JPS6054464A - Three-dimensional integrated circuit device - Google Patents

Three-dimensional integrated circuit device

Info

Publication number
JPS6054464A
JPS6054464A JP16391983A JP16391983A JPS6054464A JP S6054464 A JPS6054464 A JP S6054464A JP 16391983 A JP16391983 A JP 16391983A JP 16391983 A JP16391983 A JP 16391983A JP S6054464 A JPS6054464 A JP S6054464A
Authority
JP
Japan
Prior art keywords
layers
yield
dimensional
equation
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16391983A
Other languages
Japanese (ja)
Other versions
JPH0518257B2 (en
Inventor
Junji Sakurai
桜井 潤治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16391983A priority Critical patent/JPS6054464A/en
Publication of JPS6054464A publication Critical patent/JPS6054464A/en
Publication of JPH0518257B2 publication Critical patent/JPH0518257B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Laminated Bodies (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To reduce the manufacturing cost by specifying the number of layers when forming an active element of three-dimensional LSI, thereby obtaining the optimum number of the layers. CONSTITUTION:When forming active layers of three-dimensional LSI, the number of the layers is determined to the number designated by an equation. That is, when Y(K, M) represents full yield, Y0 is mean step yield of each step, n is the number of the steps of the single layer, a is a constant of proportion relating to the circuit density, D is a mean defect density, K is the number of active elements per chip, and m is the number of the layers of active element forming layers, Y(K, M)=y0<n>Mexp(-n.a.D.K<2>/M) is used, this is partially differentiated by M, and M0 of M=M0 obtained by differential Y/differential M=0 is determined as the number of the layers. Or, K, a, D, y0 are similarly used, the number M0 of the layers obtained by the equation of M0=K(a.D/¦logy0¦)<0.5> may be used. Thus, the number of the layers which can obtain the highest yield can be determined.

Description

【発明の詳細な説明】 la) 発明の技術分野 本発明は三次元集積回路装置(三次元LSI)に係かり
、最も良い歩留が得られる積層数を有する三次元LSI
に関する。
[Detailed Description of the Invention] la) Technical Field of the Invention The present invention relates to a three-dimensional integrated circuit device (three-dimensional LSI), and the present invention relates to a three-dimensional integrated circuit device (three-dimensional LSI), which has a number of stacked layers that provides the best yield.
Regarding.

(bl 技術の背景 周知のように、半導体集積回路(IC)はL SI、V
LSIと二次元(平面)領域で微細化、高集積化されて
きたが、それは高度に集積化すれば高速動作等、極めて
利点が多いからである。しかしながら、微細化にも限度
があり、例えばMOSFETのゲート長が1μmあるい
はそれ以下ではホットエレクトロン効果が顕著に現れる
というような微細化に伴う物理的限界が見えてきた。
(bl Technology Background As is well known, semiconductor integrated circuits (ICs) are LSI, V
LSI and two-dimensional (planar) areas have been miniaturized and highly integrated, because a high degree of integration has many advantages, such as high-speed operation. However, there is a limit to miniaturization, and physical limits associated with miniaturization have become apparent, for example, when the gate length of a MOSFET is 1 μm or less, the hot electron effect becomes noticeable.

一方、絶縁;、t;+V+−に半導体層を被着し、ビー
ム・アユ ルし゛CC結晶基点して、その半導体結晶基
1kに素子を形成し、更にその−にに配線層を設けで、
これを多層に積みトげる構造が開発されており、これら
を基に17で三次元l、SIが大きくクローズアンプt
ノできた・ 」ユ記の、Lうな微細化の眼界を考え合わせると、翫°
1体的な一次元]、S1は今後にICが発展するための
最大課眉1であると思われる。
On the other hand, a semiconductor layer is deposited on the insulating layer;
A structure in which these are stacked in multiple layers has been developed, and based on these, the three-dimensional l, SI is large, and the close amplifier t is used.
"I was able to do it." Considering the visual field of L-like miniaturization in the Book of Yu,
S1 is considered to be the biggest challenge for the future development of IC.

