JPS6054398B2 - Method for producing silver with low palladium content - Google Patents

Method for producing silver with low palladium content

Info

Publication number
JPS6054398B2
JPS6054398B2 JP23020582A JP23020582A JPS6054398B2 JP S6054398 B2 JPS6054398 B2 JP S6054398B2 JP 23020582 A JP23020582 A JP 23020582A JP 23020582 A JP23020582 A JP 23020582A JP S6054398 B2 JPS6054398 B2 JP S6054398B2
Authority
JP
Japan
Prior art keywords
palladium
exchange resin
silver
liquid
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23020582A
Other languages
Japanese (ja)
Other versions
JPS59133389A (en
Inventor
彰 片井
晴彦 坪井
昌三 友繁
博孝 網本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP23020582A priority Critical patent/JPS6054398B2/en
Publication of JPS59133389A publication Critical patent/JPS59133389A/en
Publication of JPS6054398B2 publication Critical patent/JPS6054398B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は銀を製錬回収する際に溶液中に溶出してくるパ
ラジウムを連続的に固定分離せしめ、液中パラジウム濃
度を一定に保つことにより、パラジウム含有の少ない銀
を製造する方法に関する。
Detailed Description of the Invention The present invention continuously fixes and separates palladium eluted into a solution when silver is smelted and recovered, and by keeping the palladium concentration in the liquid constant, silver with low palladium content is produced. Relating to a method of manufacturing.

一般に粗銀の電解精製に使用した電解液には微量ながら
パラジウムが含まれている。このパラジウムは析出鎖中
に混入してその品位を低下せしめやすく、写真材料向銀
としては、感度を低下させる作用があるために、好まし
くない。また、パラジウム自体が回収価値の高い金属で
あることから、銀電解液中のパラジウムを分離して溶液
中のパラジウム濃度を一定濃度以下に抑えるとともに有
価なパラジウムを回収する必要がある。たとえば、電解
精製用の粗銀にはパラジウムが0.01〜0.5重量%
含まれているが、これを電解精製すると、電解液中に銀
とともにパラジウムが溶解し、陰極に析出した銀にパラ
ジウムが混入する。
Generally, the electrolytic solution used for electrolytic refining of crude silver contains a small amount of palladium. This palladium tends to be mixed into the precipitated chains and deteriorate their quality, and is not preferred as a silver for photographic materials since it has the effect of reducing sensitivity. Moreover, since palladium itself is a metal with high recovery value, it is necessary to separate palladium in the silver electrolyte to suppress the palladium concentration in the solution to a certain concentration or less and to recover valuable palladium. For example, palladium is 0.01-0.5% by weight in crude silver for electrolytic refining.
However, when this is electrolytically refined, palladium is dissolved together with silver in the electrolytic solution, and palladium is mixed into the silver deposited on the cathode.

その混入量は一般にパラジウムの濃度に比例する。たと
えば、析出鎖中に含まれるパラジウム−を10pμm以
下とするには溶液中のパラジウム濃度を50pμmに抑
える必要があり、特に写真材料向のパラジウム含有の少
ない銀を製造する場合には溶液中のパラジウム濃度を1
0pμm以下にする必要がある。このため、パラジウム
を電解液からフ分離する従来の方法としては使用電解液
の全部または一部を浄液反応槽に抜き取り、ジメチルグ
リオキシム等の試薬を添加して沈澱物として固定し、戸
別除去する方法がある。しかし、この方法は、試薬が過
剰になつた場合、この液を電解槽に5戻し、再使用する
と、電解中に溶出してくるパラジウムと過剰の試薬とが
電解槽で反応沈澱して析出銀に混入するという欠点があ
る。そのため、試薬を常に不足気味に添加しなければな
らず、従つてパラジウムを除去した液中にはなお若干の
パラジウムが残留することになる。
The amount of mixing is generally proportional to the concentration of palladium. For example, in order to reduce the palladium contained in the precipitated chains to 10 pμm or less, it is necessary to suppress the palladium concentration in the solution to 50 pμm. In particular, when producing silver with low palladium content for photographic materials, the palladium concentration in the solution must be suppressed to 50 pμm. concentration to 1
It is necessary to make it 0 pμm or less. For this reason, the conventional method for separating palladium from the electrolyte is to extract all or part of the electrolyte used into a purified liquid reaction tank, add a reagent such as dimethylglyoxime to fix it as a precipitate, and then remove it from door to door. There is a way to do it. However, in this method, if there is an excess of reagent, this solution is returned to the electrolytic cell and reused, and the palladium eluted during electrolysis and the excess reagent react and precipitate in the electrolytic cell, resulting in deposited silver. It has the disadvantage of being mixed with Therefore, the reagent must always be added in an insufficient amount, and therefore some palladium will still remain in the solution from which palladium has been removed.

