JPS6054378B2 - Method for recovering nickel from acidic aqueous solution containing nickel ions - Google Patents

Method for recovering nickel from acidic aqueous solution containing nickel ions

Info

Publication number
JPS6054378B2
JPS6054378B2 JP14867583A JP14867583A JPS6054378B2 JP S6054378 B2 JPS6054378 B2 JP S6054378B2 JP 14867583 A JP14867583 A JP 14867583A JP 14867583 A JP14867583 A JP 14867583A JP S6054378 B2 JPS6054378 B2 JP S6054378B2
Authority
JP
Japan
Prior art keywords
nickel
aqueous solution
acidic aqueous
sulfide
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14867583A
Other languages
Japanese (ja)
Other versions
JPS6043446A (en
Inventor
泰二郎 岡部
昭嗣 奥脇
修 鹿目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP14867583A priority Critical patent/JPS6054378B2/en
Publication of JPS6043446A publication Critical patent/JPS6043446A/en
Publication of JPS6054378B2 publication Critical patent/JPS6054378B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明はニッケルを含有する酸性水溶液からニッケルを
二硫化三ニッケルとして高収率で回収するニッケルの回
収方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a nickel recovery method for recovering nickel as trinickel disulfide from an acidic aqueous solution containing nickel at a high yield.

たとえば、マンガンノジユールやラテライトなどの酸浸
出(MoaBay法など)によつてニッケルを含む酸性
水溶液が得られる。
For example, an acidic aqueous solution containing nickel can be obtained by acid leaching (such as the MoaBay method) of manganese nodule or laterite.