(に)jI来1に術と問題)jλ このような二次元LSIにおいて、どのような41h 
is’jの三次元LSIを形成するかは設計上極めてr
l’f 要な問題である。今後、例えば論理回路LSI
において50万ゲ−1・の二次元LSIを2層に積層す
るか、またI (1万ゲ−1・の二次元LSIを+0+
I8fにJI’J Itdするかの選択を迫られること
が当然枦想される。
(to) jI to 1 techniques and problems) jλ In such a two-dimensional LSI, what kind of 41h
It is extremely difficult to form a three-dimensional LSI of is'j in terms of design.
l'f This is an important issue. In the future, for example, logic circuit LSI
2D LSIs with 500,000 gamuts are stacked in two layers, or I
It is natural to imagine that I8f will be forced to choose between JI'J Itd.

通常、−次元1.Slのプロセスおよび設計は性能、′
7ス1.納期の3つを考慮して決定されるが、′:Iス
トは強く歩留(vield )に左右されることが知ら
れている。
Usually - dimension 1. The process and design of Sl is performance,'
7th 1. It is determined by considering three factors, including the delivery date, but it is known that the ':I strike is strongly influenced by the yield.

+dl 発明の目的 本発明はプロセスおよび設計の定数が与えられた場合に
、最も低いコストで三次元LSIを製作できる最適の積
層数、言い換えれば最も高い歩留で三次元LSIを製作
できる最適の積層数を提案するものである。
+dl Purpose of the Invention The present invention aims to determine the optimal number of stacked layers that can produce a three-dimensional LSI at the lowest cost, given process and design constants, or in other words, the optimal number of stacked layers that can produce a three-dimensional LSI with the highest yield. It proposes a number.

rat 発明の構成 その目的は、三次元夏、Slにおける能動素子形成層の
積層数を Y(K、M)、 = y o exp (−n−a・I
)K 2/ M)但し、Y(K)’I) i全歩留 yo ;各工程の平均工程歩留 n;単層の工程数 a;回路゛密度に関する比例定数 D;平均欠陥密度 に;チップ当たりの能動素子数 M;能動素子形成層の積層数 なる式をMで偏微分してつY/aM=0として微分して
えられるM=Moを積層数とし、Moなる1i数を有す
る三次元重積回路装置によって達成される。また、三次
元1.51における能動素子が形成された4IJ1−数
をM。として M、、=にん■じ何エガコ7ゴ イ11シ、K;チップ当たりの能動素子数a;回v8密
度に関する比例定数 +1 ; ill均欠陥密度 、。;平均工程歩留 からなる式で」jえられるM。なる層数を有する三次元
隼偵回1?8装置1vによっても達成される。
rat Structure of the Invention The purpose is to calculate the number of laminated active element forming layers in Sl in a three-dimensional summer as Y (K, M), = yo exp (-n-a・I
)K2/M) However, Y(K)'I) iTotal yield yo; Average process yield of each process n; Number of single layer processes a; Proportionality constant D regarding circuit density; Average defect density; Number of active elements per chip M: Partially differentiate the formula for the number of laminated layers of active element forming layers by M, and differentiate as Y/aM=0.M=Mo is the number of laminated layers, and has a 1i number of Mo. This is accomplished by a three-dimensional stacked circuit device. Also, M is the number of 4IJ1-active elements formed in three dimensions 1.51. As M, , = carrot *jika egako7 goi 11shi, K; number of active elements per chip a; proportionality constant for v8 density +1; ill average defect density; ; M can be calculated by the formula consisting of the average process yield. This can also be achieved by a three-dimensional Hayabusa scout 1 to 8 device 1v having a number of layers.

(「)発明の実施例 177士、ii”f細に説明すると、本発明にかかる積
層数決定方法しに一次元LSIの歩留計算法を基礎に1
−7でいるため、まず二次元tsrの歩留計算法の暑I
!Il要をj見明する。
(``) Embodiment 177 of the invention, ii''f To explain in detail, the method for determining the number of stacked layers according to the present invention is based on the yield calculation method for one-dimensional LSI.
-7, first the heat I of the two-dimensional tsr yield calculation method.
! I have a clear idea of the key points.

欠陥密度はポアソン分布に依存すると仮定する。It is assumed that the defect density depends on the Poisson distribution.

