JPS6054338A - Preparation of 2-keto-l-gulonic acid - Google Patents

Preparation of 2-keto-l-gulonic acid

Info

Publication number
JPS6054338A
JPS6054338A JP58161888A JP16188883A JPS6054338A JP S6054338 A JPS6054338 A JP S6054338A JP 58161888 A JP58161888 A JP 58161888A JP 16188883 A JP16188883 A JP 16188883A JP S6054338 A JPS6054338 A JP S6054338A
Authority
JP
Japan
Prior art keywords
reaction
gulonic acid
catalyst
keto
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58161888A
Other languages
Japanese (ja)
Other versions
JPH0439474B2 (en
Inventor
Tadamitsu Kiyoura
清浦 忠光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP58161888A priority Critical patent/JPS6054338A/en
Publication of JPS6054338A publication Critical patent/JPS6054338A/en
Publication of JPH0439474B2 publication Critical patent/JPH0439474B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Saccharide Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain 2-keto-L-gulonic acid useful as a precursor for vitamin C by one process in high yield, by using a catalyst of noble metal-lead-cadmium system having high activity, oxidizing L-sorbose with an O2 gas in a water solvent in a specific pH range. CONSTITUTION:In preparing 2-keto-L-gulonic acid by oxidizing L-sorbase, L-sorbose is oxidized with an oxygen-containing gas in an aqueous solution with keeping the reaction solution at 6-10pH in the presence of a catalyst obtained by adding lead and cadmium to platinum and/or palladium such as 0.1-10wt% platinum or palladium, 0.1-10wt% lead, and 0.01-5wt% cadmium supported on a carrier such as active carbon, alumina, etc., to give 2-keto-L-gulonic acid. EFFECT:The use of expensive oxidizing agent is not required.

Description

【発明の詳細な説明】 本発明は、2−ケ)−L−グロン酸をL−ソルボースの
酸化により製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing 2-ke)-L-gulonic acid by oxidation of L-sorbose.

従来、2−ケ)−L−グロン酸をL−ソルボースの酸化
で製造するには、ソルボースとアセトンとを反応させて
、ジアセトン−L−ソルボースとし、これを次亜塩素酸
塩または過マンガン酸塩を用いて酸化し、ジアセトン−
2−ケ)−L−グロン酸を製造し、これを脱アセトンす
る多段階の工程を経て、製造している。
Conventionally, in order to produce 2-ke)-L-gulonic acid by oxidizing L-sorbose, sorbose and acetone are reacted to form diacetone-L-sorbose, which is then treated with hypochlorite or permanganate. Oxidize with salt to form diacetone-
It is produced through a multi-step process of producing 2-ke)-L-gulonic acid and deacetonizing it.

費する等の欠点がある。これらの欠点を克服するために
、L−ソルボースをそのままの状態でアセトン化せずに
、貴金属触媒の存在下に空気酸化する試みは古くからな
されているが(USP2,190,377(1940)
)、目的物の収率も低く、反応に60時間も要する等で
充分な結果は得られていない。これらの欠点を改良する
目的で、本発明者は先に貴金属に鉛またはビスマスを添
加した触媒を用いると、従来既知の貴金属触媒に比較し
て反応時間が大巾に短縮され、収率も向上することを見
出し、この触媒を用いる方法を既に提案した(特開昭5
7−163340 )。
There are disadvantages such as spending a lot of money. In order to overcome these drawbacks, attempts have been made for a long time to air oxidize L-sorbose in the presence of a noble metal catalyst without acetonizing it as it is (USP 2, 190, 377 (1940)).
), the yield of the target product was low, and the reaction required 60 hours, so satisfactory results were not obtained. In order to improve these drawbacks, the present inventor found that by using a catalyst in which lead or bismuth was added to a noble metal, the reaction time was significantly shortened and the yield was improved compared to conventionally known noble metal catalysts. We have already proposed a method using this catalyst (Japanese Unexamined Patent Publication No.
7-163340).

本発明の目的とするところは、先に本発明者の提案した
触媒系よりもより高活性を持った触媒系を用いる2−ケ
)−L−グロン酸の製造法を提供することにある。
An object of the present invention is to provide a method for producing 2-ke)-L-gulonic acid using a catalyst system having higher activity than the catalyst system previously proposed by the present inventors.

本発明者は、先に提案した、貴金属−鉛またはビスマス
系」:りもより活性の優れた触媒を得ることを目的とし
て種々研究した結果、貴金属−鉛系に更にカドミウムを
添加した貴金属−鉛一カドミウム系触媒がより高活性を
示めすことを見出して、本発明を完成するに至った。
As a result of various researches aimed at obtaining a catalyst with better activity than the previously proposed noble metal-lead or bismuth system, the inventors discovered that the noble metal-lead system, in which cadmium is further added to the noble metal-lead system, has been developed. The present invention was completed by discovering that monocadmium-based catalysts exhibit higher activity.

