添加した後、常温にて3kg
/珊2の圧力を加えて、同様に板厚2胴の板を製作した
。上記2枚の板を重ね、常温にて10 kg/、2の圧
力を加え、板厚及3喘になるまで加圧した後乾燥させる
と、パラフィンをバインダーとして第1図(A)の様な
2層構造の板が製作された。これを1X 10−’ T
orr、の真空中に於て・ 1500℃に1時間加熱し
、焼結すると、約10%収縮し、板厚2−7mmの超硬
合金が完成した。焼結後のWC−20係N1とWC−3
チN1の板厚比は、焼結、前と同じく1:1であった。
Separately, mix N1 of 3 parts with wC2, add 0.4% paraffin in the same way as above, and then weigh 3 kg at room temperature.
/ Sani 2 pressure was applied, and a board with a thickness of 2 was produced in the same manner. When the above two plates are stacked and a pressure of 10 kg/.2 is applied at room temperature until the plate thickness is 3 mm and then dried, a product as shown in Figure 1 (A) is formed using paraffin as a binder. A board with a two-layer structure was fabricated. This is 1X 10-'T
When heated to 1500° C. for 1 hour and sintered in a vacuum of 1000 yen, it contracted by about 10% and a cemented carbide with a thickness of 2 to 7 mm was completed. WC-20 N1 and WC-3 after sintering
The plate thickness ratio of Chi N1 was 1:1 as before sintering.

この超硬合金のWC−20チNiO面とSUS 304
を5 X j O−’ Torrの真空中で温度100
0℃、加圧力3kg/I+llI+2で2時間加圧し、
拡散溶接を行なったところ、せん断強度は22 kg/
’tan”であった。
The NiO surface of this cemented carbide WC-20 and SUS 304
at a temperature of 100 in a vacuum of 5 X j O-' Torr.
Pressure was applied at 0°C for 2 hours at a pressure of 3 kg/I+llI+2,
When diffusion welding was performed, the shear strength was 22 kg/
It was 'tan'.

また、浸透探傷、・ミクロ組織検査においても無欠陥の
良好な接合が行なわれていることが確認された。
Penetrant testing and microstructural testing also confirmed that defect-free and good bonding was achieved.

実施例2 第2図に示すように、we 粉末に30係のN1粉末を
混合し、これに成形助剤としてパラフィンを0.4チ添
加した粉末原料5をホッパー6に入れ、一方、we 粉
末に2係のNi 粉末を混合し、これに成形助剤として
パラフィンをo、4%添加した粉末原料7をホッパー8
に入れた。2種の粉末原料を制御機1oで、バルブ9全
調節しながら基板11上に順次混合比を変化させて積層
すると、下面はWC−3,0%Ni、上面はWC−21
Ni の成分となった。これを常温にて10kg/++
III+2の圧力を加えて板厚が4ffになるまで加圧
し、乾燥後、1×19−’ Torrの真空中で150
0℃に1時間加熱し、焼結すると、約10%収縮し、板
厚3.6111I+1の超硬合金が得られた。焼結後の
成分は、焼結前と同じく一面はWC−10%Niであシ
、他面はWC=2チN1であった。
Example 2 As shown in FIG. 2, a powder raw material 5 in which 30% N1 powder was mixed with WE powder and 0.4% paraffin was added as a forming aid was put into a hopper 6, while WE powder Powder raw material 7, in which Ni powder of 2nd grade was mixed with Ni powder and 4% of paraffin was added as a forming aid, was transferred to hopper 8.
I put it in. When two types of powder raw materials are laminated on the substrate 11 by changing the mixing ratio in sequence while fully adjusting the valve 9 using the controller 1o, the bottom surface is WC-3.0%Ni and the top surface is WC-21.
It became a component of Ni. 10kg/++ of this at room temperature
A pressure of III+2 was applied until the plate thickness became 4ff, and after drying, the plate was heated at 150° C. in a vacuum of 1×19-' Torr.
When heated to 0° C. for 1 hour and sintered, a cemented carbide having a plate thickness of 3.6111I+1 was obtained with shrinkage of about 10%. The components after sintering were the same as before sintering: one side was WC-10%Ni, and the other side was WC=2×N1.

との超硬合金のWC、30チN1 の面と5US316
Lを銀ろう(BAg−1)を用いてI X 10 To
rr。
Cemented carbide WC with 30mm N1 surface and 5US316
I x 10 To L using silver solder (BAg-1)
rr.

