JPS6054735B2 - field emission cathode - Google Patents

field emission cathode

Info

Publication number
JPS6054735B2
JPS6054735B2 JP54134167A JP13416779A JPS6054735B2 JP S6054735 B2 JPS6054735 B2 JP S6054735B2 JP 54134167 A JP54134167 A JP 54134167A JP 13416779 A JP13416779 A JP 13416779A JP S6054735 B2 JPS6054735 B2 JP S6054735B2
Authority
JP
Japan
Prior art keywords
cathode
field emission
needle
temperature
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54134167A
Other languages
Japanese (ja)
Other versions
JPS5659422A (en
Inventor
恵彦 山本
茂行 細木
進 川瀬
康晴 平井
秀男 戸所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP54134167A priority Critical patent/JPS6054735B2/en
Priority to DE19803039283 priority patent/DE3039283A1/en
Priority to US06/198,176 priority patent/US4379250A/en
Priority to NL8005772A priority patent/NL8005772A/en
Publication of JPS5659422A publication Critical patent/JPS5659422A/en
Publication of JPS6054735B2 publication Critical patent/JPS6054735B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes

Description

【発明の詳細な説明】 本発明は理化学機器や電子線描画装置などの電子線装置
用電子銃に用いられる電子放射陰極の改良に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an electron emitting cathode used in an electron gun for an electron beam device such as a physical and chemical instrument or an electron beam lithography device.

従来よりこれらの電子線装置用の電子放射陰極としては
タングステンヘアピンカソードやLlB8カソードなど
の熱電子放出型陰極が広く用いられている。
Conventionally, thermionic-emitting cathodes such as tungsten hairpin cathodes and LlB8 cathodes have been widely used as electron-emitting cathodes for these electron beam devices.

しかし、熱電子放出型陰極は輝度が最高・ 、−lkl
1^一轡Jp4岡ようとするとその寿命が非常に短くな
る。
However, the thermionic-emitting cathode has the highest brightness.
If you try to use 1^一轡Jp4oka, its lifespan will be very short.

そこで、最近、特にオージエ電子分光装置等の理化学機
器や電子線描画装置のより一層の高性能化のために、さ
らに高い輝度を持つ陰極への要求が高まつてきている。
この要求を満たす陰極の1つとして電界放射型陰極が知
られており、熱電子放出型陰極で得られる輝度の約10
0皓の輝度が得られる。
Therefore, recently, there has been an increasing demand for cathodes with even higher brightness, particularly in order to further improve the performance of physical and chemical instruments such as Auger electron spectrometers and electron beam lithography equipment.
A field emission type cathode is known as one of the cathodes that meets this requirement, and it has a luminance that is approximately 10 times higher than that obtained with a thermionic emission type cathode.
A brightness of 0 is obtained.

この電界放射型陰極の典型的な構成は針状に形成された
先端を持つており、この針先が陽極に対向するように保
持されてその針先の近傍に形成される強い電界の作用に
よつて、そこから電子放出を行なわせるようになつてい
る。ところが、上述の電界放射型陰極は高輝度が得られ
るという長所を持つ反面、大電流を取り出す事が難しい
という短所をも持ち合せている。
The typical configuration of this field emission type cathode is that it has a needle-shaped tip, which is held opposite the anode and is exposed to the action of a strong electric field that is formed near the needle tip. Therefore, electrons are emitted from there. However, while the field emission type cathode described above has the advantage of being able to obtain high brightness, it also has the disadvantage that it is difficult to extract a large current.

さらに、この事と密接に関連しているが取り出した電流
の安定度が悪いという九色も有している。電界放射型陰
極から大電流を取り出すための方法は種々考えられてお
り、その方法を列挙すると次のようである。(1)陽極
を徹底的にきれいにする方法 (2)パルス的に電流を取り出す方法 (3)電子放出を中心部に集中させ、実効的に中心部に
大電流を得る方法そして、この(3)の方法は以下に示
すようにさらに2つの方法に分けることができる。
Furthermore, although it is closely related to this, there is also a nine-color phenomenon in which the stability of the extracted current is poor. Various methods have been considered for extracting a large current from a field emission cathode, and the methods are listed below. (1) How to thoroughly clean the anode (2) How to take out current in pulses (3) How to concentrate electron emission in the center and effectively obtain a large current in the center And this (3) This method can be further divided into two methods as shown below.