即ち、本発明は、■、−ソルボースを水溶液中で白金お
よび/またはパラジウムに鉛およびカドミウムを含有ず
2)触媒の存在下に反応液のPHを6〜10に保って、
含酸素ガスで酸化して2−ケトグ。
That is, in the present invention, (1) -sorbose is mixed with platinum and/or palladium in an aqueous solution without containing lead and cadmium; (2) the pH of the reaction solution is maintained at 6 to 10 in the presence of a catalyst;
Oxidized with oxygen-containing gas to form 2-ketog.

−1、−グロン酸を製造する方法である。This is a method for producing -1,-gulonic acid.

本発明の方法によれば、l、−ソルボースをアセトンと
反応させて、ジアセトン−■、−ソルボースに誘i、I
 l〜てから酸化する必要が無(、また、次亜塩素酸塩
または、過マンガン酸塩のような高価な酸化剤も必要と
せずに工業的に有利に2−ケトーグ r、−グロン酸を製造することが出来る。
According to the method of the present invention, l,-sorbose is reacted with acetone to form diacetone-■,-sorbose.
It is industrially advantageous to produce 2-ketogulonic acid without the need for subsequent oxidation (and without the need for expensive oxidizing agents such as hypochlorite or permanganate). It can be manufactured.

本発明の方法で用いる触媒は、白金または/′およびパ
ラジウムに鉛およびカドミウムを添加したものであって
、通常は適当な担体、例えば活性炭、アルミナ等に担持
して使用する。白金およびパラジウムは金属状または酸
化物であり、鉛およびカドミウムは金属状、水酸化物、
酸化物、塩化物、炭酸塩または硝酸塩等の無機酸塩ある
いは有機酸塩等である。
The catalyst used in the method of the present invention is platinum or palladium to which lead and cadmium are added, and is usually supported on a suitable carrier such as activated carbon or alumina. Platinum and palladium are metallic or oxides; lead and cadmium are metallic, hydroxide,
These include inorganic acid salts and organic acid salts such as oxides, chlorides, carbonates, and nitrates.

担体上への担持量は、白金またはパラジウムが0.1〜
10wt%、鉛が0.1〜10wt%、カドミウムが0
.01〜5wt%の範囲が多用される。
The amount of platinum or palladium supported on the carrier is 0.1~
10wt%, lead 0.1-10wt%, cadmium 0
.. A range of 0.01 to 5 wt% is often used.

触媒の調製方法は、常法、例えば、塩化白金酸と硝酸鉛
および硝酸カドミウムの混合水溶液を活性炭粉末に浸漬
し、ホルマリン水溶液で還元処理する等の方法による。
The catalyst can be prepared by a conventional method, for example, by immersing activated carbon powder in a mixed aqueous solution of chloroplatinic acid, lead nitrate, and cadmium nitrate, followed by reduction treatment with an aqueous formalin solution.

あるいは、市販の貴金属を担持した炭素粉末触媒を鉛お
よびカドミウム塩を溶解せしめた水溶液に浸漬する等の
方法で触媒を調製するのが最も簡便である。または、L
−ソルボースの酸化反応を実施する際に、反応溶媒であ
る水の中に、貴金属を担持した触媒と共に鉛およびカド
ミウムの水可溶性塩を添加し、反応と触媒調製とを同時
に行う方法でもよい。
Alternatively, it is most convenient to prepare a catalyst by immersing a commercially available carbon powder catalyst supporting a noble metal in an aqueous solution in which lead and cadmium salts are dissolved. Or L
- When carrying out the oxidation reaction of sorbose, a method may be adopted in which water-soluble salts of lead and cadmium are added together with a catalyst carrying a noble metal into water, which is a reaction solvent, and the reaction and catalyst preparation are carried out simultaneously.

本発明の方法は、溶媒中で実施するが、溶媒としては水
を用いる。水溶媒中に仕込む原料I7−ソルボースの濃
度は、1〜20wt%、特に2〜10wt%の範囲が多
用される。
The method of the invention is carried out in a solvent, and water is used as the solvent. The concentration of raw material I7-sorbose charged into the water solvent is often in the range of 1 to 20 wt%, particularly 2 to 10 wt%.

触媒の使用用[は、例えば、反応をバッチで実施する場
合では、反応液11に対して、前述の相持触媒10〜1
00gを用いる。
For example, when the reaction is carried out in batches, the above-mentioned supported catalysts 10 to 1 are added to the reaction solution 11.
Use 00g.

