JPS605436B2 - Grasping means and methods in robot systems - Google Patents

Grasping means and methods in robot systems

Info

Publication number
JPS605436B2
JPS605436B2 JP5917477A JP5917477A JPS605436B2 JP S605436 B2 JPS605436 B2 JP S605436B2 JP 5917477 A JP5917477 A JP 5917477A JP 5917477 A JP5917477 A JP 5917477A JP S605436 B2 JPS605436 B2 JP S605436B2
Authority
JP
Japan
Prior art keywords
grasping
gripping
claw
robot system
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5917477A
Other languages
Japanese (ja)
Other versions
JPS53145260A (en
Inventor
春比古 浅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinmaywa Industries Ltd
Original Assignee
Shin Meiva Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Meiva Industry Ltd filed Critical Shin Meiva Industry Ltd
Priority to JP5917477A priority Critical patent/JPS605436B2/en
Publication of JPS53145260A publication Critical patent/JPS53145260A/en
Publication of JPS605436B2 publication Critical patent/JPS605436B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/081Touching devices, e.g. pressure-sensitive
    • B25J13/082Grasping-force detectors

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manipulator (AREA)

Description

【発明の詳細な説明】 この発明は、ロボットシステムに使用して便な把握手段
、およびその使用方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a grasping means that is convenient for use in a robot system and a method of using the same.

トランスファーマシンとして、物体把握手段を備えたロ
ボットシステムは周知である。
As a transfer machine, a robot system equipped with object grasping means is well known.

しかしながら、従来のものにあっては、比較的単純な作
業を行ないうるものはあっても、いわゆる高度な適応制
御を可能として高度の作業をなしうるものは、その例が
少なく、また種々の問題点があった。工業用ロボットに
よる作業のうには、腕や手の絶対的な位置決め精度より
も、作業対象との相対的な位置決め精度のほうが重要な
場合が多い。
However, although there are conventional devices that can perform relatively simple tasks, there are few examples of devices that can perform sophisticated tasks by enabling so-called advanced adaptive control, and there are various problems. There was a point. When working with industrial robots, relative positioning accuracy to the work object is often more important than absolute positioning accuracy of arms and hands.

はめあい組立作業に例をとれば、ロボットに把握された
部品と相手品の位置や姿勢は、はめあいの精度が高くな
るにつれて、正確さが要求されるのであるが、ロボット
が2部品の位置関係を直接認識する手段をもてば、部品
の形状や位置決めのばらつき、あるいはロボット側の腕
のたわみなどの要因にも適応した動作が可能となるもの
である。従来の適応制御の例としては、ロボットの腕や
手首に弾性体を用い、相手の物体にロボットの手を押し
つけてこれより生じるひずみもしくは力を計測し、相互
の位置関係を知り、例えばピンをピン穴にはめ合わせる
ものがある。しかしこれでは、単純な形状のはめあわせ
は可能であっても、複雑な形状の部品の相互の位置決め
やはめ合せには適応が困難であるという問題点があった
。そこで発明者は、組立作業など、物体間の接触や押し
つけを要する作業において、より汎用性をもたせるため
には、物品把握手段における把握力の制御に加えて、把
持剛性(把握部品を把握手段に対して変位させた場合の
、抵抗力と、その変位の比)をも制御可能にすれば、前
述した押しつけや、ならい動作が完全かつ自由に行ない
うろことに着目し、この発明をなすに至ったものである
。この発明の概略は、旋回軸に対称に開閉する3組の把
握爪を設け、これら把握爪をコイルをまねなどの弾性体
を介して開閉駆動を行ない、各把握爪の把握力および関
度を検出可能とした、把握手段を用い、さらに前記弾性
体の見掛け上のばね常数を制御して、任意の方向の把持
剛性を任意に設定できるようにしたものである。以下第
1図、第2図を参照し〜 まず把握手段日について、そ
の実施例を詳述する。
For example, in fitting assembly work, the positions and orientations of the parts and the mating parts grasped by the robot need to be more accurate as the precision of the fit increases, but it is difficult for the robot to determine the positional relationship between the two parts. Providing a means for direct recognition would enable operations to be adapted to factors such as variations in the shape and positioning of parts, or bending of the robot's arm. An example of conventional adaptive control is to use an elastic body in the arm or wrist of a robot, press the robot's hand against an object, measure the resulting strain or force, and learn the mutual positional relationship. There is something that fits into the pin hole. However, this method has a problem in that although it is possible to fit simple shapes together, it is difficult to adapt to mutual positioning and fitting of parts with complex shapes. Therefore, in order to provide more versatility in work that requires contact or pressing between objects, such as assembly work, the inventors have determined that in addition to controlling the gripping force of the object gripping means, it is necessary to The present invention was developed by focusing on the fact that if it were possible to control the ratio of the resistance force and the displacement when the object is displaced, the above-mentioned pressing and tracing movements could be performed completely and freely. It is something that The outline of this invention is to provide three sets of grasping claws that open and close symmetrically around the rotation axis, and to open and close these grasping claws via an elastic body such as a coil, thereby controlling the grasping force and relationship of each grasping claw. The gripping rigidity in any direction can be arbitrarily set by using a detectable gripping means and by controlling the apparent spring constant of the elastic body. Referring to FIG. 1 and FIG. 2 below, an example of the grasping means date will be described in detail.