そうすると、T稈数r−によって完成される半導体つ1
ハ の・°ノエハー歩留Yは次式で表わされる。
Then, the semiconductor unit 1 completed by the T culm number r-
The Noeher yield Y of C is expressed by the following formula.

ここに、)+、、 A、、l)、ばそれぞれ1番目工程
の工程歩留、欠陥に関連ある面積、欠陥密度で、本式に
おける有頂のnyなる因子は各工程歩留の積、指数関数
因子は欠陥の面積依存を表すものである。
Here, )+, , A, , l) are the process yield of the first process, the area related to defects, and the defect density, respectively, and the eclipsed factor ny in this equation is the product of the yields of each process, The exponential factor represents the area dependence of defects.

欠陥密度り、とは結晶欠陥のみならずゴミの付着など、
電気的特性に及ぼす色々の欠陥を意味しており、欠陥に
関連ある面積A、とはそれの起こり易い領域の面積、単
層にはチップ上の能動素子領域の占める面積を意味して
いる。
Defect density refers not only to crystal defects but also to particles such as adhesion of dust.
It refers to various defects that affect electrical characteristics, and the defect-related area A means the area of the area where defects are likely to occur, and the single layer refers to the area occupied by the active element area on the chip.

(1)式は複雑であるから、これを簡単して、Y = 
y oexp (−n−A−D) −−−−−−+21
と仮定する。ここに、yoは全工程数nの平均工程歩留
、Aはチップ面積、Dはチップ面積の欠陥密度とする。
Since equation (1) is complicated, we can simplify it and get Y =
y oexp (-n-A-D) --------+21
Assume that Here, yo is the average process yield of the total number of processes n, A is the chip area, and D is the defect density of the chip area.

また、チップ面積Aとチップ当たり素子数K(トランジ
スタ、ゲートなどの能動素子を素子と略称する)との関
係は、 A(K) =a、に2−−−−−−−−−−−−−−−
−−−−−(3)と仮定する。A(K>は素子数Kを有
するチップ面積を表わし、aは回路密度に関する比例定
数である。このように素子数の2乗にチップ面積が比例
するわし」は、素子−が増えると配線数が増加するから
であり、理論的i1F明ノ)なされていて、且つ(3)
式はCMOSゲー17レイの実際の製品の値と良い一致
を示している。
In addition, the relationship between the chip area A and the number of elements per chip (active elements such as transistors and gates are abbreviated as elements) is as follows: A(K) = a, 2 ------
------- (3) Assume. A (K> represents the chip area with the number of elements K, and a is a proportionality constant related to the circuit density. In this way, the chip area is proportional to the square of the number of elements.) As the number of elements increases, the number of wires increases. (3)
The formula shows good agreement with the actual product values of CMOS game 17 rays.

(;5)式を(2日(に入れると、次式が1qられる。If we put the equation (;5) into (2nd), the following equation becomes 1q.

Y(K) = y+I exll(n・a−I)−に2
) −−−−−−(41ごの(引代は歩留Y (K)が
素子数Kに依存することを示しているものである。
Y(K) = y+I exll(n・a−I)−2
) --------(The shipping charge for each 41st unit indicates that the yield Y (K) depends on the number of elements K.

以にに説明した二次元LSIの式を基礎にして、三次元
LSIにおIJる同様の式を計算する。この場合、素子
を形成した層の積層数をMとすれば、」二重工程数nを
M倍繰り返して形成すると考えてよいから、−次元式の
nは三次元式ではM X nと置き換えられる。
Based on the formula for the two-dimensional LSI described above, a similar formula for the three-dimensional LSI is calculated. In this case, if the number of laminated layers forming the element is M, it can be considered that the number of double steps n is repeated M times, so n in the -dimensional formula is replaced with M X n in the three-dimensional formula. It will be done.

また、三次元に1旨」る見掛は上のチップ面積はA(K
)=a・(K/M)2−−−−−−−−−(51となり
、二次元に才団る(3)式は三次元では(5)式に代わ
る。
In addition, the apparent chip area of ``one effect in three dimensions'' is A(K
)=a・(K/M)2−−−−−−−−(51), and the formula (3) that is effective in two dimensions is replaced by the formula (5) in three dimensions.