これらの酸性水溶液からのニッケル回収方法としては、
まず120℃、約10に9/C7iの硫化水素圧力下、
オートクレーブ中で硫化ニッケル(NiS)として沈殿
させる方法が実施された。この方法はニッケルの回収率
が高いことが利点であるが、その反面、オートクレーブ
処理が必要であり、かつ生成する硫化ニツケ、 ・ ・
、 L、−′゜に゛3ピコEヨ1 ゛、一μ、、゛一
し′n、一;Ja問題となつていた。後者の対策とし
て、4基のオートクレーブを使用する場合、1基を硫化
ニッケルの剥離のために休止させなければならない。こ
の方法は最近結晶核となる多量の硫化ニッケルを共存さ
せることにより、90’C)1に9/dの硫化水素によ
り実施しうるように改良された。これにより、オートク
レーブ処理や硫化ニッケル固着の問題は解決されたが、
硫化水素の圧力が低いため、ニッケル回収率は約μs%
と低下した。本発明者らは上記のニッケルを含む酸性水
溶液に銅や鉄などの金属粉を共存させることにより、ニ
ッケルの沈殿速度を上昇させることができ、90℃、1
に9/C71Iの硫化水素を用いるオートクレーブを必
要とせずに梵%程度の回収率でニッケルを回収できる方
法を見出し、特許出願(特開昭56−93838号公報
、特開昭56−136940号公報)した。なお、その
際、生成するニッケル硫化物が銅を用いた場合には二硫
化三ニッケルとα一硫化ニッケル(無定形)であり、鉄
を用いた場合には二硫化J三ニッケルであることを解明
し、さらに後者の場合、相当量のニッケル金属の生成が
確められていた(日化誌(1982)、382)。二硫
化Ξニッケルは乾式ニッケル製錬工程から得られるニッ
ケルマットの一成分であることは知られているが、水溶
液;から一工程で得られることは知られていなかつた。
さらに、該湿式工程で得られた二硫化三ニッケル(Ni
3S2)がきわめて反応性に富み、従来法で得られた硫
化ニッケル(NiS)のように高温のオートクレーブ処
理(1500C150k9/C7lf)による浸出を必
要とせず、はるかに温和な条件(7(1)C、常圧)で
浸出できることが明らかになつたため、二硫化三ニッケ
ルの高収率回収を目的とし研究を進めた結果、ニッケル
沈殿率99%以上、二硫化三ニッケル含有率70%以上
を可能にする方法を確立して本発明を完成した。すなわ
ち、本発明によれば、ニッケルイオンを含有する酸性水
溶液に硫化水素を作用させて該ニッケルイオンをニッケ
ル硫化物として沈殿させるニッケルの回収方法において
、該酸性溶液中のニッケルイオンとその含有ニッケル量
に対し反応当量の1.0〜2.0倍の金属鉄と、硫化水
素とを反応温度80〜95℃かつ常圧の下で0.5〜2
時間反応させて該酸性水溶液中のニッケルイオンを二硫
化三ニッケルとして沈殿せしめることを特徴とするニッ
ケルイオンを含む酸性水溶液からのニッケルの回収方法
、が得られる。次に、本発明の各構成要件について詳述
する。本発明における硫化物沈殿反応は硫酸ニッケルの
場合を例にとり示せば次の式(1),(2)の反応が競
争して進行するものと考えられ、(2)の反応ではニッ
ケル1モルに対して鉄113モルが反応当量に相当する
。鉄の使用量は溶液中のニッケル濃度に対する.〔Fe
O〕/〔Ni2+〕モル比で表わすことができる。
As a method for recovering nickel from these acidic aqueous solutions,
First, at 120°C, under a hydrogen sulfide pressure of about 10 to 9/C7i,
A method of precipitation as nickel sulfide (NiS) in an autoclave was carried out. This method has the advantage of a high recovery rate of nickel, but on the other hand, it requires autoclaving and produces sulfurized nickel.
, L, -'゜゛3picoEyo1゛, 1μ,,゛1 し'n,1;Ja was a problem. As a measure against the latter, if four autoclaves are used, one must be shut down for stripping off the nickel sulfide. This method has recently been improved so that it can be carried out using 90'C)1 and 9/d hydrogen sulfide by coexisting a large amount of nickel sulfide which serves as crystal nuclei. This solved the problems of autoclave treatment and nickel sulfide fixation, but
Due to the low pressure of hydrogen sulfide, the nickel recovery rate is approximately μs%
and decreased. The present inventors were able to increase the precipitation rate of nickel by coexisting metal powder such as copper or iron in the acidic aqueous solution containing nickel.
He discovered a method for recovering nickel with a recovery rate of about 10% without the need for an autoclave using 9/C71I hydrogen sulfide, and filed patent applications (Japanese Patent Laid-Open No. 56-93838, JP-A No. 56-136940). )did. At that time, it should be noted that the nickel sulfide produced is trinickel disulfide and α-nickel sulfide (amorphous) when copper is used, and J trinickel disulfide when iron is used. Furthermore, in the latter case, it was confirmed that a considerable amount of nickel metal was produced (Nikka-shi (1982), 382). Although it is known that Ξ nickel disulfide is a component of nickel matte obtained from a pyrotechnic nickel smelting process, it was not known that it could be obtained in one step from an aqueous solution.
Furthermore, trinickel disulfide (Ni
3S2) is extremely reactive and does not require leaching by high-temperature autoclaving (1500C150k9/C7lf) unlike nickel sulfide (NiS) obtained by conventional methods, and can be processed under much milder conditions (7(1)C). As a result of research aimed at high-yield recovery of trinickel disulfide, we were able to achieve a nickel precipitation rate of over 99% and a trinickel disulfide content of over 70%. The present invention was completed by establishing a method to do so. That is, according to the present invention, in a nickel recovery method in which hydrogen sulfide is applied to an acidic aqueous solution containing nickel ions to precipitate the nickel ions as nickel sulfide, nickel ions in the acidic solution and the amount of nickel contained therein are 1.0 to 2.0 times the reaction equivalent of metallic iron and hydrogen sulfide at a reaction temperature of 80 to 95°C and 0.5 to 2.0 times the reaction equivalent under normal pressure.
A method for recovering nickel from an acidic aqueous solution containing nickel ions is obtained, which is characterized by causing a time reaction to precipitate nickel ions in the acidic aqueous solution as trinickel disulfide. Next, each component of the present invention will be explained in detail. In the sulfide precipitation reaction of the present invention, taking the case of nickel sulfate as an example, it is thought that the reactions of the following equations (1) and (2) proceed competitively, and in the reaction (2), 1 mole of nickel is On the other hand, 113 moles of iron correspond to the reaction equivalent. The amount of iron used depends on the nickel concentration in the solution. [Fe
O]/[Ni2+] molar ratio.