把握手段日は、詳細は図示しないがX,Y,Zの直交3
軸に沿って位層征御される、公知のロボット装置の腕A
の先端に、垂直旋回軸Vまわりに旋回角のを制御可能に
設けられる。
Although the details are not shown, the grasping means are orthogonal 3 of X, Y, and Z.
Arm A of a known robot device that is controlled along the axis
is provided at the tip of the holder so that the turning angle around the vertical turning axis V can be controlled.

把握手段H‘こは、軸Vに対称に開閉方向を有する3組
の把握爪7,7,7がケーシングCに関着される。より
詳細に説明しよう。1は爪開閉動力であり、ケーシング
Cに設けられる。
In the grasping means H', three sets of grasping claws 7, 7, 7 having opening and closing directions symmetrical to the axis V are connected to the casing C. Let me explain in more detail. Reference numeral 1 denotes a claw opening/closing power, which is provided in the casing C.

動力1は例えばパルスモータなど、制御用コンピュータ
(図示せず。以下同じ。)の指令によって駆動制御され
うる公知のものでよい。この実施例の場合は、その低速
時のトルクが大である点およびその保持特性を有する点
を利用するべく「パルスモータを使用した。2は中間第
1軸である。
The power 1 may be a known motor, such as a pulse motor, which can be driven and controlled by commands from a control computer (not shown; the same applies hereinafter). In the case of this embodiment, a pulse motor was used to take advantage of its large torque at low speeds and its holding characteristics. 2 is the intermediate first shaft.

軸2はケーシングCに軸支2aされる。軸2と動力1の
鞠laとは、平歯車lb,2bによって結合される。軸
2の、平歯車2bの設けられている端部と反対側織部に
は、円板2cを固設する。円板2cにはさらに円筒2d
を一体に突設する。3は中間第2軸である。
The shaft 2 is pivotally supported by the casing C. The shaft 2 and the ball la of the power source 1 are coupled by spur gears lb and 2b. A disk 2c is fixed to the end of the shaft 2 opposite to the end where the spur gear 2b is provided. The disk 2c further has a cylinder 2d.
are integrally installed. 3 is the intermediate second axis.

軸3はケーシングCに鞠支3aされる。髄3の一端には
円板3bが間設され、この円板3bが円筒2dの端面と
微少すき間を有して、かつ向けこ対時するように組付け
される。4は軸2と軸3をフレキシブルに接続するべく
、円筒2dに舷装され、その両端が円板2c,3bに固
設された、弾性体としての円筒コイルばねである。
The shaft 3 is supported on the casing C by a ball support 3a. A disk 3b is interposed at one end of the pith 3, and the disk 3b is assembled with the end surface of the cylinder 2d so as to have a slight gap therebetween and to face each other. Reference numeral 4 designates a cylindrical coil spring as an elastic body, which is mounted on the cylinder 2d and has both ends fixed to the discs 2c and 3b in order to flexibly connect the shafts 2 and 3.