(3)−1電界放射型陰極の先端(曲率半径:約100
0A)にさらに小さな突起(曲率半径:100A以下)
を作り、電界Fを集中させる方法(この方法はビルドア
ップ法と称される)(3)−2電界放射型陰極の先端の
ある特定の結晶面のみの仕事関数φを低下させる処理を
行なう方法この理由は電界放射の電流密度JがFOwl
er一NOrdheimの式で電界Fと仕事関数φとの
関数として決められることによる。
(3)-1 Tip of field emission cathode (radius of curvature: approx. 100
0A) with a smaller protrusion (curvature radius: 100A or less)
(This method is called the build-up method) (3)-2 A method in which the work function φ of only a specific crystal plane at the tip of the field emission cathode is reduced. The reason for this is that the current density J of field emission is FOwl
This is because it is determined as a function of the electric field F and the work function φ using the er-NO Ordheim equation.

すなわち、上記式は のように表わされる。That is, the above formula is It is expressed as

上述の(3)−2の方法の具体例として次のような電界
放射型陰極が提案されている。
As a specific example of the above-mentioned method (3)-2, the following field emission cathode has been proposed.

すなわち、それは結晶軸方位が〈100〉であるwの単
結晶を針状に形成し、その針先の表面にZr処理を行な
うと(100)面の仕事関数が4.5eVから2.5e
Vに低下するというものてある。この方法は米国特許番
号3,814,975の明細書中に開示されており、こ
れは熱電子型の陰極として使用することを目的としたも
のである。その後、この方法は電界放射型陰極にも応用
されている(J.Vac.Sci.TechnOl.,
VOl.l2,NO.6,NOv./Dec.l975
,Pl228)。さて、上述した方法によつて電界放射
型陰極の大電流化が達成できたのであるが、もう1つの
欠点である取り出し電流の不安定性は依然として未解決
のままである。ところで、この電流の不安定性には短時
間変動(FluctuatiOn)と長時間変動(Dr
lft)とがある。上述のk処理した電界放射型陰極は
後者の長時間変動に関してなお問題があり、これを避け
るために針状陰極の加熱動作(針状陰極を加熱しながら
電界放出をさせること)を行なうことにより安定化をは
かつているのが実情である。すなわち、通常は針状陰極
を18000Kの温度に加熱しながら動作させることに
より、長時間変動の低減を行なつているのが現状である
。しかしながら、上述したような放射電子流安定化方法
を実現するためには針状陰極の先端への絶え間のないZ
rの補給と、常にこのZrを酸化する(オキサイド化す
る)ための酸素の補給とが必要となる。また、この温度
では熱電子放出による放出電子の成分も非常に多く含ま
れており、電界放出現象による放出電子の数/熱電子放
出現象によjる電子の数の比は通常1/10001).
下である。この余分な熱電子放出現象による放出電子は
結局は陽極上面を照射することになり、その結果、陽極
上面や他の壁面から多量のガスを放出する。このために
、差動排気を行なつて針状陰極の周辺の真空が劣化する
ことのないような電子銃室構造にしなければならない。
さらにまた、1800造Kという高温に保つての動作で
は電子線のエネルギーの広がりも大きくなる(通常は、
1.5eV以上の広がりになる)等種々の問題点があつ
た。したがつて、本発明の目的は上記従来の問題点を解
消した電界放射陰極を提供することにある。
That is, when a single crystal w with crystal axis orientation <100> is formed into a needle shape and the surface of the needle tip is treated with Zr, the work function of the (100) plane changes from 4.5eV to 2.5e.
There is a saying that the voltage drops to V. This method is disclosed in US Pat. No. 3,814,975 and is intended for use as a thermionic cathode. Later, this method was also applied to field emission cathodes (J. Vac. Sci. Technol.,
Vol. l2, NO. 6, NOv. /Dec. l975
, Pl228). Now, although it has been possible to increase the current of the field emission type cathode by the method described above, another drawback, the instability of the extraction current, remains unsolved. By the way, the instability of this current includes short-time fluctuations (FluctuatiOn) and long-term fluctuations (Dr.
lft). The above k-treated field emission cathode still has a problem with the latter long-term fluctuation, and in order to avoid this problem, heating the needle cathode (emitting field emission while heating the needle cathode) The reality is that the situation is stabilizing. That is, at present, long-term fluctuations are usually reduced by operating the needle cathode while heating it to a temperature of 18,000K. However, in order to realize the method of stabilizing the radiation electron flow as described above, it is necessary to continuously apply Z to the tip of the needle cathode.
It is necessary to replenish r and to constantly replenish oxygen to oxidize (oxidize) this Zr. In addition, at this temperature, there is a very large amount of emitted electrons due to thermionic emission, and the ratio of the number of emitted electrons due to field emission phenomenon/the number of electrons due to thermionic emission phenomenon is usually 1/10001). ..
It's below. The electrons emitted due to this extra thermionic emission phenomenon end up irradiating the top surface of the anode, and as a result, a large amount of gas is released from the top surface of the anode and other wall surfaces. For this reason, the electron gun chamber must be structured in such a way that differential pumping is performed so that the vacuum around the needle cathode does not deteriorate.
Furthermore, when operating at a high temperature of 1800 K, the energy spread of the electron beam becomes large (normally,
There were various problems such as 1.5 eV or more spread. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a field emission cathode that eliminates the above-mentioned conventional problems.