これら2つの条件を(2)式に入れると、(4)式に代
わって次式かえられる。
When these two conditions are put into equation (2), equation (4) is replaced by the following equation.

YKM) −)’o exp (−n−a−D−に2 
/M) −+61この式の有頂のy。は工程に関連する
歩留であり、後項は欠陥に関連する歩留、例えば作業間
違いや製造装置の故障などが関係する歩留である。(6
)式はM=1とすれば、(4)式かえられるから二次元
LSIを含む式となる。
YKM) -)'o exp (-n-a-D-ni 2
/M) −+61 the eclipsed y of this equation. is the yield related to the process, and the latter term is the yield related to defects, for example, the yield related to operational errors and failures of manufacturing equipment. (6
) can be changed to equation (4) by setting M=1, so it becomes an equation that includes a two-dimensional LSI.

この(6)式において、歩留Y(KM)がMに関し極大
値をもち、その時のM−Moが最適の素子形成層の積層
数となる。また、(6)式をMで偏微分する(ay/a
M=0)と、 Mo =K a=D/ lLog )’o l −−−
−17)なる式かえられる。この式でM(、≧2とする
にはyo≧exp (−a−1)K2/ 4) −−−
−−(81の条件が必要になる。
In this equation (6), the yield Y (KM) has a maximum value with respect to M, and M-Mo at that time becomes the optimal number of stacked element forming layers. Also, partial differentiation of equation (6) with respect to M (ay/a
M=0) and Mo=Ka=D/lLog)'ol ---
-17) The expression can be changed. In this formula, M(, To make ≧2, yo≧exp (-a-1)K2/ 4) ---
--(81 conditions are required.

さて、上記にえられた(6)式により、一定条件を与え
た歩留Y(K、M )と積層数Mとの関係を図表に示し
ている。条件は次の通りである。
Now, based on the equation (6) obtained above, the relationship between the yield Y (K, M) and the number of stacked layers M under certain conditions is shown in a chart. The conditions are as follows.

n=20工程 a = 2X l O−”cJ/ (素子)2D=0.
05/c+J K−5Xll 素子/チップ かくして、平均歩留(yo )が0.99の場合が実線
I、平均歩留が0.999の場合が実線■で示され、ご
の31、うにして真1算した1通の積層数M(1を三次
元1.3Iの素子形成層の積層数とすれば、最低コス1
のICが得られる。
n=20 steps a=2X l O−”cJ/ (element) 2D=0.
05/c+J K-5Xll element/chip Thus, when the average yield (yo) is 0.99, the solid line I is shown, and when the average yield is 0.999, the solid line ■ is shown. The number of laminated layers M (1 is the number of laminated layers of a three-dimensional 1.3I element forming layer, then the minimum cost is 1)
This results in an IC of

1g) 発明の効果 以上の説明から明らかなように、本発明によれば二次元
1.3Iを(j(:rストで製造できるため、三次元1
.Srの進歩に顕著に寄与するものである。
1g) Effects of the Invention As is clear from the above explanation, according to the present invention, two-dimensional 1.3I can be manufactured by
.. This will significantly contribute to the progress of Sr.

【図面の簡単な説明】[Brief explanation of the drawing]

図表は本発明により1ηられた歩留Ml(M )と積層
数Mとの関係図表である。 OIo 20
The chart is a relationship chart between the yield Ml (M 2 ), which is reduced by 1η according to the present invention, and the number of laminated layers M. OIO 20

Claims (2)