5は弾性体歪検出手段としての回転型ポテンショメータ
であり、その本体と軸5aとは、それぞれ円板2cと3
bとに同心に間設される。
Reference numeral 5 designates a rotary potentiometer as an elastic body strain detection means, and its main body and shaft 5a are connected to disks 2c and 3, respectively.
It is interposed concentrically with b.

ポテンショメ−夕5の出力はコンピュータに接続される
。6は把握爪用軸であり、ケーシングCに軸支6aされ
らる。
The output of potentiometer 5 is connected to a computer. Reference numeral 6 denotes a gripping claw shaft, which is supported by the casing C as a shaft 6a.

軸6は軸3と、平歯車3b,6bによって結合される。
かくして、平歯車lb,2b、ばね4、平歯車3c,6
bなどによって、動力伝達手段Pが構成される。
The shaft 6 is connected to the shaft 3 by spur gears 3b, 6b.
Thus, spur gears lb, 2b, spring 4, spur gears 3c, 6
A power transmission means P is constituted by b and the like.

7は爪本体である。7 is the nail body.

本体7の基端は、、軸6と一体に設けられる。本体7の
先端には、爪7aを設ける。この実施例にあっては、垂
直な軸によって回転自在に支承されたローラ爪7aを構
成する。8は爪本体7の開度検出手段としての回転型ポ
テンショメータであり、本体はケーシングCに、軸8a
は軸6に、それぞれ固設される。
The base end of the main body 7 is provided integrally with the shaft 6. A claw 7a is provided at the tip of the main body 7. In this embodiment, a roller pawl 7a is rotatably supported by a vertical axis. 8 is a rotary potentiometer as a means for detecting the opening of the pawl body 7, and the body is attached to the casing C with a shaft 8a.
are fixed to the shaft 6, respectively.

次に以上のような把握手段日を有するロボットシステム
を使用して、適応制御を行なう一例を詳述する。
Next, an example of adaptive control using a robot system having the above-mentioned grasping means will be described in detail.

今第3図図示のような平面形状の棒状体部品Wがあり、
この部品Wの側面を、固部品の側面S,およびS2に沿
わせて密着させるものとする。
Now, there is a planar rod-shaped part W as shown in Fig. 3,
The side surface of this component W is brought into close contact with the side surfaces S and S2 of the solid component.

部品Wに固定された直交座標軸をき,りとし、その原点
は平面形状の重心と一致させる。側面S,およびS2は
、空間直交座標軸×,Yに沿うものとする。把握手段日
によって部品Wを把握したときの、軸ぎの鞠×とのなす
角@を、部品Wの姿勢とする。ばね4のちぢみ寸法をひ
iとすれば、爪7aによる物品Wに対する力fiは、ば
ね4のばね常数をkiとすればfiニkiひ i………
m 動力1を固定して考えれば、前述した把持剛性は物理的
に定まるものであるが、これを可変とするため、動力1
によりばね4の取付寸法〃iを可変としている。
An orthogonal coordinate axis fixed to the part W is defined, and its origin is made to coincide with the center of gravity of the planar shape. It is assumed that the side surfaces S and S2 are along the spatial orthogonal coordinate axes x and Y. When the part W is grasped by the grasping means, the angle @ formed with the axis of the shaft is defined as the attitude of the part W. If the shrinkage dimension of the spring 4 is i, then the force fi exerted by the claw 7a on the article W is fiki, if the spring constant of the spring 4 is ki.
If the power 1 is fixed, the gripping rigidity mentioned above is determined physically, but in order to make it variable, the power 1
This makes the mounting dimension i of the spring 4 variable.

1つの爪7aの‘まね4のちぢみ〃iを、他の2つの爪
7aの開きと関連させて考え、爪7aの開き(爪7aを
最も閉じた位置からの距離)を。
Consider the 'imitation 4' shrinkage i of one claw 7a in relation to the opening of the other two claws 7a, and calculate the opening of the claw 7a (distance from the most closed position of the claw 7a).

iとして、ちぢみひiが.3 ひ・=j≧lbij。As i, Chijimihi i. 3 H = j≧lbij.

j+Ci側肌,■となるようにモータ1のサーボ系を構
成する。
The servo system of the motor 1 is configured so that j+Ci side skin, ■.