さらに、この方法はバッチ浄液であるために、電解中に
溶出するパラジウムは除去できず、液中のパラジウム濃
度は次に液を入れかえるまでの通電中に徐々に上昇し、
析出銀にパラジウムが混入する。また、回収したパラジ
ウム沈澱物よりパラジウム製品を得るには、多数の困難
な工程が必要である等の問題点があつた。本発明は上記
の従来法の問題点を解決し、パラジウム含有の少ない銀
を製造する方法を提供するもので、その要旨とするとこ
ろは、パラジウムを含有する粗銀アノードを原料として
電気分解を行ない、環流液を大幅に増加せしめるととも
に、該環流液の一部を抜き出してパラジウムに対して高
選択性を示すキレート性イオン交換樹脂層と該イオン交
換樹脂層に連結した活性炭層を連続的に通液せしめ、該
イオン交換樹脂の硝酸可溶部を固定し、液中パラジウム
濃度を一定に保つことを特徴とするパラジウム含有の少
ない銀の製造方法、にある。
Furthermore, since this method is a batch liquid purification process, palladium eluted during electrolysis cannot be removed, and the palladium concentration in the liquid gradually increases during energization until the next time the liquid is replaced.
Palladium is mixed into the deposited silver. In addition, there were other problems such as the necessity of many difficult steps in order to obtain palladium products from the recovered palladium precipitate. The present invention solves the problems of the above-mentioned conventional methods and provides a method for producing silver with low palladium content. In addition to significantly increasing the reflux liquid, a portion of the reflux liquid is extracted and passed continuously through a chelating ion exchange resin layer that exhibits high selectivity for palladium and an activated carbon layer connected to the ion exchange resin layer. A method for producing silver with low palladium content, characterized by fixing the nitric acid-soluble portion of the ion exchange resin and keeping the palladium concentration in the solution constant.

本発明方法で使用されるキレート性イオン交換樹脂は次
の一般式(1)を有するキレート性フェノール化合物と
フェノール類とアルデヒド類とを架橋三次元化した耐薬
品性にすぐれた架橋度の高い樹脂(例えば商品名ユニセ
レツク泳−10、ユニチカ製)が挙げられる。
The chelating ion exchange resin used in the method of the present invention is a highly cross-linked resin with excellent chemical resistance, which is made by three-dimensionally cross-linking a chelating phenol compound having the following general formula (1), phenols, and aldehydes. (For example, the product name is Uniselect Swimming-10, manufactured by Unitika).

ここに、Mはアルカリ金属又は水素、Rl,R2は水素
又はアルキル基を表わす。
Here, M represents an alkali metal or hydrogen, and Rl and R2 represent hydrogen or an alkyl group.

次に、本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail.

パラジウムを含む粗銀アノードをAgNO3溶液・(粗
銀量1k9当り約3.3e)とともに電解槽に装入し、
この電解液を各極間に流し込む方法で全液量×0.05
e/分以上の速度で環流ませながら、この中で電解する
A crude silver anode containing palladium was charged into an electrolytic tank along with an AgNO3 solution (approximately 3.3e per 1k9 of crude silver),
By pouring this electrolyte between each electrode, the total liquid volume x 0.05
Electrolysis is carried out in this while being refluxed at a rate of e/min or more.

この電解液の一部を定量ポンプでキレート性イオン交換
樹脂層に一定速度(樹脂量×1′/Hr)で給液する。
この時、パラジウムはキレート性イオン交換樹脂に吸着
除去され、パラジウムを含まない銀電解液が電解槽に戻
され、液中のパラジウムは電解の進行とともに連続的に
除去され、液中のパラジウム濃度は常にある一定値以下
に低く保たれる。一方、銀電解の溶媒として硝酸を用い
るわけであるが、一般にいかなる有機物であつても、硝
酸に対しては酸分解を生じ、樹脂のごとぎ架橋三次元化
した高分子有機化合物といえども、硝酸可溶部が溶出す
る。
A portion of this electrolytic solution is supplied to the chelating ion exchange resin layer at a constant rate (resin amount x 1'/Hr) using a metering pump.
At this time, palladium is adsorbed and removed by the chelating ion exchange resin, the silver electrolyte containing no palladium is returned to the electrolytic cell, and the palladium in the solution is continuously removed as electrolysis progresses, and the palladium concentration in the solution decreases. Always kept below a certain value. On the other hand, nitric acid is used as a solvent for silver electrolysis, but in general any organic substance will undergo acid decomposition with nitric acid, and even if it is a polymeric organic compound that has become three-dimensionally cross-linked like a resin, The nitric acid soluble portion is eluted.