〔FeO〕/〔Ni2+〕モル比は大きいほど二硫化三
ニッケルの生成には好ましい。しかしながら、余り過剰
に加えると、本温度範囲では次式(3)のようなセメン
テーシヨンも起きる。この反応はニッケルの.−回収に
は何ら障害ではないが、鉄をあまり過剰に加えると、経
済性が損なわれる。
The larger the [FeO]/[Ni2+] molar ratio is, the better for the production of trinickel disulfide. However, if too much is added, cementation as shown in the following equation (3) may occur in this temperature range. This reaction is of nickel. - Although there is no obstacle to recovery, adding too much iron will impair economic efficiency.

また、沈殿物中に多量の鉄が残存するので、その再処理
において、脱鉄の負担が増す。実用上は鉄粉の使用量は
理論モル比のほぼ2.皓程度が上限である。一方、鉄粉
の使用量を減らして〔FeO〕/〔Ni2+〕モル比を
小さくすると、硫化ニッケルの副生量が増大するので、
好ましくない。実用上、最適なモル比の範囲は理論量の
1.0〜2.0ff1である。本発明の反応温度は80
C以上、沸点以下の範囲が好ましい。800C未満であ
ると、ニッケルの沈殿速度は低下し、かつ二硫化三ニッ
ケルの生成速度がさらに低下するので、沈殿物中の二硫
化三ニッケルの割合が著しく低下する。
Furthermore, since a large amount of iron remains in the precipitate, the burden of iron removal increases in its reprocessing. In practice, the amount of iron powder used is approximately 2.0% of the theoretical molar ratio. The upper limit is about 100%. On the other hand, if we reduce the amount of iron powder used and reduce the [FeO]/[Ni2+] molar ratio, the amount of nickel sulfide by-product will increase.
Undesirable. Practically, the optimum molar ratio range is the theoretical amount of 1.0 to 2.0 ff1. The reaction temperature of the present invention is 80
A range of C or more and boiling point or less is preferable. If it is less than 800C, the precipitation rate of nickel decreases, and the production rate of trinickel disulfide further decreases, so the proportion of trinickel disulfide in the precipitate decreases significantly.

一方、温度は高い方が二硫化三ニッケルの生成には好ま
しいが、エネルギー消費量が増大し、装置材料も高価な
もの”が必要となり、プロセス全体の経済性が損なわれ
る。従つて、最適温度範囲は80〜9(代)である。硫
化水素の流量は使用する装置の形式によつて異なるため
限定し難いが一般に小さい方が二硫化三ニッケルの生成
には好ましい。しかしあまり小さい場合には大きな反応
装置が必要となるので、下限は自から定まる。一方、流
量が大きいとニッケルの沈殿速度は増大する。しかし、
副生する硫化ニッケルの割合が多くなり、それによつて
二硫化三ニッケルの生成が妨害されるので、沈殿物中の
硫化ニッケルの割合が急激に増大し、好ましくない。実
用的には通常の攪拌翼形の気液接触装置の場合は溶液中
のニッケル1f/′につき0.01〜0.04e/Mi
nの範囲である。この値も使用する装置の形式によつて
、多少変化することは言うまでもない。反応時間につい
ては、90℃、3〔FeO〕/〔Ni2+〕モル比1、
1k9/Cltの硫化水素を溶液中のニッケル1y/′
につき0.03′/Minの流量で45分通すると、ニ
ッケル沈殿率は99.5%に達し、それ以後12紛まで
(99.?%)はわずかに増加するだけである。
On the other hand, a higher temperature is preferable for the production of trinickel disulfide, but it increases energy consumption and requires expensive equipment materials, which impairs the economic efficiency of the entire process.Therefore, the optimum temperature The range is from 80 to 9 (s).The flow rate of hydrogen sulfide is difficult to limit because it varies depending on the type of equipment used, but in general, the smaller the flow rate, the better for producing trinickel disulfide.However, if the flow rate is too small, Since a large reactor is required, the lower limit is self-determined.On the other hand, if the flow rate is large, the precipitation rate of nickel increases.However,
The proportion of nickel sulfide as a by-product increases, thereby inhibiting the production of trinickel disulfide, and therefore the proportion of nickel sulfide in the precipitate increases rapidly, which is undesirable. Practically, in the case of a normal stirring vane type gas-liquid contact device, the concentration is 0.01 to 0.04 e/Mi per 1f/' of nickel in the solution.
n range. Needless to say, this value also changes somewhat depending on the type of device used. Regarding the reaction time, 90°C, 3[FeO]/[Ni2+] molar ratio 1,
1k9/Clt of hydrogen sulfide in solution of nickel 1y/'
After 45 minutes at a flow rate of 0.03'/min, the nickel precipitation rate reaches 99.5%, and increases only slightly thereafter up to 12 particles (99.?%).