但しbiiおよびciは、把持剛性を調節するための定
数で、これらを任に定めることにより、任意の方向の把
持剛性を調節しうるものである。‘1},■式より、力
fiは、fi=kj(子≦.bij。j+Ci)……‐
‐‐(31この(劫式で与えられる力の制御を各爪7a
に施し、部品WのX,Y平面内におけるY,Y2方向と
、回転■方向の運動を対象とし、これらの方向の把持剛
性を調節することについて以上説明する。すなわち‘3
’式による力fiが、各爪7aの開閉方向に作用し、部
品Wの重心に×方向の力Fx、およびY方向の力Fy、
ならびに重心まわりのモーメントMが作用している。
However, bii and ci are constants for adjusting the grip rigidity, and by arbitrarily setting these, the grip rigidity in any direction can be adjusted. '1}, ■From the formula, the force fi is fi=kj (child≦.bij.j+Ci)...-
--(31) Each claw 7a controls the force given by this (kalpa ceremony).
The following describes the movement of the component W in the Y and Y directions in the X and Y planes and the rotational direction, and how the gripping rigidity in these directions is adjusted. That is '3
A force fi according to the formula ' acts in the opening/closing direction of each claw 7a, and a force Fx in the x direction and a force Fy in the Y direction are applied to the center of gravity of the part W.
In addition, a moment M around the center of gravity is acting.

第4図は、把握手段日と、コンピュータとを含む系のブ
ロック図であり、部品Wの位置と姿勢を入力し、部品W
の受ける力とモーメントとを出力するものである。
FIG. 4 is a block diagram of a system including a grasping means and a computer.
It outputs the force and moment received by the

すなわち、フロツク1で示される個所は、部品Wの位置
Xo,Yoおよび姿勢■から、各爪7aについての、開
き。iがL部品Wの平面形状によって定まる関数hi(
xo,yo,■)で表わされることを示している。この
ときコンピュータは、。iを計測し、■式の演算を行な
う。ついで、各爪7aにおけるばね4のちぢみ寸法の目
標値ひriが演算され、このちぢみ寸法の実測値(ポテ
ンショメータ5の出力値)ひjとの差を、動力1(第4
図においてはGmiで示されている)に出力する。動力
1によるばね4の一端の変位Aiと、開き。iとの和に
より、ばね4のちぢみ寸法〃iは定まり、それにばね4
のばね常数kiを乗じて、力fiとなる。フロック2は
各爪7aの力fiより、部品Wに作用する力Fx,Fy
、モーメントMが定まることを示し、爪7aの位置や部
品Wの姿勢にも関係するため、刈,yo,■も入力の1
つになつている。次に、部品Wに作用する力やモーメン
トと、その変位との関係を考える。
That is, the part indicated by block 1 is the opening of each claw 7a from the position Xo, Yo and posture (2) of the part W. A function hi(
xo, yo, ■). At this time, the computer. Measure i and perform the calculation of equation (2). Next, a target value hri of the shrinkage dimension of the spring 4 in each pawl 7a is calculated, and the difference between this shrinkage dimension and the actual measured value (output value of the potentiometer 5) hj is calculated as the power 1 (the fourth
(indicated by Gmi in the figure). Displacement Ai of one end of spring 4 due to power 1 and opening. The shrinkage dimension i of the spring 4 is determined by the sum of the spring 4
Multiplying by the spring constant ki gives the force fi. The flock 2 is caused by the forces Fx and Fy acting on the part W from the force fi of each claw 7a.
, indicates that the moment M is determined, and is also related to the position of the claw 7a and the posture of the part W, so the mowing, yo, ■ is also the input 1.
It's becoming more and more. Next, consider the relationship between the force or moment acting on the part W and its displacement.