その結果、銀電解の如き電気分解においては有機物の系
内への混入は銀電解にきわめて悪い影響を与えるので、
できるだけ架橋度の高い、すなわち耐硝酸性にすぐれた
キレート性イオン交換樹脂を用いて出来るだけ硝酸可溶
部を少なくして銀電解への悪影響をできるだけ少なくす
る必要がある。しかしながら、いかに架橋度の高いキレ
ート性イオン交換樹脂を用いて硝酸による酸分解を押え
ても完全に押えることはできない。
As a result, in electrolysis such as silver electrolysis, the introduction of organic matter into the system has a very negative effect on silver electrolysis.
It is necessary to use a chelating ion exchange resin with as high a degree of crosslinking as possible, that is, with excellent nitric acid resistance, and to minimize the nitric acid soluble portion to minimize the adverse effect on silver electrolysis. However, no matter how highly cross-linked a chelating ion exchange resin is used to suppress acid decomposition caused by nitric acid, it cannot be completely suppressed.

本発明方法においては、高架橋度のキレート性イオン交
換樹脂を用いて硝酸可溶部を最小限に押えて、さらにそ
の可溶部を活性炭層に吸着除去するのである。
In the method of the present invention, a highly crosslinked chelating ion exchange resin is used to minimize the nitric acid soluble portion, and the nitric acid soluble portion is then adsorbed and removed by the activated carbon layer.

本発明方法でのキレート性イオン交換樹脂の量は液中へ
のパラジウムの溶解速度とキレート性イオン交換樹脂の
交換容量とを考慮して決定する必要があり、通常は全液
量の0.0?程度が好ましい。
The amount of chelating ion exchange resin in the method of the present invention must be determined by taking into account the dissolution rate of palladium into the liquid and the exchange capacity of the chelating ion exchange resin, and is usually 0.0 of the total liquid volume. ? degree is preferred.

本発明方法によつて、銀の電気分解を行なうと、液中パ
ラジウム濃度は常に10ppm以下となり、パラジウム
含有の低い銀を得ることができる。
When silver is electrolyzed by the method of the present invention, the palladium concentration in the liquid is always 10 ppm or less, and silver with a low palladium content can be obtained.

一方、キレート性イオン交換樹脂に吸着されたパラジウ
ムは?の塩酸によつて容易に脱離し、パラジウム含有液
として回収できる。すなわち、パラジウム精製工程の原
料となり、早期にパラジウムを製品とすることができる
。次に、本発明を実施例によつてさらに具体的に説明す
るが、本発明はその要旨を越えない限り以下の実施例に
よつて限定されるものではない。
On the other hand, what about palladium adsorbed on chelating ion exchange resin? It can be easily desorbed with hydrochloric acid and recovered as a palladium-containing liquid. In other words, it becomes a raw material for the palladium purification process, and palladium can be made into a product at an early stage. Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof.

実施例1本実施例で使用したキレート性イオン交換樹脂
はユニチカ製ユニセレツク泳−10である。
Example 1 The chelating ion-exchange resin used in this example was Uniselek-10 manufactured by Unitika.

上記条件で電解精製を実施した結果、析出銀中パラジウ
ムは1.6ppmであつた。また、同一液を連続して5
10t使用した結果は第2表に示すように、液中パラジ
ウム濃度はほとんど変化せず、析出銀中パラジウムは1
.2ppmと安定した結果を示している。
As a result of carrying out electrolytic refining under the above conditions, palladium in the precipitated silver was 1.6 ppm. Also, use the same solution 5 times in a row.
As shown in Table 2, the results of using 10 tons of palladium in the liquid showed almost no change, and the palladium in the precipitated silver was 1.
.. This shows a stable result of 2 ppm.

一方、6ケ月間使用した時点でのイオン交換樹脂を?の
HCl約200eを使つて再生脱離した結果Pd=25
y/′の液を得ることができた。
On the other hand, what about the ion exchange resin after 6 months of use? As a result of regeneration and desorption using approximately 200 e of HCl, Pd = 25
A liquid of y/' could be obtained.