反応時間が長いと一度生成した二硫化三ニッケルが次式
(4)のように徐々に分解して硫化ニッケルに変化する
ので、反応時間があまり長いことは好ましくない。すな
わち、二硫化三ニッケルは還元剤が存在してはじめて安
定なものであり、還元剤が消費されると、より安定な硫
化ニッケルに変化する。
If the reaction time is too long, the once generated trinickel disulfide will gradually decompose and change to nickel sulfide as shown in the following formula (4), so it is not preferable that the reaction time is too long. That is, trinickel disulfide is stable only in the presence of a reducing agent, and when the reducing agent is consumed, it changes to more stable nickel sulfide.

従つて、上記の条件下で反応を行なわせれば0.5〜1
時間で高いニッケル沈殿率を保ちながら、高収率で二硫
化三ニッケルを得ることができる。含ニッケル酸性水溶
液中のニッケル初濃度はニッケル沈殿率に対し影響する
が、硫酸塩溶液中ではニッケルの初濃度が4y/′程度
の場合は何ら影響はない。銅や亜鉛はそれぞれ硫化物と
して共沈するが、硫酸塩溶液中ではニッケルの沈殿率に
は影響しない。コバルトはしばしばニッケルと共存する
が、0.4f/e程度までは容易に回収できる。しかし
、1g/eを起える場合には、反応温度をできるだけ高
く保ち、かつ〔FeO〕/〔Ni2+〕モル比も、ニッ
ケルのみの場合より高めに保つことにより、高収率で同
時に回収できる。以上述べたように、本発明の効果は次
のように特徴づけられる。
Therefore, if the reaction is carried out under the above conditions, 0.5 to 1
Trinickel disulfide can be obtained in high yield while maintaining a high nickel precipitation rate over time. The initial concentration of nickel in a nickel-containing acidic aqueous solution has an effect on the nickel precipitation rate, but in a sulfate solution, when the initial concentration of nickel is about 4y/', there is no effect. Copper and zinc co-precipitate as sulfides, but do not affect the precipitation rate of nickel in sulfate solutions. Cobalt often coexists with nickel, but up to about 0.4 f/e can be easily recovered. However, when generating 1 g/e, it is possible to simultaneously recover in high yield by keeping the reaction temperature as high as possible and also keeping the [FeO]/[Ni2+] molar ratio higher than in the case of nickel alone. As described above, the effects of the present invention can be characterized as follows.

(1)ニッケルを二硫化三ニッケルとして回収できるこ
との第1の特長は、このものが浸出反応においてきわめ
て反応性に富むため、酸性溶液中では7Cf′C程度で
も浸出ができ、高収率でニッケルが回収できることであ
る。
(1) The first feature of being able to recover nickel as trinickel disulfide is that this substance is extremely reactive in leaching reactions, so even as little as 7Cf'C can be leached in acidic solutions, allowing nickel to be recovered in high yield. can be recovered.