第3図に示す部品Wの平面形状が、座標系ま,りで、G
(■)=0なる関数であらわせるものとし、X,Y座標
系でその重′010がXo、姿勢■であるとする。各爪
7aは単位ベクトル肌iの方向に開閉され、爪7aの位
置oi山iが部品Wの周面上にあるときは、G〔A′(
〇i批i−Ko)〕=OAは2×2回転行列・・…・・
・…・・・・{4}手段印こ把持された物体に作用する
力とモーメントは、指先端のローラ7aと物体面のころ
がり摩擦を無視すれば、71iは物体面の単位法ベクト
ルのiはれiと秋iのなす角、とする。
The planar shape of the part W shown in Fig. 3 is around the coordinate system, and G
It is assumed that it is expressed by a function such that (■)=0, and its weight '010 is Xo and attitude ■ in the X, Y coordinate system. Each claw 7a is opened and closed in the direction of the unit vector skin i, and when the position oi mountain i of the claw 7a is on the circumferential surface of the part W, G[A'(
〇i - Ko)〕 = OA is a 2x2 rotation matrix...
......{4} The force and moment acting on the gripped object are calculated by ignoring the rolling friction between the roller 7a at the tip of the finger and the object surface, and 71i is equal to i of the unit normal vector of the object surface. Let be the angle formed by swell i and autumn i.

fjのみならず、川i,■iおよびXi‘ま物体の位置
Xo=(xo,yo)′を姿勢餅こ依存する。これらに
適当な変換を旋せば■式は次式のように書きかえられる
。〆=−形′升 {6} ここで、技および仇ま3X1のベクトル、豚ま3×3の
行列で以下の成分をもつ。
Not only fj, but also rivers i, ■i, and Xi' depend on the position of the object Xo=(xo, yo)'. By performing appropriate transformations on these, equation (2) can be rewritten as the following equation. 〆 = - form' square {6} Here, the technique and enemy are 3×1 vectors, and the pig is a 3×3 matrix with the following components.

ここで偽こ見られる、aoi/aX。You can see the fake here, aoi/aX.

等‘ま・‘4}式を用いて計算できる。‘6ー式を物体
の位置と姿勢について線形近似すれば、庁=夕+の△父 ここで で・X。
It can be calculated using the equation 'ma・'4}. If we linearly approximate the '6-equation with respect to the position and orientation of the object, we get Agency=Yu+'s △father where ・X.

’y。’@‘ま近似の中央点である。びおよびのは、3
×1ベクトルと3×3行列で各指の運動のさせ方bii
,ciと下記のような関係にある。ダニ−辰′K(脂市
+こ)の=−〔反側伊i≧,髭′i附随十仁− $li〕…{7} ここでは、記述を簡単化するため次のベクトルと行列を
用いている。
'y. '@' is the center point of the approximation. And the number is 3
How to move each finger using a ×1 vector and a 3×3 matrixbii
, ci as shown below. Dani-Tatsu'K (fat city + ko) = - [opposite Ii ≧, beard'i attached Zuijin - $li]...{7} Here, to simplify the description, we will use the following vectors and matrices. I am using it.

形の,■ま舵,虻,$iの(X〇,w,■)での値であ
る。
This is the value of (X〇, w, ■) of the shape, ■, rudder, gadfly, $i.

のと■の意味を考えると、ぞは基準位置 (xo,yo,■)での物体に作用する力を表わし、の
は、ここでの物体変位と物体作用力の比を表わしている
Considering the meanings of and ■, zo represents the force acting on the object at the reference position (xo, yo, ■), and represents the ratio of the displacement of the object to the force acting on the object here.

すなわち■は一種の剛性を表わすもので、把持剛性と呼
ぶ。がゃのを旨の連動のさせ方biiとciにより、自
由に調節できるのが本方式の特長である。次‘こ所望の
ヵぞと把持剛性の‘こ調節するには、biiやciをど
のように設定すればよいかを導く。
In other words, ■ represents a type of rigidity, and is called gripping rigidity. A feature of this system is that it can be freely adjusted by adjusting the interlocking method (bii and ci) of the gun and the effect. Next, we will show you how to set bii and ci in order to adjust the desired gripping rigidity.