反応の進行により、酸化により生じた目的物、2−ケ)
−1、−グロン酸のために、反応液のPHは中性近傍か
ら、酸性側に移行する。酸化反応の速10−は反応液の
円lが酸性側では急激に低下するため、反応液のI)I
Iは中性近傍乃至弱アルカリ性に保つことが、好ま1.
い。この目的のために、反応の進行に同期させて、アル
カリ物質を逐時、反応液中に添加し反応液のPI−1を
6〜10に保つ。使用するアルカリ物質は、苛性アルカ
リ、アルカリ金属の炭酸塩・重炭酸塩・有機酸塩または
燐酸塩等である。jfl常はこ」1.らの塩の水溶液を
PHコントローラーに同期させた定量ポンプで反応液中
に添加する32反応液のpHを逆に10より塩基性にす
ると、酸化反応の速度は増大するが、重合物やタール状
の副生物が増加するので好ましくない。
As the reaction progresses, the target product produced by oxidation, 2-ke)
Due to the -1,-gulonic acid, the pH of the reaction solution shifts from near neutral to acidic. The rate of oxidation reaction 10- is rapidly decreased when the circle l of the reaction solution is acidic, so the I)I of the reaction solution
It is preferable to keep I near neutrality or slightly alkaline.1.
stomach. For this purpose, an alkaline substance is added to the reaction solution from time to time in synchronization with the progress of the reaction to maintain the PI-1 of the reaction solution at 6 to 10. The alkaline substances used include caustic alkali, alkali metal carbonates, bicarbonates, organic acid salts, or phosphates. jfl Tsunehako” 1. An aqueous solution of these salts is added to the reaction solution using a metering pump synchronized with a pH controller.32 If the pH of the reaction solution is made more basic than 10, the rate of the oxidation reaction increases, but polymers and tar-like substances This is undesirable because it increases the amount of by-products.

以上の理由で、反応液のPHは6〜10.更に好ましく
は、7〜9の範囲に保って、反応を実施する。
For the above reasons, the pH of the reaction solution is 6-10. More preferably, the reaction is carried out while keeping the number in the range of 7 to 9.

本発明の方法で用いられる酸化剤は含酸素ガスであって
、酸素または空気が多用される。通常は、空気を用いる
のが好ましい。含酸素ガスの圧力は常圧乃至5Ic9/
C11!の範囲が多用される。含酸素ガスと反応液およ
び触媒との混合状態は、ガスを効率良く反応液中に分散
吹込み充分に攪拌する等の手段で、良好に保つことが必
要である。
The oxidizing agent used in the method of the present invention is an oxygen-containing gas, and oxygen or air is often used. It is usually preferable to use air. The pressure of the oxygen-containing gas is normal pressure to 5Ic9/
C11! range is often used. It is necessary to maintain a good mixing state of the oxygen-containing gas, the reaction liquid, and the catalyst by means such as efficiently dispersing and blowing the gas into the reaction liquid and thoroughly stirring the mixture.

反応の温度は室温乃至100℃、特に30°C〜60℃
の範囲が好ましい。反応に要する時間は、バッチで反応
させる場合を例で示せば0.5〜20時間、通常は1〜
10時間の範囲である。
The reaction temperature is room temperature to 100°C, especially 30°C to 60°C.
A range of is preferred. The time required for the reaction is 0.5 to 20 hours in the case of batch reaction, and usually 1 to 20 hours.
The range is 10 hours.

反応器の型式は、完全混合型の懸濁床で攪拌槽式あるい
は、気泡格式の反応器が多用される。粒状の触媒を用い
る固定床式の反応器でもよい。反応槽は一段でも多段で
も同様に使用できる。
As for the type of reactor, a completely mixed suspended bed type, stirred tank type, or a bubble cell type reactor is often used. A fixed bed reactor using a granular catalyst may also be used. The reaction tank can be used in a single stage or in multiple stages.

反応終了後、触媒を抑制した反応液を減圧下に濃縮し、
これにイソプロピルアルコール等の水可溶性有機溶媒を
添加しよく攪拌すると、目的物のアルカリ金属塩の結晶
が析出する。
After the reaction is complete, the reaction solution with the catalyst suppressed is concentrated under reduced pressure.
When a water-soluble organic solvent such as isopropyl alcohol is added to this and thoroughly stirred, crystals of the target alkali metal salt are precipitated.