上記の目的を達成するために本発明では、WおよびMO
からなる群から選択した1つの金属の単結晶を基体金属
とし少なくとも電子が放射される領域の表面にZrおよ
びHfからなる群から選択した少なくとも1つの金属を
酸素を介して単原子層以下の厚さで吸着させた針状陰極
を輝度温度が1000〜1110せKの範囲て動作させ
る電界放射陰極としたことを特徴としている。かかる本
発明の特徴的な構成によれば、一旦1800発Kに針状
陰極を加熱してZr処理(すなわち、Zrを針状陰極の
先端に拡散することおよびそのZrを酸化状態にするこ
と)した後は1000〜11100Kの輝度温度範囲て
動作させるだけなので、常時、針状陰極の周辺を超高真
空(く5×10−9T0rr)に維持することができ、
放出の中心部に電界放射による電子のみを得ることがで
きる。
In order to achieve the above object, in the present invention, W and MO
Using a single crystal of one metal selected from the group consisting of as a base metal, at least one metal selected from the group consisting of Zr and Hf is applied to the surface of at least the region from which electrons are emitted to a thickness of not more than a monoatomic layer through oxygen. The acicular cathode, which is adsorbed by the needle, is a field emission cathode that operates within a brightness temperature range of 1000 to 1110K. According to the characteristic configuration of the present invention, the needle cathode is once heated to 1800 K and subjected to Zr treatment (that is, diffusing Zr to the tip of the needle cathode and bringing the Zr into an oxidized state). After that, it is only necessary to operate within the brightness temperature range of 1000 to 11100K, so the area around the needle cathode can be maintained at an ultra-high vacuum (5×10-9T0rr) at all times.
Only electrons due to field emission can be obtained at the center of the emission.

また、低温加熱であるので電子線のエネルギーの広がり
も少なく(0.6V以下)なる。以下、本発明を図面を
参照して詳細に説明する。第1図は本発明による電界放
射陰極の針状陰極部1の拡大断面を示す。
Furthermore, since the heating is performed at a low temperature, the energy spread of the electron beam is also reduced (0.6 V or less). Hereinafter, the present invention will be explained in detail with reference to the drawings. FIG. 1 shows an enlarged cross-section of a needle-like cathode part 1 of a field emission cathode according to the invention.

同図において、適当な陰極材料を針状に形成した針状陰
極部1の少なくとも先端部分(すなわち、電子が主に放
射される領域)の表面は酸素を介してZrを単原子層以
下の厚さで吸着させた吸着層2で覆われている。3はこ
のような針状陰極部1から放射される電子の代表的な軌
道を示したものである。
In the figure, the surface of at least the tip portion (i.e., the region where electrons are mainly emitted) of a needle-shaped cathode portion 1 formed of a suitable cathode material is coated with Zr via oxygen to a thickness of less than a monoatomic layer. It is covered with an adsorption layer 2 that has been adsorbed by the wafer. 3 shows a typical trajectory of electrons emitted from such a needle-like cathode portion 1. In FIG.

針状陰極部1の陰極材料としてはWあるいはMOの単結
晶が望ましい。さらに、単結晶の結晶軸方位は〈100
〉であることが最も望ましい。また、吸着層2はZrの
代りにHfでもよいし、Zr.l5Hfとの混合物でも
よい。このように、針状陰極部1の表面に酸素を介して
Zr等を吸着させた電界放射陰極は吸着層2に覆われた
部分の陰極材の特定の結晶面の仕事関数が大幅に低下、
例えば、陰極材がwの場合は(100)面の仕事関数が
4.5eVから約2.5eVに低下するため、この面か
らの電子放出が促進される。このことは電子放出の放出
角度分布が小さくなることを意味し、その結果、大電流
を取り出すことができる。そして、電流の不安定性、す
なわち長時間変動(Drift)は上記電極を輝度温度
で1000〜1110DKの範囲にて加熱使用すること
によりほぼ問題なく動作させることができる。上述した
本発明の電界放射陰極をよソー層明確にするために、以
下、実験および検討結果をもとにさらに詳述する。
As the cathode material for the acicular cathode portion 1, W or MO single crystal is preferable. Furthermore, the crystal axis orientation of the single crystal is <100
> is most desirable. Further, the adsorption layer 2 may be made of Hf instead of Zr, or may be made of Zr. A mixture with 15Hf may also be used. In this way, in a field emission cathode in which Zr or the like is adsorbed via oxygen on the surface of the needle-shaped cathode part 1, the work function of a specific crystal plane of the cathode material in the portion covered with the adsorption layer 2 is significantly reduced.
For example, when the cathode material is w, the work function of the (100) plane decreases from 4.5 eV to about 2.5 eV, so electron emission from this plane is promoted. This means that the emission angle distribution of electron emission becomes smaller, and as a result, a large current can be extracted. The current instability, that is, long-term drift, can be reduced by heating the electrode at a brightness temperature in the range of 1000 to 1110 DK, so that the electrode can be operated almost without problems. In order to clarify the layer of the field emission cathode of the present invention described above, a more detailed explanation will be given below based on the results of experiments and studies.