の真空中で温度720℃、加圧力o’、 s kg/1
tan2で30分保持し、真空ろう付を行なった所、せ
ん断強度が15kg/w12であった。また、浸透探傷
In a vacuum at a temperature of 720°C and a pressure of o', s kg/1
When held at tan2 for 30 minutes and vacuum brazed, the shear strength was 15 kg/w12. Also penetrant testing.

ミクロ組織検査においても無欠陥の良好な接合が行なわ
れていることが確認された。
Microstructural inspection also confirmed that defect-free and good bonding was achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の超硬合金の様態を示す断面図であシ
、第2図は、実施例2での超硬合金製作の概略図である
0 復代理人 内 1) 明 復代理人 萩 原 亮 −
Fig. 1 is a sectional view showing an aspect of the cemented carbide of the present invention, and Fig. 2 is a schematic diagram of manufacturing the cemented carbide in Example 2. People Ryo Hagihara −

Claims (1)

【特許請求の範囲】[Claims] 一方の面が1〜5チの金属成分を含有する非金属成分よ
りなシ、相対する面が1Ω〜50係の金属成分を含有す
る非金属成分よシなシ、これら両面に狭まれだ中間層が
連続的に又は段階的に金属成分の量を変化して含有する
非金属成分よりなることを特徴とする超硬合金0
One side is a nonmetallic component containing a metal component of 1 to 5Ω, and the opposing surface is a nonmetallic component containing a metal component of 1Ω to 50Ω. Cemented carbide 0 characterized in that the layer consists of a nonmetallic component containing a metal component with varying amounts in a continuous or stepwise manner.
JP16252883A 1983-09-06 1983-09-06 Cemented carbide Granted JPS6054846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16252883A JPS6054846A (en) 1983-09-06 1983-09-06 Cemented carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16252883A JPS6054846A (en) 1983-09-06 1983-09-06 Cemented carbide

Publications (2)

Publication Number Publication Date
JPS6054846A true JPS6054846A (en) 1985-03-29
JPH0559185B2 JPH0559185B2 (en) 1993-08-30

Family

ID=15756324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16252883A Granted JPS6054846A (en) 1983-09-06 1983-09-06 Cemented carbide

Country Status (1)

Country Link
JP (1) JPS6054846A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6392445A (en) * 1986-09-18 1988-04-22 ドレッサー インダストリーズ インコーポレイテッド Composite body of classified texture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6392445A (en) * 1986-09-18 1988-04-22 ドレッサー インダストリーズ インコーポレイテッド Composite body of classified texture

Also Published As

Publication number Publication date
JPH0559185B2 (en) 1993-08-30

Similar Documents

Publication Publication Date Title
RU2499069C2 (en) Composite materials - cemented carbide-metal alloy
US8074865B2 (en) Gradient polycrystalline cubic boron nitride materials and tools incorporating such materials
US6089444A (en) Process of bonding copper and tungsten
JPS61270271A (en) High hardness sintered body composite material having sandwich structure
CN107912051A (en) Polycrystalline diamond table is attached to substrate to form PCD cutter using reaction/exothermic process
US5594931A (en) Layered composite carbide product and method of manufacture
JPS6054846A (en) Cemented carbide
US10315387B2 (en) High content PCBN compact including W—Re binder
JP4215317B2 (en) IC lead frame cutting blade and manufacturing method thereof
JP4480912B2 (en) Cutting blade for semiconductor product processing and manufacturing method thereof
JP2018140416A (en) Composite member, joining member used for producing the same, and cutting tool formed from composite member
JP7021493B2 (en) Composite sintered body
JPH0798964B2 (en) Cubic boron nitride cemented carbide composite sintered body
JPS5916942A (en) Composite diamond-sintered body useful as tool and its manufacture
US4112180A (en) Refractory metal carbide articles and laminating method for producing same
JP6716408B2 (en) Laminated structure sintered superabrasive composite material and manufacturing method thereof
KR100545749B1 (en) Multi-Layer Powder Sintering Tool Parts and Manufacturing Method Thereof
WO2017135243A1 (en) Composite member and cutting tool
JPH086127B2 (en) Sintered composite
JP2807874B2 (en) WC-based cemented carbide-based wear-resistant material and method for producing the same
JPS5924173B2 (en) weldable cemented carbide
JP2018122313A (en) Composite member, junction member used to manufacture the same, and cutting tool consisting of this composite member
JPH06240308A (en) Method for directly joining tic cermet and sintered hard alloy and jointing material therefor
JP2018051619A (en) Composite member and cutting tool
JPS61293705A (en) Combined cutting tip