本発明の方法でイnられる、2−ヶ)−L−グロン酸ハ
アスコルビン酸(ビタミンC)の前駆体として、極めて
有用な化合物である。
2-L-gulonic acid is an extremely useful compound as a precursor of ascorbic acid (vitamin C), which is incorporated in the method of the present invention.

以下、実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

実施例−1 内径5cInのガラス製円筒の底部に焼結ガラスフィル
ターを付け、その下部に空気吹込管を付けたものを反応
器とt7て用いた。
Example 1 A sintered glass filter was attached to the bottom of a glass cylinder having an inner diameter of 5 cIn, and an air blowing pipe was attached to the bottom of the cylinder, and a reactor was used at t7.

との反応器に4wt%のL−ソルボース水溶液400t
n115 w 1%pi、4wt%I)l)(NO3)
2 + 1wt%cd(N03)2を、Jjj持l−だ
活性炭粉末触媒)1 cpを仕込み、外部61:り加熱
1〜温度を48℃に昇温した。常圧空気を反応管下部の
空気吹込口から500i/@分で吹込み反応させた。反
応の進行に伴ない、反応液のPl+を7〜8に保つ様に
苛性曹達水溶液を逐時注入した。
400 tons of 4wt% L-sorbose aqueous solution was placed in a reactor with
n115 w 1%pi, 4wt%I)l) (NO3)
2 + 1wt% cd(N03)2 and 1 cp of JJJ's activated carbon powder catalyst) were charged, and the temperature was raised to 48°C. Normal pressure air was blown at 500 i/min from the air inlet at the bottom of the reaction tube to cause a reaction. As the reaction progressed, a caustic soda aqueous solution was injected at intervals to maintain Pl+ of the reaction solution at 7 to 8.

反応開始後1.5時間で苛性曹達水溶液の消費が遅くな
ったので、反応操作を停止し、反応液から触媒を分解l
−だ。得られた反応終了液を、高速液体クロマトグラフ
ィーで分析した結果、2−ケトーL−グロン酸のナトリ
ウム塩が、83wt%の収率で得られた。
1.5 hours after the start of the reaction, the consumption of the caustic soda aqueous solution became slow, so the reaction operation was stopped and the catalyst was decomposed from the reaction solution.
-It is. As a result of analyzing the obtained reaction completed liquid by high performance liquid chromatography, the sodium salt of 2-keto L-gulonic acid was obtained in a yield of 83 wt%.

実施例−2 実施例−1と同様の方法と装置で、用いる触媒を3%p
d、 1%pt、3%(CH,COO)2p b 、 
1%cd(NO3)2/炭素粉末触媒に変えて反応させ
た。
Example-2 Using the same method and equipment as Example-1, the catalyst used was 3% p.
d, 1%pt, 3%(CH,COO)2p b,
The reaction was performed using a 1% cd(NO3)2/carbon powder catalyst.

反応の終了に2.5時間を要し収率78wt%で2−ケ
トーL−グロン酸を得た。
It took 2.5 hours to complete the reaction, and 2-keto L-gulonic acid was obtained in a yield of 78 wt%.

比較例−1 実施例−1と同様の反応装置を用い、同様の方法で用い
る触媒のみを変えて反応を実施した。触媒は、5wt%
pt、4wt%pb(NOs)zを活性炭粉末に担持し
たものに使用した。
Comparative Example-1 Using the same reaction apparatus as in Example-1, a reaction was carried out in the same manner except for the catalyst used. The catalyst is 5wt%
pt, 4 wt% pb(NOs)z supported on activated carbon powder was used.

反応の進行に伴ない、反応液の円]を7〜8に保つ様に
苛性曹達水溶液を反応液中に逐時注入した。反応開始2
.5時間で苛性曹達水溶液の消費が遅くなったので、反
応操作を停止した。実施例1と同様の方法で分析した結
果2−ケ)−L−グロン酸のナトリウム塩がFH)wt
%の収率で得られた。
As the reaction progressed, a caustic soda aqueous solution was injected into the reaction solution one after another so as to maintain the circle of the reaction solution at 7 to 8. Reaction start 2
.. Consumption of the caustic soda aqueous solution slowed down after 5 hours, so the reaction operation was stopped. As a result of analysis using the same method as in Example 1, the sodium salt of 2-ke)-L-gulonic acid was FH)wt
% yield.

比較例−2 実施例−1と同様の反応装置により、同様の方法で、用
いる触媒のみを変えて反応を実施した。
Comparative Example-2 A reaction was carried out in the same manner as in Example-1 using the same reaction apparatus, except for changing the catalyst used.

触媒は3%IM+、 1%pi、 3%(CH3COO
)2pbを活性炭粉末に41X持したものを使用した。
The catalyst is 3% IM+, 1% pi, 3% (CH3COO
) 2 pb in activated carbon powder with a concentration of 41X was used.