したがつて、硫化ニッケルとして沈殿させる場合のよう
な高価なオートクレーブは必要としない。その上、硫化
物中の硫異分の大部分は元素硫異として回収できる利点
もある。(2)第2の特長は90℃、1kg/Clfの
硫化水素(反5応器内の分圧は約0.3k9/Clt)
を用いても、ニッケル沈殿率が高く、99.5%以上に
達することである。
Therefore, an expensive autoclave as in the case of precipitation as nickel sulfide is not required. Furthermore, there is an advantage that most of the sulfur content in the sulfide can be recovered as elemental sulfur content. (2) The second feature is hydrogen sulfide at 90°C and 1 kg/Clf (partial pressure inside the reactor is approximately 0.3 k9/Clt)
Even if nickel is used, the nickel precipitation rate is high, reaching 99.5% or more.

したがつて、硫化沈殿に際して、高価なオートクレーブ
を必要としない。その理由を硫酸ニッケル溶液の場合を
例にとつて示すと、−硫化ニッケルと二硫化三ニッケル
の生成反応はそれぞれ前出の式(1),(2)のように
表わすことができる。本発明が実施される温度領域にお
いては硫酸水素イオンは弱酸(PKHSO4−ニ2.7
19(代))で−あり、その解離は無視てきる。
Therefore, an expensive autoclave is not required for sulfidation precipitation. To illustrate the reason for this, taking the case of a nickel sulfate solution as an example, the formation reactions of -nickel sulfide and trinickel disulfide can be expressed as in the above-mentioned equations (1) and (2), respectively. In the temperature range in which the present invention is carried out, hydrogen sulfate ion is a weak acid (PKHSO4-ni2.7
19 (generations)), and its dissociation can be ignored.

そのため、式(1)と式(2)においては硫酸イオンで
はなく、硫酸水素イオンが生成するように表現した。両
反応において、1モルのニッケルが沈殿するとき、溶液
中に生成する水素イオンの量を比較すると、式(1)に
おいては1モル、式(2)においてはわずかに113モ
ルである。式(1)と式(2)はともに可逆反応であり
、銅のように逆反応を考慮しなくても良い場合とは異な
る。そのため、中和剤を用いて生成する水素イオンを中
和しない限り、同一濃度のニッケルを沈殿させる場合に
は式(2)の反応を用いる方がニッケルの沈殿率が高く
、有利なことは明らかである。例えば、4yNi/eの
硫酸ニッケル溶液に90′Cで1k9/C7l!の硫化
水素を0.11/Minの流量で約1時間通すると、ニ
ッケル沈殿率は一定に達する。硫化ニッケルが生成する
場合の沈殿率は86.4%、鉄粉を用いて二硫化三ニッ
ケルが沈殿する場合のそれは99.5%に達する。(3
)第3の特長は硫化水素の3分の1をより安価な金属で
置換することにより、高価な硫化水素を節約できること
である。
Therefore, in equations (1) and (2), hydrogen sulfate ions are expressed instead of sulfate ions. Comparing the amount of hydrogen ions produced in the solution when 1 mol of nickel is precipitated in both reactions, it is 1 mol in formula (1) and only 113 mol in formula (2). Both formula (1) and formula (2) are reversible reactions, which is different from the case of copper where there is no need to consider the reverse reaction. Therefore, unless the hydrogen ions generated are neutralized using a neutralizing agent, it is clear that when precipitating nickel at the same concentration, the reaction of formula (2) has a higher nickel precipitation rate and is more advantageous. It is. For example, 1k9/C7l at 90'C in a nickel sulfate solution of 4yNi/e! When passing hydrogen sulfide at a flow rate of 0.11/min for about 1 hour, the nickel precipitation rate reaches a constant value. The precipitation rate when nickel sulfide is produced is 86.4%, and when trinickel disulfide is precipitated using iron powder, it reaches 99.5%. (3
) The third feature is that expensive hydrogen sulfide can be saved by replacing one-third of the hydrogen sulfide with cheaper metals.

