JPS6053686A - Method of high efficiently controlling compressor - Google Patents

Method of high efficiently controlling compressor

Info

Publication number
JPS6053686A
JPS6053686A JP16046383A JP16046383A JPS6053686A JP S6053686 A JPS6053686 A JP S6053686A JP 16046383 A JP16046383 A JP 16046383A JP 16046383 A JP16046383 A JP 16046383A JP S6053686 A JPS6053686 A JP S6053686A
Authority
JP
Japan
Prior art keywords
pressure
terminal
signal
discharge pressure
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16046383A
Other languages
Japanese (ja)
Inventor
Yasunobu Fujita
康信 藤田
Ekizo Shibata
柴田 易蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16046383A priority Critical patent/JPS6053686A/en
Publication of JPS6053686A publication Critical patent/JPS6053686A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/08Regulating by delivery pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To suppress the discharge pressure of compressors to a lower value in order to aim at satisfactorily saving energy in operation without a detector being disposed at the terminal of the compressors, by controlling the set value of discharge pressure in acoordance with the number of operating compressors so that the used amount of load flow is controlled. CONSTITUTION:With such an arrangement that a minimum terminal pressure guaranteeing pressure is set by a terminal pressure setting unit 33, a flow rate signal is squared by a squaring unit 31, and a piping loss coefficient is set by a proportioning unit 32, a signal at the point A is set pressure corresponding to an equivalent piping loss. When the set value of the terminal pressure which is set by the terminal pressure setting unit 33 is added to the signal at the point A by means of an adder 34, a signal at the point C becomes the control set value of the discharge pressure which is necessary for maintaining the minimum guaranteed pressure of the terminal pressure in consideration with a piping loss at a certain flow rate. Accordingly, the starting and stopping control of compressors is carried out by a constant pressure control circuit 35 in accordance with the signal at the point C and a signal D indicating the discharge pressure of a detector 1. With this arrangement, the control of discharge pressure in consideration with the terminal end pressure is made so that the terminal pressure is reduced, thereby it is possible to save energy, greatly.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、工場の動力源として、数多く使用されている
、圧縮機群の省エネルギ運転方法の一つとし、負荷流量
の使用量に応じて、圧縮機の吐出圧力k 1lill 
fallする方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention is one of the energy-saving operation methods for a group of compressors, which are widely used as a power source in factories, and which , compressor discharge pressure k 1lill
Concerning how to fall.

〔発明の背景〕[Background of the invention]

圧縮機の負荷風昂:C対する吐出LE力お・よび軸動力
将性は、第1図に示すように、吐出圧力Pに1、負荷風
相の上昇とともに減少し、一方、4q11動力りは9荷
風量の上昇とともに上昇する。従つ−C1吐出圧力Pを
低く押える事ができると、負荷風量を多くとれ、軸動力
りを低く押える事が出来る。
As shown in Fig. 1, the compressor's discharge LE force and shaft power characteristics with respect to the load wind phase C decrease by 1 as the discharge pressure P increases, and as the load wind phase increases, while the 4q11 power decreases as the load wind phase increases. 9 It increases with the increase in air flow rate. Therefore, if the -C1 discharge pressure P can be kept low, the load air volume can be increased and the shaft power can be kept low.

従って、圧縮機を高効率運転させるには、いかに、吐出
圧力を低く押える手ができるかにあると言える。
Therefore, it can be said that in order to operate the compressor with high efficiency, it is possible to keep the discharge pressure low.

従来の圧縮機の制御方法を第3図に示す。工場の動力源
である圧縮戦群は、空力機器が多岐にわたっているため
、空力機器等の末端圧力を低側1するには、圧力検出器
が多量に必要で、寵1j朗]が後難になる等の不具会が
あるため、吐出圧力ー矩1iil [+が一般的である
。吐出圧力一定?tili 釣力式は、第2図に示すよ
’>K、末端負荷である空力機器りの最低保証圧力PL
と、最大使用風隼Q5T時の配管損失P)!全加算した
圧力 P T = P r、 十P Hで吐出圧力を一
定と成るJ:うに制御する墨により、末端負荷の圧力を
、最低保証圧力以上となるように制御する。第3図の一
般的な圧縮機群における吐出LE力と、末端圧力の等価
モデルにおける圧力と負荷j載量の特性は、第4図中、
Po1とI’LIに示すように成る。すなわち、吐出圧
力Polを一定に開側jすると、負荷風ml゛の上昇と
ともに配管損失が大きくなり末端圧力PLIは低下する
A conventional compressor control method is shown in FIG. The compression battle group, which is the power source of the factory, has a wide variety of aerodynamic equipment, so in order to lower the end pressure of the aerodynamic equipment, etc., a large number of pressure detectors are required, and this is a problem. Since there are some problems such as, discharge pressure - 1iil [+] is generally used. Is the discharge pressure constant? tili The fishing force formula is shown in Figure 2, where K is the minimum guaranteed pressure PL of the aerodynamic equipment that is the terminal load.
And piping loss P at the maximum operating wind Hayabusa Q5T)! The total added pressure P T = P r, and the discharge pressure becomes constant at 10 P H. By controlling the discharge pressure as described above, the pressure of the terminal load is controlled to be equal to or higher than the minimum guaranteed pressure. The characteristics of pressure and load j in the equivalent model of discharge LE force and terminal pressure in a general compressor group shown in Fig. 3 are shown in Fig. 4.
The results are as shown in Po1 and I'LI. That is, when the discharge pressure Pol is kept constant on the open side, as the load wind ml' increases, the piping loss increases and the terminal pressure PLI decreases.