こ机ま、{71式を昭と心こついて解くことから次のよ
うに求まる。蛭=K−1(皮′)−1〔字解東‐1ぞ・
零丁−の〕(皮)−1〇=−K−1(形′)‐1ぞ−K
−1〈■−・〔孝三年i′(豚′)「 炉・$
i−■〕疎lm今第4図に示すようなシステムで、第3
図のような部品Wを把握するのに、■の変化に対するM
の増加を小さく、X,Y方向の変化に対する力、Fx,
Fyの増加を大となるように、プログラムをインプット
しておき、手段日を側面S,の方向に移動させることに
より、部品Wは側面S,に当援する。
By solving equation 71 carefully, we can find the following. Leech = K-1 (skin')-1 [character answer East-1]
0cho-no〕(peel)-1〇=-K-1(form')-1zo-K
-1〈■-・
i-■] In a system like the one shown in Figure 4, the third
To understand the part W as shown in the figure, M for the change in ■
The increase in is small, and the force for changes in the X and Y directions, Fx,
By inputting the program so that the increase in Fy becomes large and moving the means date in the direction of the side S, the part W is applied to the side S.

この場合、@回転に対する把持剛性が小で、Y方向の把
持剛性が大である故に、部品Wは容易回転(この場合角
@が零になる方向に回転)し、しかも、Y方向へは容易
には変位せず、すなわち、このY方向の力Fyの大なる
変化を検出してトY方向への移動を停止する。(図示1
点鎖線の位置。)次に側面S2方向(×方向)へ手段日
が移動させられ、部品Wが側面S2へ当接して、×方向
の力Fxの大なる変化を検出して、手段日が停止させら
れる。
In this case, since the gripping rigidity against @ rotation is small and the gripping rigidity in the Y direction is large, the part W can easily rotate (in this case, rotate in the direction where the angle @ becomes zero), and moreover, it can easily rotate in the Y direction. In other words, when a large change in the force Fy in the Y direction is detected, the movement in the Y direction is stopped. (Illustration 1
Dot-dashed line position. ) Next, the means is moved in the side surface S2 direction (x direction), the part W comes into contact with the side surface S2, a large change in the force Fx in the x direction is detected, and the means is stopped.

(図示2点鎖線の位置。)かくして、部品Wは側面S,
,S2に当接した位置に制御されたことになる。
(The position indicated by the two-dot chain line in the figure.) Thus, the part W has a side surface S,
, S2.

この発明は、前述した実施例以外に、この発明の技術的
思想の範囲内における、種々の変形も、この発明の技術
的範囲に含まれるものである。
In addition to the embodiments described above, the present invention includes various modifications within the scope of the technical idea of the present invention.

この発明は前述したように、各爪の把握力を制御しうる
ようにしたから、把握物品のある方向の把持剛性を大小
に制御することができ、部品組立などの場合における、
適応制御を支障なく実施しうるものである。
As described above, in this invention, since the gripping force of each claw can be controlled, the gripping rigidity in a certain direction of the gripped object can be controlled to be large or small, and this can be used when assembling parts, etc.
Adaptive control can be carried out without any problems.

【図面の簡単な説明】[Brief explanation of drawings]

図面はいずれもこの発明の一実施例を示し、第1図は把
握手段の斜面図、第2図は第1図の要部斜面図、第3図
は部品把握説明平面図、第4図はコンピュータを含む系
のブロック図である。 1…爪開閉動力(パルスモータ)、2c,3b…円板、
4…円筒コイルばね(弾性体)、5…回転型ポテンショ
メータ(弾性体歪検出手段)、8…回転型ポテンショメ
ータ(爪関度検出手段)、7a・・・爪、P…動力伝達
手段、V…垂直旋回軸。 弟ー図第2図 髪 3 1翼 第4図
The drawings all show one embodiment of the present invention, and FIG. 1 is a perspective view of the grasping means, FIG. 2 is a perspective view of the main part of FIG. 1, FIG. 1 is a block diagram of a system including a computer. 1... Claw opening/closing power (pulse motor), 2c, 3b... Disc,
4... Cylindrical coil spring (elastic body), 5... Rotating potentiometer (elastic body strain detection means), 8... Rotating potentiometer (claw relationship detection means), 7a... Pawl, P... Power transmission means, V... Vertical pivot axis. Younger brother - Figure 2 Hair 3 1 Wing Figure 4