【特許請求の範囲】[Claims] (1)、三次元LSIにおける能動素子形成層の積層数
を Y(KM) = )’ o exp (−n−a−D−
に2/M)但し、Y(KlM) ;全歩留 yo ;各工程の平均工程歩留 n;単層の工程数 a;回路密度に関する比例定数 D;平均欠陥密度 に;チップ当たりの能動素子数 M;能動素子形成層の積層数 なる式をMで偏微分し3Y/”75M=0としてえられ
るM=MOを積層数とし、MOなる層数を有することを
特徴とする三次元集積回路装置。
(1), the number of laminated active element formation layers in a three-dimensional LSI is Y (KM) = )' o exp (-n-a-D-
2/M) However, Y(KlM); total yield yo; average process yield of each process n; number of single layer processes a; proportionality constant D for circuit density; average defect density; active elements per chip A three-dimensional integrated circuit characterized in that the number M is the number of laminated layers, where M=MO, which is obtained by partially differentiating the formula 3Y/"75M=0 by partially differentiating the formula M: the number of laminated layers of active element formation layers, is MO, and the number of laminated layers is MO. Device.
(2)、三次元LSIにおける能動素子形成層の積層数
をM、として Mo=KJi「7丁log )Fo 1但し、K;チッ
プ当たりの能動素子数 a;回路密度に関する比例定数 D;平均欠陥密度 yo ;平均工程歩留 からなる式で与えられるM。なる層数を有することを特
徴とする三次元集積回路装置。
(2), where M is the number of laminated active element formation layers in a three-dimensional LSI, Mo = KJi 7 log ) Fo 1, where K: number of active elements per chip a; proportionality constant related to circuit density D: average defect A three-dimensional integrated circuit device characterized by having a number of layers M given by an equation consisting of density yo; average process yield.
JP16391983A 1983-09-05 1983-09-05 Three-dimensional integrated circuit device Granted JPS6054464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16391983A JPS6054464A (en) 1983-09-05 1983-09-05 Three-dimensional integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16391983A JPS6054464A (en) 1983-09-05 1983-09-05 Three-dimensional integrated circuit device

Publications (2)

Publication Number Publication Date
JPS6054464A true JPS6054464A (en) 1985-03-28
JPH0518257B2 JPH0518257B2 (en) 1993-03-11

Family

ID=15783313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16391983A Granted JPS6054464A (en) 1983-09-05 1983-09-05 Three-dimensional integrated circuit device

Country Status (1)

Country Link
JP (1) JPS6054464A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1072556C (en) * 1995-12-27 2001-10-10 日立造船株式会社 Fold construction of corrugated fiberboard

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1072556C (en) * 1995-12-27 2001-10-10 日立造船株式会社 Fold construction of corrugated fiberboard

Also Published As

Publication number Publication date
JPH0518257B2 (en) 1993-03-11

Similar Documents

Publication Publication Date Title
TWI570586B (en) Design tools for integrated circuit components including nanowires and 2d material strips
Bobba et al. Performance analysis of 3-D monolithic integrated circuits
US10303840B2 (en) Integrated circuit manufacture using direct write lithography
DE102017110226A1 (en) Filler for integrated circuits and methods thereof
CN106663593A (en) Nanowire or 2D material strips interconnects in an integrated circuit cell
DE112012004106T5 (en) Flattened substrate surface for bonding a substrate
US4700316A (en) Automated book layout in static CMOS
US7682880B2 (en) Method and device for producing layout patterns of a semiconductor device having an even wafer surface
JP3934919B2 (en) Mask blank selection method, exposure mask formation method, and semiconductor device manufacturing method
CN106663594A (en) Memory cells and logic cells having transistors with different numbers of nanowires or 2D material strips
JPS6054464A (en) Three-dimensional integrated circuit device
JP5660313B2 (en) Semiconductor device
TWI377480B (en) Performance-aware logic operations for generating masks
CN110223917A (en) The method for reducing influence of the chemomechanical copper grinding to rear end alignment precision
Kunikiyo et al. Test structure measuring inter-and intralayer coupling capacitance of interconnection with subfemtofarad resolution
Hoefflinger et al. A three-dimensional CMOS design methodology
DE102018117704B4 (en) Local connection structure
US8775995B2 (en) Method and apparatus of core timing prediction of core logic in the chip-level implementation process through an over-core window on a chip-level routing layer
JPH0518258B2 (en)
CN105140217B (en) A kind of preparation method of three-dimensional integrated device
CN103904136B (en) Varactor
JP2004303768A (en) Semiconductor device and method for generating pattern
JPS60145642A (en) Semiconductor ic device
JPS58139445A (en) Semiconductor integrated circuit device
US10664564B2 (en) Systems and methods for inter-die block level design