これは式(1)と式(2)とを比較すれば明らかである
。(4)第4の特長は沈殿反応速度が速いことである。
This becomes clear by comparing equation (1) and equation (2). (4) The fourth feature is that the precipitation reaction rate is fast.

硫化ニッケルが沈殿する場合、遊離酸あるいは鉄(■)
やアルミニウムイオンのように加水分解して酸を生成す
る金属イオンが共存すると、硫化ニッケルの生成に比較
例に示したように誘導期間が生じ沈殿速度も低下する。
これを防ぐため、多量の硫化ニッケルが循環使用される
。これに対し、本発明方法では添加する金属鉄が沈殿を
促進するのですみやかに、二硫化三ニッケルが沈殿する
。しかし、あまり多量の鉄(■)や遊離酸が存在すると
、還元鉄粉や硫化水素を消費し、沈殿物中の二硫化三ニ
ッケルの割合を低下させるので、そのような場合には、
予めそれらを低下させる方が好ましい。以上の特長から
、含ニッケル酸性水溶液からニッケルを二硫化三ニッケ
ルとして濃縮回収することを可能ならしめる本発明方法
の工業的意義はきわめて大きい。
If nickel sulfide precipitates, free acid or iron (■)
When metal ions that hydrolyze to produce acids, such as aluminum ions, coexist, an induction period occurs in the production of nickel sulfide, as shown in the comparative example, and the precipitation rate also decreases.
To prevent this, large amounts of nickel sulfide are recycled. In contrast, in the method of the present invention, trinickel disulfide is quickly precipitated because the metal iron added promotes precipitation. However, if too much iron (■) or free acid is present, the reduced iron powder and hydrogen sulfide will be consumed and the proportion of trinickel disulfide in the precipitate will decrease.
It is preferable to lower them beforehand. From the above features, the industrial significance of the method of the present invention, which makes it possible to concentrate and recover nickel as trinickel disulfide from a nickel-containing acidic aqueous solution, is extremely large.

次に、本発明を実施例によりさらに具体的に説明するが
、本発明はその要旨を越えない限り、以下の実施例によ
つて限定されるものではない。
Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples unless the gist of the present invention is exceeded.

実施例11eの丸底フラスコに硫酸ニッケル(Ni2+
4.0f/e)、硫酸ナトリウム(Na+12.9f/
e)、硫酸マグネシウム(Mg2+6.3f/′)およ
び硫酸アルミニウム(Al3+5.0f/′)の混合溶
液800rfL1をとり、恒温槽中で90′Cに保持し
た。
Nickel sulfate (Ni2+) was added to the round bottom flask of Example 11e.
4.0f/e), sodium sulfate (Na+12.9f/e),
e) 800rfL1 of a mixed solution of magnesium sulfate (Mg2+6.3f/') and aluminum sulfate (Al3+5.0f/') was taken and maintained at 90'C in a constant temperature bath.

この混合溶液を1000rpmでかきまぜながら、1k
9/CFlfの硫化水素を流量100m1/Min(即
ち溶液中のニッケル1y/eにつき0.025′/Mi
n)で通じつつ、純度90%の還元鉄粉1.69y(モ
ル比が反応当量の1.50倍)を投入し、6053−間
反応させた。反応後、沈殿物を泊別し、泪液中のN1濃
度を原子吸光光度法により求めてニッケル沈殿率を算出
し、一方X線回析と化学分析により沈殿物中のニッケル
化合物組成を求めた。その結果は第1表に示す通り、沈
殿率は99.9%で沈殿物の95.0%は二硫化三ニッ
ケルであつた。比較例 還元鉄を加えないほかは実施例1と同様に実験したとこ
ろ、3扮までは全く沈殿が生成せず、2時間における沈
殿率は86.0%であり、X線回折によると、この沈殿
物はβ−NiSとγ−NiSとの混合物であつた。
While stirring this mixed solution at 1000 rpm,
9/CFlf of hydrogen sulfide at a flow rate of 100 m1/Min (i.e. 0.025'/Mi per nickel 1y/e in the solution).
n), 1.69y of reduced iron powder with a purity of 90% (molar ratio 1.50 times the reaction equivalent) was charged, and 6053-3 was reacted. After the reaction, the precipitate was separated overnight, and the N1 concentration in the liquid was determined by atomic absorption spectrophotometry to calculate the nickel precipitation rate, while the nickel compound composition in the precipitate was determined by X-ray diffraction and chemical analysis. As shown in Table 1, the precipitation rate was 99.9%, and 95.0% of the precipitate was trinickel disulfide. Comparative Example An experiment was carried out in the same manner as in Example 1 except that reduced iron was not added. No precipitate was formed at all up to 3 coats, and the precipitation rate after 2 hours was 86.0%. According to X-ray diffraction, this The precipitate was a mixture of β-NiS and γ-NiS.