1〕L:末端圧力 Po:吐出圧力 R=配管損失 Q 、負荷風量 とすると、 PL二P o −1(、・Q、2−(11にて示さ消5
、負荷風量により末端U〔力PLが変化することがわか
る。
1] L: Terminal pressure Po: Discharge pressure R = piping loss Q, load air volume, then PL2P o -1(, ・Q, 2-(not shown in 11)
, it can be seen that the terminal U [force PL] changes depending on the load air volume.

第4図により明らかなように、吐出圧力ー軍制菌によれ
ば末端圧力は、負荷風景により変化し2同図中斜線のよ
う々無駄な高い圧力を送っていることになる。すなわち
、商い圧力で送ることにより、無駄な動力及びエイ・ル
キーを消費しているう〔発明の目的〕 本発明は、末端に検出器を設置することなく良好な省エ
イ・ルキ運転を笑現できるi!II釧方法全方法するK
ある。
As is clear from FIG. 4, according to the discharge pressure-force control method, the terminal pressure changes depending on the load situation, resulting in unnecessary high pressure being sent as shown by the diagonal lines in the figure. In other words, by sending at commercial pressure, unnecessary power and energy consumption are consumed. [Object of the Invention] The present invention realizes good energy saving and energy saving operation without installing a detector at the end. I can do it! II All methods K
be.

〔発明の実施例〕[Embodiments of the invention]

本発明の概要を、第5図の流量を検出して吐出圧力の設
定値を変化させる場合と、第6図の圧縮機の運転台数を
カウントして吐出EE力の設定1゛「1を変化させる場
合とについて説明する。
The outline of the present invention is shown in Fig. 5, in which the flow rate is detected and the setting value of the discharge pressure is changed, and in Fig. 6, the discharge EE force is changed by counting the number of operating compressors. This section explains how to do this.

第5図の流量゛を検出しで、吐出圧力の割面設定1lP
Jを変える方式は、ll−rjl凶中圧力イ莢出器1よ
ジ吐出圧力の信号と、流′に4計2より流かの信号を受
け、第6図に示すフロック図からなる制伊IJ都3を廟
する。末端圧力設定器33で末端圧力最低保J11:圧
力全設定し、流量信号を自乗器31により自乗し、比例
器32により配管損失の係数全設定する事により、A点
の信号は等測的な配賞ロスに相当する圧力設定と成る。
Detect the flow rate in Figure 5 and set the discharge pressure to 1lP.
The method for changing J is to receive a signal of the discharge pressure from the sheller 1 and a signal of the discharge pressure from the sheller 1 to the flow ', and to create a control system consisting of the block diagram shown in Figure 6. Mausoleum of IJ Miyako 3. By setting the minimum terminal pressure J11: full pressure with the terminal pressure setting device 33, squaring the flow rate signal with the squarer 31, and setting the entire piping loss coefficient with the proportional device 32, the signal at point A can be made isometric. This is a pressure setting that corresponds to a loss in prize distribution.

加算器34V(より末端圧力6ψW命:33で設定され
た末端圧力の設定値とA点の配管ロスに相当する信号金
加’I?すると、C点の18号は、末端圧力で最低仙踵
+EFf力をキープするに2襞な、らる流量時の配官ロ
ス分ケ考慮した吐出圧力の制釧設定値となる。従って、
C点の信号と第5図の検出器1の吐出圧力の信号りとに
より、圧力ー軍制f卸回路35により、下記のように圧
縮機群の発停制釧を行なう。
Adder 34V (terminal pressure 6ψW): Add signal corresponding to the terminal pressure setting value set in 33 and the piping loss at point A. To maintain the +EFf force, the discharge pressure control setting value takes into account the distribution loss at the time of the flow rate.Therefore,
Based on the signal at point C and the discharge pressure signal from the detector 1 shown in FIG. 5, the pressure control circuit 35 controls the start and stop of the compressor group as described below.

Cく]−);圧縮機群の1台を停止 C二り:現状維持 C>D:圧m機群の一台を始動 上記の条件は、あく寸で圧力信号のみの条件であり、そ
の他、圧縮機の故障状態及び比較判定の不感帯、効果特
等のタイマー等は圧力ー軍制師−j路の中に含まれる。
C]-); Stop one unit of the compressor group C2: Maintain the status quo C>D: Start one unit of the compressor group , compressor failure status, dead zone for comparative judgment, timer for special effects, etc. are included in the pressure-system-j path.