電界放射陰極は針状陰極部1に高電界 (107V/Cm以上)を印加し、トンネル効果によつ
て放射される電子を利用するものである。
The field emission cathode applies a high electric field (107 V/Cm or more) to the needle cathode portion 1 and utilizes electrons emitted by tunneling effect.

そして、取り出す電流密度J(A/Clt)と電界強度
F(■/CrR)との間には前述したようにFOwle
r一NOrdheimの式の関係がある。すなわち、電
流密度Jは電界強度Fの他に仕事関数φ(e■)に依存
する。針状陰極部1の表面は種々の結晶面で囲まれてお
り、各結晶面の仕事関数が異なるために同一電界下にお
ける放射電流密度は各結晶面で異なつている。第2図は
針状陰極部1から放出された電子の分布を模式的に示し
たものである。針状陰極部1の先端の形状をより正確に
表現すると約1000Aの曲率半径を有する球面4とな
つている。そして、この球面4からの電子の全放射角度
2αは約70度である。第2図における放射電子の分布
図中、斜線で示した結晶面5は仕事関数が他の結晶面6
のそれに比較して大きく、従つて、放射電流密度が低い
事を示したものである。ところで、理化学機器や電子線
描画装置の電界放射陰極として用いられる場合、実際に
使用される電子は針状陰極の軸方向の極く一部(全放射
角度2αのうちの1〜2度程度の範囲のもの)であり、
残りの部分は単に陽極その他の部分を照射し、ガス放出
の原因となるだけである。従つて、理想的には、全放射
角度2α≦2度程度の電子放射を行なう電界放射陰極が
一番よい。第1図において述べた本発明による電界放射
陰極はこの角度制限(AngularCOrlfirl
ement)の要請に応えたものである。
As mentioned above, there is a difference between the current density J (A/Clt) to be taken out and the electric field strength F (■/CrR).
There is a relationship between r and NOrdheim's equation. That is, the current density J depends not only on the electric field strength F but also on the work function φ(e■). The surface of the acicular cathode portion 1 is surrounded by various crystal planes, and since the work functions of each crystal plane are different, the radiation current density under the same electric field is different for each crystal plane. FIG. 2 schematically shows the distribution of electrons emitted from the acicular cathode part 1. To express the shape of the tip of the acicular cathode part 1 more accurately, it is a spherical surface 4 having a radius of curvature of about 1000A. The total radiation angle 2α of electrons from this spherical surface 4 is about 70 degrees. In the distribution diagram of emitted electrons in FIG.
This indicates that the radiation current density is large compared to that of , and therefore the radiation current density is low. By the way, when used as a field emission cathode for physical and chemical equipment or electron beam lithography equipment, the electrons actually used are in a very small part of the axial direction of the needle cathode (approximately 1 to 2 degrees of the total radiation angle 2α). range), and
The remaining portion merely irradiates the anode and other parts and causes outgassing. Therefore, ideally, a field emission cathode that emits electrons at a total radiation angle of about 2α≦2 degrees is best. The field emission cathode according to the invention described in FIG.
This was in response to the request of

例えば、wの(100)の面にZr処理を施すことによ
り全放射角度2αを約20度にすることができる。この
際、Wとしては純度の高い単結晶線でく100〉方向を
軸とするものが望ましい。この理由として次の2点があ
げられる。(1) (100)面の仕事関数がZr処理
により約2.5eVとなり、極めて大きな変化をするこ
と。
For example, by applying Zr treatment to the (100) plane of w, the total radiation angle 2α can be made approximately 20 degrees. At this time, W is preferably a highly pure single crystalline wire whose axis is in the 100> direction. There are two reasons for this: (1) The work function of the (100) plane becomes approximately 2.5 eV due to Zr treatment, which is an extremely large change.