Claims (1)

【特許請求の範囲】 1 ロボツトシステムに設けられた旋回軸、この旋回軸
に対称的に軸支され、かつ前記旋回軸中心方向にそれぞ
れ接近遠隔可能の3組の把握爪、前記旋回軸に設けられ
、前記把握爪をそれぞれ別々に駆動する把握爪開閉動力
手段、これら各動力手段と前記各把握爪間に設けられ、
かつ弾性体を連結した動力伝達手段、前記弾性体の前記
動力手段側と前記把握爪側との間に設けられ、前記各弾
性体の歪を検出する手段、前記旋回軸と前記各把握爪と
の間に設けられ、前記各把握爪の開度を検出する手段と
を具備してなる、ロボツトシステムにおける把握手段。 2 前記把握爪開閉動力手段は、パルスモータとし、前
記弾性体は前記パルスモータによって回転する円板と、
前記把握爪を開閉するべくした回転円板とにその両端を
固設したコイルバネとし、前記歪検出手段は、前記両円
板に、その固定部と回転部とを固設した回転角検出手段
とした、特許請求の範囲第1項記載の、ロボツトシステ
ムにおける把握手段。3 コンピユータによって制御さ
れるロボツトシステムにおいて、旋回軸に対称的に軸支
され、かつ前記旋回軸中心方向にそれぞれ動力手段によ
り接近遠隔可能の3組の把握爪の、各把握力を可変とし
、さらには前記各動力手段との間に弾性体を連結して、
これら各弾性体の歪量γiを前記把握爪の開度σiの関
数、すなわち▲数式、化学式、表等があります▼ (ただしbijおよびCiは、把持剛性を調節するため
の定数)として決定し、制御することにより、把握した
部品の、前記旋回軸と直角の任意方向の把持剛性を制御
するべくしてなる、ロボツトシステムにおける把握方法
[Scope of Claims] 1. A rotating shaft provided in a robot system, three sets of grasping claws that are symmetrically supported on the rotating shaft and can be moved toward and away from the center of the rotating shaft, and provided on the rotating shaft. grasping pawl opening/closing power means for driving the grasping pawls separately, provided between each of these power means and each of the grasping pawls,
and a power transmission means connecting elastic bodies, a means provided between the power means side of the elastic body and the grasping claw side and detecting strain in each of the elastic bodies, and connecting the pivot shaft and each grasping claw. A gripping means in a robot system, comprising means for detecting the opening degree of each of the gripping claws. 2. The grasping pawl opening/closing power means is a pulse motor, and the elastic body is a disc rotated by the pulse motor;
A coil spring is fixed at both ends to a rotary disk for opening and closing the grasping claw, and the strain detecting means includes a rotation angle detecting means having a fixed portion and a rotating portion thereof fixed to both the disks. A grasping means in a robot system according to claim 1. 3. In a robot system controlled by a computer, the gripping force of each of three sets of gripping claws that are symmetrically supported on a rotation axis and that can be approached and remoted by power means in the direction of the center of the rotation axis is variable, and connects an elastic body between each of the power means,
The amount of strain γi of each of these elastic bodies is determined as a function of the opening degree σi of the gripping claw, that is, ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (where bij and Ci are constants for adjusting the gripping rigidity), A gripping method in a robot system, the gripping rigidity of a gripped part being controlled in any direction perpendicular to the pivot axis.
JP5917477A 1977-05-20 1977-05-20 Grasping means and methods in robot systems Expired JPS605436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5917477A JPS605436B2 (en) 1977-05-20 1977-05-20 Grasping means and methods in robot systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5917477A JPS605436B2 (en) 1977-05-20 1977-05-20 Grasping means and methods in robot systems

Publications (2)

Publication Number Publication Date
JPS53145260A JPS53145260A (en) 1978-12-18
JPS605436B2 true JPS605436B2 (en) 1985-02-12