実施例2 実施例1と同じ装置と混合溶液を用いて、3〔FeO〕
/〔Nl2+〕モル比、温度、硫化水素流量、反応時間
及びコバルト沈殿率の影響を調べてそれぞれ第2表、第
3表、第4表、第5表および第6表に示す。
Example 2 Using the same equipment and mixed solution as in Example 1, 3[FeO]
/[Nl2+] molar ratio, temperature, hydrogen sulfide flow rate, reaction time, and cobalt precipitation rate were investigated and shown in Tables 2, 3, 4, 5, and 6, respectively.

参考例 湿式法により調製された二硫化王ニッケルと硫化ニッケ
ルとの酸浸出の際の挙動を比較するため、実施例1で得
た二硫化三ニッケルど比較例で得た硫化ニッケルを用い
て塩酸浸出試験を行つた。
Reference Example In order to compare the behavior during acid leaching of nickel disulfide prepared by the wet method and nickel sulfide, trinickel disulfide obtained in Example 1 and nickel sulfide obtained in Comparative Example were leached with hydrochloric acid. A leaching test was conducted.

実施例1の(3〔FeO〕/〔Ni2+〕モル比1.5
0)において生成した試料1.50y1塩化鉄(■)六
水和物15.76gおよび0..4NHC115m1を
ガラス製耐圧封管に入れ、48rpmで上下回転してか
きまぜ70℃、2時間浸出した。
Example 1 (3[FeO]/[Ni2+] molar ratio 1.5
15.76 g of sample 1.50y1 iron chloride (■) hexahydrate produced in 0.0) and 0.0y1 iron chloride (■) hexahydrate. .. 115 ml of 4NHC was placed in a pressure-sealed glass tube, stirred by rotating it up and down at 48 rpm, and leached at 70°C for 2 hours.

ニッケルの浸出率は98.5%に達し、硫化物中の硫黄
に対する硫酸イオンの生成割合はわずか3%であつた。
比較例(Fe添加なし)において生成した試料1.20
gを塩化鉄(■)六水和物15.76gと0.4NHC
115mLと共にガラス製耐圧封管に入れ、48r″P
mで上下回転してかきまぜ、110′Cで浸出した。
The leaching rate of nickel reached 98.5%, and the ratio of sulfate ions generated to the sulfur in the sulfide was only 3%.
Sample 1.20 produced in comparative example (no Fe addition)
g is iron chloride (■) hexahydrate 15.76g and 0.4NHC
Put 115mL into a pressure-sealed glass tube and add 48r''P.
The mixture was stirred by rotating it up and down at m and leached at 110'C.