(2)他の(100)面は結晶軸方向と90度の角度を
なすため、結晶軸方向の(100)面からの電子放射に
くらべてその周辺では極めてわずかしか放射されず、従
つて角度制限(AngularCOnfinement
)の邪魔にならないこと。また、wの格子定数は3.1
6Aであり、これはZrのa軸の3.23Aに近い。Z
r処理が安定であるためには陰極材料の格子定数がZr
のそれに近い事が必要であるという点からしてもこの事
は非常に望ましいことである。第3図は陰極温度と角度
制限(Angu]ArCOnfinement)との関
係を示したものである。
(2) Since the other (100) plane makes a 90 degree angle with the crystal axis direction, very little electron radiation is emitted around it compared to the electron emission from the (100) plane in the crystal axis direction, and therefore the angle Limits (Angular CONfinement
).Do not get in the way. Also, the lattice constant of w is 3.1
6A, which is close to 3.23A on the a-axis of Zr. Z
In order for the r treatment to be stable, the lattice constant of the cathode material must be Zr.
This is highly desirable from the point of view that something close to that of is required. FIG. 3 shows the relationship between cathode temperature and angle limit (Angu)ArCONfinement.

全放出電流に対する中心部立体角1.5刈0−4srの
プローブ電流の割合を角度制限の指標とする。曲線7の
軌跡かられかるように、陰極の温度が12000Kを超
えると電界放出による電子以外に熱電子放出による電子
の成分が増加するために角度制限の効果が急激に低下す
る。図示していないが、プローブ電流は陰極加熱温度の
上昇と共に増加する。しかし、1500a′Kを過ぎる
と逆に低下するようになる。これは高温状態ではZr処
理層が破壊されるためである。これ以上の温度での動作
を可能にするためには前述したように、十分なZrの補
給と、これを酸化するに必要なα分圧が常に必要となる
。ところで、取り出し電流の不安定性、すなわち、長時
間変動(Drift)の面から考えると動作温度の限界
はもつと低い温度領域になる。
The ratio of the probe current at the central solid angle of 1.5 0-4 sr to the total emission current is used as an index of angle restriction. As can be seen from the locus of curve 7, when the temperature of the cathode exceeds 12,000 K, the component of electrons due to thermionic emission increases in addition to electrons due to field emission, so that the effect of limiting the angle rapidly decreases. Although not shown, the probe current increases as the cathode heating temperature increases. However, after 1500a'K, it begins to decrease. This is because the Zr treated layer is destroyed at high temperatures. In order to enable operation at temperatures higher than this, as described above, sufficient Zr supply and α partial pressure necessary to oxidize Zr are always required. By the way, considering the instability of the extraction current, that is, the long-term fluctuation (drift), the limit of the operating temperature is in a relatively low temperature range.

第4図は長時間変動と動作温度(輝度温度)との関係を
示す実験結果である。ここで、4時間以上の動作を長時
間動作とし、動作時の真空度は5×10−9T′0rr
以下の超高真空である。
FIG. 4 shows experimental results showing the relationship between long-term fluctuations and operating temperature (brightness temperature). Here, operation for 4 hours or more is defined as long-time operation, and the degree of vacuum during operation is 5 x 10-9T'0rr.
The following is an ultra-high vacuum.

曲線8の軌跡から明らかなように、動作温度が低下する
と長時間変動が増加する。この理由は真空中の残留ガス
が針状陰極部1の表面に吸着して仕事関数を増加させる
ために生ずるものである。すなわち、動作温度の下限を
定めるのは電流不安定性の許容する範囲てあり、その電
流不安定性は真空度依存性がある。実際の装置で到達可
能な真空度がおよそ1×10−11T0rrとすると、
その真空度で長時間電流変動率およそ25%/Hrが許
容されるとき、1000流Kが動作温度の下限と定めら
れる。真空度が1×10−11T0rrより悪ければ動
作温度を高くすることによつて変動率を小さくできる。
一方、動作温度の上限は角度制限している放射パターン
がくずれていくのを妨げる温度範囲によつて定められる
。すなわち、第3図から、長時間にわたつて角度制限を
くずさない温度として1110たK程度がもとめられる
。このように、動作温度を輝度温度で1000〜111
0のKの範囲で陰極を動作させれば、超高真空下で安定
かつ角度制限の良好な電子ビームを得ることができる。
次に、本発明による電界放射陰極の製造方法について述
べる。
As is clear from the trajectory of curve 8, the long-term fluctuations increase as the operating temperature decreases. The reason for this is that residual gas in the vacuum is adsorbed on the surface of the needle-shaped cathode portion 1 and increases the work function. That is, the lower limit of the operating temperature is determined by the allowable range of current instability, and the current instability is dependent on the degree of vacuum. Assuming that the degree of vacuum that can be achieved with an actual device is approximately 1×10-11T0rr,
When a long-term current fluctuation rate of about 25%/Hr is allowed at that degree of vacuum, 1000 current K is determined as the lower limit of the operating temperature. If the degree of vacuum is worse than 1.times.10@-11 T0rr, the fluctuation rate can be reduced by increasing the operating temperature.
On the other hand, the upper limit of the operating temperature is determined by the temperature range that prevents the angle-limiting radiation pattern from collapsing. That is, from FIG. 3, a temperature of approximately 1110 K is required as a temperature that does not violate the angle restriction for a long period of time. In this way, the operating temperature is set to 1000 to 111 in terms of brightness temperature.
If the cathode is operated in the K range of 0, it is possible to obtain a stable electron beam with good angle restriction under ultra-high vacuum.
Next, a method for manufacturing a field emission cathode according to the present invention will be described.