反応の進行に伴ない、反応液のPI−1を7〜8に保つ
様に苛性曹達水溶液を注入した。反応の終了に3.5時
間を要し、収率75wt%で2−ケトーL−グロン酸を
得た。
As the reaction progressed, a caustic soda aqueous solution was injected to maintain the PI-1 of the reaction solution at 7 to 8. It took 3.5 hours to complete the reaction, and 2-keto L-gulonic acid was obtained in a yield of 75 wt%.

特許出願人 三井東圧化学株式会社patent applicant Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1)L−ソルボースを酸化し2−ケ)−L−グロン酸を
製造するに際し、白金または/およびパラジウムに鉛お
よびカドミウムを含有する触媒の存在下に、水溶液中で
反応液のPHを6〜10に保ち含酸素ガスで酸化するこ
とを特徴とする2−ケト−1,−グロン酸の製造法。
1) When oxidizing L-sorbose to produce 2-ke)-L-gulonic acid, the pH of the reaction solution is adjusted to 6 to 6 in an aqueous solution in the presence of a catalyst containing lead and cadmium in platinum or/and palladium. 1. A method for producing 2-keto-1,-gulonic acid, characterized by oxidizing it with an oxygen-containing gas at a temperature of 10%.
JP58161888A 1983-09-05 1983-09-05 Preparation of 2-keto-l-gulonic acid Granted JPS6054338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58161888A JPS6054338A (en) 1983-09-05 1983-09-05 Preparation of 2-keto-l-gulonic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58161888A JPS6054338A (en) 1983-09-05 1983-09-05 Preparation of 2-keto-l-gulonic acid

Publications (2)

Publication Number Publication Date
JPS6054338A true JPS6054338A (en) 1985-03-28
JPH0439474B2 JPH0439474B2 (en) 1992-06-29

Family

ID=15743898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58161888A Granted JPS6054338A (en) 1983-09-05 1983-09-05 Preparation of 2-keto-l-gulonic acid

Country Status (1)

Country Link
JP (1) JPS6054338A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0247485A2 (en) * 1986-05-30 1987-12-02 Bayer Ag Process for the preparation of oxetan-3-carboxylic acids
WO1994020448A1 (en) * 1993-03-10 1994-09-15 Südzucker Aktiengesellschaft Method and device for producing monocarboxylic acids from carbohydrates, carbohydrate derivatives or primary alcohols

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0247485A2 (en) * 1986-05-30 1987-12-02 Bayer Ag Process for the preparation of oxetan-3-carboxylic acids
WO1994020448A1 (en) * 1993-03-10 1994-09-15 Südzucker Aktiengesellschaft Method and device for producing monocarboxylic acids from carbohydrates, carbohydrate derivatives or primary alcohols

Also Published As

Publication number Publication date
JPH0439474B2 (en) 1992-06-29

Similar Documents

Publication Publication Date Title
JP2779156B2 (en) Aldose oxidation method
JPS62247837A (en) Oxidation method to polyvalent carboxylic acid of di-, tri-,oligo- and polysaccharide catalyst used and product
JP2716534B2 (en) Method for producing gluconic acid or its alkali metal salt
JPS6054338A (en) Preparation of 2-keto-l-gulonic acid
JP2903187B2 (en) Method for producing (poly) oxyethylene alkyl ether acetic acid
EP0001070A1 (en) Process for producing pyruvic acid
JP2000506868A (en) Method for oxidizing di, tri, oligo and polysaccharides to polyhydroxycarboxylic acids
JPS62198641A (en) Production of carboxylic acid salt
CN101284231B (en) Supported noble metal catalyst
US3655363A (en) Method of recovering palladium
JPS648638B2 (en)
JPH0223559B2 (en)
JPS59205343A (en) Production of monosaccharide oxide
RU2118955C1 (en) Method of synthesis of calcium gluconate
CN115193459B (en) Preparation method and application of heterogeneous palladium catalyst
JPH06145124A (en) Production of alpha-hydroxyisobutyric acid amide
JPS6115862B2 (en)
JP3282386B2 (en) Method for producing piperonal
JPS6115863B2 (en)
JPS6041656B2 (en) Method for oxidizing (poly)oxyethylene ether compounds
JPH0751541B2 (en) Method for producing carboxylate
JPS62265243A (en) Production of 1,4-cyclohexadione
NL9302127A (en) Method for preparing 2-keto-aldonic acids.
JPH05269378A (en) Zirconium oxide carrier and production thereof
JP2003506428A (en) Betaine manufacturing method