Family

ID=13105750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5917477A Expired JPS605436B2 (en) 1977-05-20 1977-05-20 Grasping means and methods in robot systems

Country Status (1)

Country Link
JP (1) JPS605436B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4783107A (en) * 1985-06-04 1988-11-08 Clemson University Method and apparatus for controlling impact force during rapid robotic acquisition of object
US4760636A (en) * 1986-07-18 1988-08-02 General Motors Corporation Apparatus of a robot for installing weather stripping in a door or like opening
US5873488A (en) * 1997-07-21 1999-02-23 Scriptpro, Llc Vial gripper mechanism
US5897024A (en) * 1997-07-21 1999-04-27 Scriptpro Llc Medicament dispensing cell
US6155485A (en) * 1998-11-09 2000-12-05 Scriptpro Llc Medicament dispensing station
US6883681B1 (en) 1998-12-10 2005-04-26 Scriptpro Llc Automatic dispensing system for unit medicament packages
US6161721A (en) * 1999-02-23 2000-12-19 Scriptpro Llc Medicament dispensing cell with dual platens
US6421584B1 (en) 1999-03-02 2002-07-16 Scriptpro Llc Independent counting unit
AU4049200A (en) 1999-04-05 2000-10-23 Scriptpro, L.L.C. Label printing assembly for use with a medicament dispensing control workstation
US6343711B1 (en) * 2000-06-05 2002-02-05 Scriptpro, Llc Medicament dispensing cell
US6592005B1 (en) 2001-05-02 2003-07-15 Scriptpro Llc Pill count sensor for automatic medicament dispensing machine
US6578734B1 (en) 2001-05-02 2003-06-17 Scriptpro Llc Vial gripping mechanism for automatic medicament dispensing machine
WO2017154254A1 (en) * 2016-03-10 2017-09-14 並木精密宝石株式会社 Gripping robot, and robot hand control method

Also Published As

Publication number Publication date
JPS53145260A (en) 1978-12-18

Similar Documents

Publication Publication Date Title
Birglen et al. SHaDe, a new 3-DOF haptic device
Lee et al. Stiffness control of a coupled tendon-driven robot hand
US6435794B1 (en) Force display master interface device for teleoperation
Arimoto et al. Natural resolution of ill-posedness of inverse kinematics for redundant robots: A challenge to Bernstein's degrees-of-freedom problem
Tsai Robot analysis: the mechanics of serial and parallel manipulators
USRE37528E1 (en) Direct-drive manipulator for pen-based force display
JPS605436B2 (en) Grasping means and methods in robot systems
Doulgeri et al. Feedback control for object manipulation by a pair of soft tip fingers
Badeau et al. Intuitive physical human-robot interaction: Using a passive parallel mechanism
Michelman Precision object manipulation with a multifingered robot hand
An Trajectory and force control of a direct drive arm
He et al. Analytical inverse kinematics for franka emika panda–a geometrical solver for 7-dof manipulators with unconventional design
Almusawi et al. Online teaching of robotic arm by human–robot interaction: end effector force/torque sensing
Michelman et al. Compliant manipulation with a dextrous robot hand
Xu et al. Biomechtronic design of a supernumerary robotic limbs for industrial assembly
Bergamasco Force replication to the human operator: the development of arm and hand exoskeletons as haptic interfaces
Avizzano et al. The hand force feedback: analysis and control of a haptic device for the human-hand
JP3884249B2 (en) Teaching system for humanoid hand robot
Zárate et al. Design of a bioinspired variable stiffness sensor
Desai et al. Two-arm manipulation tasks with friction-assisted grasping
Mima et al. Telemanipulation with a humanoid robot hand/arm between USA and Japan
Reynaerts et al. Whole-finger manipulation with a two-fingered robot hand
Ramadan et al. irisVSA: Infinite-rotation infinite-stiffness Variable Stiffness Actuator towards physical human–robot-interaction
Zhang et al. Linkage under-actuated humanoid robotic hand with control of grasping force
Senoo et al. Robotic physical interaction using deformation control based on the zener model