使用するWの単結晶線は0.005″(約0.127m
φ)のく100〉方位を軸とするものを使用する。
The W single crystal wire used is 0.005″ (approximately 0.127m
φ) Noku100〉 direction is used as the axis.

単結晶線を0.15W!Bφのヘアピン10(第5図参
照)に点溶接する。第5図は単結晶線9を絶縁性のホル
ダー11に取り付けた状態を示す。次に、単結晶線9の
先端の曲率半径を約1000Aにするために電解エッチ
ングを行なう。
0.15W single crystal wire! Spot weld to the Bφ hairpin 10 (see FIG. 5). FIG. 5 shows a state in which the single crystal wire 9 is attached to an insulating holder 11. Next, electrolytic etching is performed to make the radius of curvature of the tip of the single crystal wire 9 about 1000A.

電解液として駆のNaOHを用い、20V,5rnAに
て約1紛間エッチングを行なう。出来上つた陰極は真空
容器に入れ、約250〜350C15時間の装置の焼出
しの後1×10−8T0rr′以下の真空下でまず25
00〜3000℃、1〜2秒の加熱(Flashi]1
g)を行ない、その表面の清浄化を行なう。清浄か否か
を確かめるため、陰極9に電界(107V/d以上)を
かけて電界放出する電子の空間分布を、陽極として使用
する螢光板を用いて可視パターンとして観際する。清浄
なパターンは前もつて判つているので、これど比較しな
がら清浄パターンが得られるまで加熱(Flashin
g)を続行する。以上がZr処理前の製造工程である。
次に、Zr処理について述べる。
Using NaOH as an electrolytic solution, etching is performed for about 1 minute at 20 V and 5 rnA. The completed cathode was placed in a vacuum container, and after baking out the device for 15 hours at about 250 to 350C, it was first heated at 250 to 350C under a vacuum of less than 1 x 10-8T0rr'.
00-3000℃, heating for 1-2 seconds (Flash) 1
g) and clean the surface. In order to confirm whether the cathode 9 is clean or not, an electric field (107 V/d or higher) is applied to the cathode 9, and the spatial distribution of field-emitted electrons is observed as a visible pattern using a fluorescent plate used as an anode. The clean pattern has already been determined, so while comparing these, heat (flash) until a clean pattern is obtained.
Continue g). The above is the manufacturing process before Zr treatment.
Next, the Zr treatment will be described.

このZr処理には2通りあり、1つはZrH2付着法で
あり、もう1つはZr蒸着法である。はじめに、ZrH
2付着法について述べる。
There are two methods for this Zr treatment; one is a ZrH2 deposition method and the other is a Zr vapor deposition method. Introduction, ZrH
2. Describe the attachment method.

ZrH2粉末を水に溶かし、一旦清浄化した陰極9の先
端をこの溶液中につけ、乾燥して後、真空容器に入れ、
超高真空になつた後02を導入し、1×10−8〜5〜
10−7T0rrf)02雰囲気中にて1500℃にて
約1時間の加熱を行なう。まだ、Zr蒸着法では、まず
清浄なw陰極9の表面にZrを蒸着する。
ZrH2 powder was dissolved in water, the tip of the cathode 9, once cleaned, was dipped into this solution, dried, and then placed in a vacuum container.
After reaching ultra-high vacuum, introduce 02 and 1×10-8~5~
10-7T0rrf) Heating is performed at 1500° C. for about 1 hour in a 02 atmosphere. However, in the Zr vapor deposition method, Zr is first vapor-deposited on the surface of the clean W cathode 9.