Claims (1)

【特許請求の範囲】[Claims] 1 ニッケルイオンを含む酸性水溶液に硫化水素を作用
させてニッケルイオンをニッケル硫化物として沈殿させ
るニッケルの回収方法において、該酸性水溶液中のニッ
ケルイオンと、その含有ニッケル量に対し反応当量の1
.0〜2.0倍の金属鉄と、硫化水素とを温度80〜9
5℃、常圧の下で0.5〜2時間反応させて該酸性水溶
液中のニッケルイオンを二硫化三ニッケルとして沈殿せ
しめることを特徴とするニッケルイオンを含む酸性水溶
液からのニッケルの回収方法。
1. In a nickel recovery method in which hydrogen sulfide is applied to an acidic aqueous solution containing nickel ions to precipitate nickel ions as nickel sulfide, nickel ions in the acidic aqueous solution and 1 of the reaction equivalent to the amount of nickel contained in the acidic aqueous solution are used.
.. 0 to 2.0 times as much metallic iron and hydrogen sulfide at a temperature of 80 to 9
A method for recovering nickel from an acidic aqueous solution containing nickel ions, which comprises reacting for 0.5 to 2 hours at 5°C and normal pressure to precipitate the nickel ions in the acidic aqueous solution as trinickel disulfide.
JP14867583A 1983-08-13 1983-08-13 Method for recovering nickel from acidic aqueous solution containing nickel ions Expired JPS6054378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14867583A JPS6054378B2 (en) 1983-08-13 1983-08-13 Method for recovering nickel from acidic aqueous solution containing nickel ions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14867583A JPS6054378B2 (en) 1983-08-13 1983-08-13 Method for recovering nickel from acidic aqueous solution containing nickel ions

Publications (2)

Publication Number Publication Date
JPS6043446A JPS6043446A (en) 1985-03-08
JPS6054378B2 true JPS6054378B2 (en) 1985-11-29

Family

ID=15458096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14867583A Expired JPS6054378B2 (en) 1983-08-13 1983-08-13 Method for recovering nickel from acidic aqueous solution containing nickel ions

Country Status (1)

Country Link
JP (1) JPS6054378B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002950815A0 (en) * 2002-08-15 2002-09-12 Wmc Resources Ltd Recovery nickel
AU2003249789B2 (en) * 2002-08-15 2009-06-04 Wmc Resources Ltd Recovering nickel
KR101210081B1 (en) 2007-11-07 2012-12-07 미츠비시 레이온 가부시키가이샤 Oil agent composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle, and method for producing the same

Also Published As

Publication number Publication date
JPS6043446A (en) 1985-03-08

Similar Documents

Publication Publication Date Title
Shen et al. Sustainable and efficient leaching of tungsten in ammoniacal ammonium carbonate solution from the sulfuric acid converted product of scheelite
US4233063A (en) Process for producing cobalt powder
JP2007530778A (en) Metal recovery from metal oxide materials
BR112015028978B1 (en) metal recovery method
JP6090394B2 (en) Method for producing scandium oxide
JPH10504060A (en) Hydrometallurgical conversion of zinc sulfide from zinc sulfide containing ores and concentrates to sulfate.
JPS5848618B2 (en) Processing method for manganese oxide
US4214895A (en) Method for producing cobalt metal powder
JPS6250411B2 (en)
US3992507A (en) Halidation of manganiferous ore to obtain metal values and recovery and recycle of halide values
JPS6054378B2 (en) Method for recovering nickel from acidic aqueous solution containing nickel ions
GB1565752A (en) Hydrometallurgical process for the selective dissolution of mixtures of oxytgen-containing metal compounds
JP7347083B2 (en) Manufacturing method of high purity scandium oxide
US2757080A (en) Separation of nickel from solutions containing nickel and cobalt
US4030917A (en) Hydrometallurgical processing of metal sulfides
US3846117A (en) Method for producing high-purity nickel powder with predetermined physical characteristics
RU2340688C1 (en) Method for reprocessing of copper-chloride fusion cake, which is waste from titanium tetrachloride cleaning
US2493262A (en) Process of preparing basic sai
US3894139A (en) Nickel-cobalt separation from aqueous solutions
US1193734A (en) s paec
JP7380030B2 (en) Manufacturing method of high purity scandium oxide
JP7347085B2 (en) Manufacturing method of high purity scandium oxide
US3443893A (en) Recovery of copper and cyanide values from cuprous cyanides
HU176986B (en) Method for processing red mud
JP7347084B2 (en) Manufacturing method of high purity scandium oxide