Claims (1)

【特許請求の範囲】 1 パラジウムを含有する粗銀アノードを原料とし、電
気分解を行ない、環流液を大幅に増加せしめるとともに
該環流液の一部を抜き出し、一般式(1)で示されるキ
レート性フェノール化合物とフェノール類とアルデヒド
類とを架橋三次元化したキレート性イオン交換樹脂層と
該イオン交換樹脂層に連結した活性炭層とを連続的に通
液せしめ、該イオン交換樹脂の硝酸可溶部を固定し、液
中パラジウム濃度を一定に保つことを特徴とするパラジ
ウム含有の少ない銀の製造方法。 (1)▲数式、化学式、表等があります▼ただしMはア
ルカリ金属又は水素R_1、R_2は水素またはアルキ
ル基を表す。
[Scope of Claims] 1 A crude silver anode containing palladium is used as a raw material, electrolyzed to significantly increase the reflux liquid, and a part of the reflux liquid is extracted to obtain the chelating property represented by the general formula (1). A chelating ion-exchange resin layer in which a phenol compound, phenols, and aldehydes are cross-linked three-dimensionally and an activated carbon layer connected to the ion-exchange resin layer are continuously passed through, and the nitric acid-soluble portion of the ion-exchange resin is removed. A method for producing silver with low palladium content, which is characterized by fixing the palladium and keeping the palladium concentration in the liquid constant. (1) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ However, M represents an alkali metal or hydrogen R_1 and R_2 represent hydrogen or an alkyl group.
JP23020582A 1982-12-25 1982-12-25 Method for producing silver with low palladium content Expired JPS6054398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23020582A JPS6054398B2 (en) 1982-12-25 1982-12-25 Method for producing silver with low palladium content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23020582A JPS6054398B2 (en) 1982-12-25 1982-12-25 Method for producing silver with low palladium content

Publications (2)

Publication Number Publication Date
JPS59133389A JPS59133389A (en) 1984-07-31
JPS6054398B2 true JPS6054398B2 (en) 1985-11-29

Family

ID=16904218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23020582A Expired JPS6054398B2 (en) 1982-12-25 1982-12-25 Method for producing silver with low palladium content

Country Status (1)

Country Link
JP (1) JPS6054398B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4239852C2 (en) * 1992-11-27 2001-04-26 Saxonia Edelmetalle Gmbh Recyc Process for refining raw silver containing palladium
AU2003302736A1 (en) 2002-12-03 2004-06-30 Bristol-Myers Squibb Company Process for removing metals from liquids

Also Published As

Publication number Publication date
JPS59133389A (en) 1984-07-31

Similar Documents

Publication Publication Date Title
CN100549190C (en) Use the recovery method that contains the platinum in the selenium waste liquid of hydrazine
US3922231A (en) Process for the recovery of fission products from waste solutions utilizing controlled cathodic potential electrolysis
CA1207980A (en) Method for purification of sulfuric acid solution
US6458184B2 (en) Recovery of zinc from geothermal brines
US3766036A (en) Process for the removal of ionic metallic impurities from water
US4203952A (en) Process for the removal of heavy metals and transition metals other than platinum from solution
PL162384B1 (en) Method for solvent abstraction in copper recovery
US5256187A (en) Separation of precious metals by an ion exchange process
US5328616A (en) Methods and apparatus for treating electroless plating baths
JPS63153229A (en) Reactive resin useful for recovery of metal
Villaescusa et al. Liquid-liquid and solid-liquid extraction of gold by trioctylmethylammonium chloride (TOMAC1) dissolved in toluene and impregnated on amberlite XAD-2 resin
JPS6054398B2 (en) Method for producing silver with low palladium content
US4124379A (en) Recovery of silver from cuprous chloride solutions by amalgamation
JPS5932542B2 (en) Method for controlling copper ion concentration and salt-forming anion concentration in electroless copper deposition bath
US4670115A (en) Electrolytic silver refining process and apparatus
WO1994012683A1 (en) Apparatus and methods for treating electroless plating baths
JPH0447035B2 (en)
CN104496000A (en) Method for removing and recovering arsenic and antimony in water body by replacement of copper powder
JPS63502358A (en) Electrolytic method that simultaneously performs gold electrodeposition and elemental iodine regeneration
JP4506041B2 (en) Methods for removing osmium and ruthenium from nickel chloride solutions.
JPS58151435A (en) Method for refining and recovering noble metal
CA1096178A (en) Recovery of silver from cuprous chloride solutions by amalgamation
EP0196099B1 (en) Preparation process of (meth)acrylamide
JP3862705B2 (en) Palladium aggregating and precipitating agent and palladium separation and recovery method using the same
US2160500A (en) Method of recovering metals and paper