この蒸着の具体的方法は0.15?φのw線2本に0.
127TaφのZr線を巻き付けたものを通電加熱(1
500〜170(代),1紛間)することにより行なう
。蒸着後は直ちに、1×10−7〜1x10−6T0r
rx608,02に曝気する。続いて、約1500℃×
6C@7の熱処理を行なう。このように、蒸着等によつ
てZrを付着させた後、酸素を自暴気し、これを加熱(
約1500℃,6@間)処理すると、化学的結合の安定
な状態へ移行する、すなわち酸素層はw<5Zrの中間
に配置される。このことは、活性な金属では共通の性質
である。ZrH2法およびZr蒸着法とも、Zr処理の
完了は螢光板上での電界放射パターンを観測することに
より判断する。
What is the specific method of this vapor deposition 0.15? 0 for two w lines of φ.
A wound Zr wire of 127 Taφ was heated with electricity (1
This is done by doing 500 to 170 (generations), 1 difference). Immediately after vapor deposition, 1x10-7 to 1x10-6T0r
Aerate to rx608,02. Then, about 1500℃×
Heat treatment at 6C@7 is performed. In this way, after Zr is deposited by vapor deposition or the like, oxygen is self-exposed and then heated (
When treated at about 1500° C. for 6@), the chemical bond shifts to a stable state, ie, the oxygen layer is located in the middle where w<5 Zr. This is a common property of active metals. In both the ZrH2 method and the Zr vapor deposition method, completion of the Zr treatment is determined by observing the field emission pattern on the fluorescent plate.

すなわち、Wの表面上に酸素を介して単原子層以下のZ
rの吸着層が最終的に形成された場合にのみ角度制限(
AngularCOnfinement)が達成される
からである。
In other words, Z of less than a monoatomic layer is formed on the surface of W via oxygen
The angular limit (
This is because AngularConfinement) is achieved.

完成したZr処理陰極は通常のw陰極(〈310〉単結
晶線を使用)の場合と比較して陰極の軸中心に電界放射
が集中し、20〜3@の角度制限の向上となる。また、
取り出し電流の安定度は加熱温度を1000〜1110
0Kの範囲に定めることにより通常の陰極より約2倍の
安定化をはかることができる。さらに、この陰極はビル
ドアップ法の陰極に比べて低温動作であり、エネルギー
幅が小さい(0.6e■)のも特徴である。さらにまた
、従来技術において述べたZr処理陰極と比較するとへ
ガスの再導入が不要である、エネルギー幅が小さいなど
非常にすぐれた特徴がある。本発明によるZr処理した
電界放射陰極を小型走査型電子顕微鏡に実装したところ
、従来のW〈310〉陰極に比べて1/30〜1/20
の全電界放射電流にて、同質の像(分解能)を得ること
ができた。
The completed Zr-treated cathode concentrates the field emission at the cathode axis center compared to the case of a normal W cathode (using <310> single crystal wire), resulting in an improvement in angular limit of 20-3@. Also,
The stability of the extraction current is determined by adjusting the heating temperature from 1000 to 1110.
By setting the temperature in the range of 0K, it is possible to achieve about twice the stabilization as compared to a normal cathode. Furthermore, this cathode operates at a lower temperature than the cathode of the build-up method, and is characterized by a smaller energy width (0.6e■). Furthermore, compared to the Zr-treated cathode described in the prior art, this cathode has very superior features such as no need to reintroduce gas and a small energy range. When the Zr-treated field emission cathode of the present invention was installed in a small scanning electron microscope, it was found to be 1/30 to 1/20 compared to the conventional W<310> cathode.
We were able to obtain images of the same quality (resolution) with a total field emission current of .

なお、陰極材料としてMOを使用した場合もWの場合と
ほぼ同様の結果が得られた。
Note that almost the same results as in the case of W were obtained when MO was used as the cathode material.

また、吸着層としてHfあるいはZrl:ニ.Hfとの
混合物を使用した場合もZrとほど同様な結果が得られ
た。
In addition, Hf or Zrl: Ni. When a mixture with Hf was used, results similar to those obtained with Zr were obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による電界放射陰極の原理的説明図、第
2図は放射電子の分布を模式的に説明するための模式図
、第3図は陰極温度と角度制限との関係を示すグラフ、
第4図は陰極温度と長時間変動との関係を示すグラフ、
第5図は本発明による電界放射陰極の組立図である。 1,9・・・針状陰極部、2・・・吸着層、3・・・放
射電子軌跡、4・・・球面、10・・・ヘアピン、11
・・・ホルダー。
Fig. 1 is a diagram explaining the principle of the field emission cathode according to the present invention, Fig. 2 is a schematic diagram for schematically explaining the distribution of emitted electrons, and Fig. 3 is a graph showing the relationship between cathode temperature and angle limit. ,
Figure 4 is a graph showing the relationship between cathode temperature and long-term fluctuations.
FIG. 5 is an assembled diagram of a field emission cathode according to the present invention. DESCRIPTION OF SYMBOLS 1, 9... Acicular cathode part, 2... Adsorption layer, 3... Radiation electron locus, 4... Spherical surface, 10... Hairpin, 11
···holder.

Claims (1)

【特許請求の範囲】 1 WおよびMoからなる群から選択した1つの金属の
単結晶を基体金属とし、少なくとも電子が放射される領
域の表面にZrおよびHfからなる群から選択した少な
くとも1つの金属を酸素を介して単原子層以下の厚さで
吸着させた針状陰極を、輝度温度が1000〜1110
゜Kの範囲で動作させる如く構成したことを特徴とする
電界放射陰極。 2 前記単結晶の結晶軸方位が〈100〉であることを
特徴とする特許請求の範囲第1項記載の電界放射陰極。
[Claims] 1 A single crystal of one metal selected from the group consisting of W and Mo is used as a base metal, and at least one metal selected from the group consisting of Zr and Hf is coated on the surface of at least the region from which electrons are emitted. A needle-shaped cathode with a brightness temperature of 1000 to 1110
A field emission cathode characterized in that it is configured to operate in the range of °K. 2. The field emission cathode according to claim 1, wherein the crystal axis orientation of the single crystal is <100>.
JP54134167A 1979-10-19 1979-10-19 field emission cathode Expired JPS6054735B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP54134167A JPS6054735B2 (en) 1979-10-19 1979-10-19 field emission cathode
DE19803039283 DE3039283A1 (en) 1979-10-19 1980-10-17 FIELD EMISSION CATHODE AND METHOD FOR THEIR PRODUCTION
US06/198,176 US4379250A (en) 1979-10-19 1980-10-17 Field emission cathode and method of fabricating the same
NL8005772A NL8005772A (en) 1979-10-19 1980-10-20 FIELD EMISSION CATHOD AND METHOD FOR MANUFACTURING SUCH A CATHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54134167A JPS6054735B2 (en) 1979-10-19 1979-10-19 field emission cathode

Publications (2)

Publication Number Publication Date
JPS5659422A JPS5659422A (en) 1981-05-22
JPS6054735B2 true JPS6054735B2 (en) 1985-12-02

Family

ID=15122007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54134167A Expired JPS6054735B2 (en) 1979-10-19 1979-10-19 field emission cathode

Country Status (1)

Country Link
JP (1) JPS6054735B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58216327A (en) * 1982-06-11 1983-12-16 Hitachi Ltd Field emission cathode
JPS5949065A (en) * 1982-09-13 1984-03-21 Hitachi Ltd Diffusing feed type electron beam source
JPH0782803B2 (en) * 1983-10-07 1995-09-06 株式会社日立製作所 Thermal field emission cathode and its application equipment
JPH1196892A (en) 1997-09-17 1999-04-09 Nec Corp Field emitter
JP4742586B2 (en) * 2005-01-11 2011-08-10 井関農機株式会社 External hydraulic take-out device for work vehicle

Also Published As

Publication number Publication date
JPS5659422A (en) 1981-05-22

Similar Documents

Publication Publication Date Title
US5258685A (en) Field emission electron source employing a diamond coating
US4143292A (en) Field emission cathode of glassy carbon and method of preparation
JP5301168B2 (en) Cold field emitter
EP0528391B1 (en) A field emission electron source employing a diamond coating and method for producing same
EP0528322A1 (en) A molded field emission electron emitter employing a diamond coating and method for producing same
EP1564774B1 (en) High brightness thermionic cathode
US6798126B2 (en) High angular intensity Schottky electron point source
JPH08250054A (en) Diffusion supplementary electron beam source and electron beam device using this diffusion supplement electron beam source
JPS585496B2 (en) A method for reproducibly manufacturing stable thermal field emission cathodes
JP2012069364A (en) Electron gun and electron beam lithography apparatus using the same
JPS6054735B2 (en) field emission cathode
Yu et al. Improved emission stability of carburized HfC< 100> and ultrasharp tungsten field emitters
US10593505B1 (en) Low temperature, high-brightness, cathode
JP4292108B2 (en) Electron source and manufacturing method thereof
JP6952907B2 (en) Electronic source and electron gun
JP2004288547A (en) Field emission type electron source, its manufacturing method, and image display device
JPS6318297B2 (en)
JP3335836B2 (en) Electron emission device
CN111048382B (en) Method for manufacturing electron source
JP2003007195A (en) Electron emission cathode and its manufacturing method
US9251990B2 (en) Method for producing a thermoelectron emission source and method for producing a cathode
JPWO2004073010A1 (en) Electron gun
US11848169B1 (en) Field-emission type electron source and charged particle beam device using the same
KR20080100158A (en) Electron gun, electron beam exposure apparatus and exposure method
JP2009146751A (en) Electron emission device, electron source, and image display apparatus