このようなロジックにより、末端圧力全考慮した吐出圧
力側斜全行なうと、吐出圧力の設定値及び末端圧力の領
は第4図中、吐出圧力の設定値P o sのように、負
荷風量の増加とともに上昇するが末端の圧力は、PLN
のように常Vこ一定と成る。
According to this logic, if the discharge pressure side is completely adjusted in consideration of the terminal pressure, the set value of the discharge pressure and the area of the terminal pressure will be the same as the set value of the discharge pressure P o s in Fig. 4, and the load air volume. The pressure at the end increases as the PLN
As shown, V is always constant.

従って、従来技術の吐出圧力ー軍制仰の負荷風景の変動
特性(第4図中POI、PLI)にl:lZ較し、斜線
に相当する末端圧力の低減が得られ、大巾な省工坏ルキ
効果が得られる。
Therefore, compared to the variation characteristics of the discharge pressure-military control load landscape (l:lZ) of the conventional technology (POI, PLI in Fig. 4), a reduction in the terminal pressure corresponding to the diagonal line can be obtained, and a large amount of labor can be saved. You can get the Luki effect.

上記と同様に、運転台数に応じて吐出制fiIII8:
力を補正する制菌方式を第7図に、ni:l側1ブロッ
ク図を第8図にそれぞれ示す。同図中、運転台数による
流量換算回路61により、圧縮機が運転中にON −J
、OAD中の台数を検出し、等測的な床間全算出し、前
述茄、搦′計の場合と同様に、自乗器51にて自乗し、
比例器52で配管ロスに相当する圧力信号)゛を出力す
る。力11算器54により、設定器53で設定をれた末
端圧力の設定値と、F点の配管ロスに相当する信号を加
算すると、H点の信号は、末端圧力で最低保証圧力をキ
ープするに必襞な、ある流量時の配管ロス分を考慮、し
た吐出圧力の割面設定値となる。圧力ー軍制阻回路55
により、流量計設筐と同様の圧縮機群の発停制@Iを行
なうと、吐出圧力の設定値及び末端圧力の仙は第4図中
、吐出圧力の設定値はPayのように、運転台数の増加
とともに段階的に上昇するが、末端の圧力はP+、Mの
ように、末端の最低保証圧力全キープするべく、ノコキ
リ波状に変化する。
Similarly to the above, discharge control fiIII8:
The antibacterial system for correcting the force is shown in FIG. 7, and the block diagram of the ni:l side is shown in FIG. 8, respectively. In the same figure, a flow rate conversion circuit 61 based on the number of operating units turns ON-J while the compressor is in operation.
, detect the number of units in OAD, calculate the total isometric floor space, and square it with the squarer 51 as in the case of the above-mentioned 茄 and 搦' meter.
The proportional device 52 outputs a pressure signal corresponding to piping loss). When the force 11 calculator 54 adds the terminal pressure set value set by the setting device 53 and the signal corresponding to the piping loss at point F, the signal at point H maintains the minimum guaranteed pressure at the terminal pressure. This is the discharge pressure ratio set value that takes into account the piping loss at a certain flow rate, which is necessary for this purpose. Pressure-Military Interdiction Circuit 55
Therefore, when the compressor group start/stop control @I is performed in the same way as the flowmeter design case, the set value of discharge pressure and the value of terminal pressure are as shown in Fig. 4, and the set value of discharge pressure is as shown in Pay. As the number of units increases, the pressure increases step by step, but the pressure at the end changes in a sawtooth waveform, such as P+ and M, in order to maintain the minimum guaranteed pressure at the end.

流邦計投前時と同様、本方式でも、第4図のが[線の様
な末端圧力の低減が得られる。
As with the case before the Ryuho Project, this method also achieves a reduction in terminal pressure as shown by the line in Figure 4.

〔発明の効果〕〔Effect of the invention〕

本発明によれば (])等価的に末端圧力の一軍制朝jが出来る。 According to the invention (]) Equivalently, a one-army system with terminal pressure can be created.

(2)吐出圧力ー軍制側jに比べて、吐出力の設定11
なを低くできる。
(2) Discharge pressure - Compared to military system j, discharge force setting 11
can be lowered.

(3)大巾な省エイ・ルキ効果が得られる。(3) Significant stingray-saving effect can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は圧縮機の負荷風量”と吐出圧力及び111I動
力科性図、第2図は配管系統の負荷風量と吐出圧力及び
配管ロスの特性図、第3図は従来の吐出圧−5り開明1
のブロック図、第4図は従来の吐1j肩j−−−軍制両
時と本発明の吐出制菌圧袖屯時の負荷j虱邦と吐出圧力
及び末端圧力の慣性図、′F;5図はオ・′発明の流煽
゛検出器設置時の一実施例のフロック図、第6図は第5
・図の詳細ブロック図、第7図はオー発明の圧縮機台数
全カウント時の一実施例のブ【1ツク図、第8図は第7
図の詳細ブロック図である。 C及びC1−C5・・・圧縮機ケ示す。L及びL1〜1
.5・・・負荷及び空圧機器?示す。 1・・・圧力検出器、2・・吐出圧−軍制側j装置、3
・・・流肯袖正付吐出圧一定制御装置、4・・流量検出
器、31・・自乗器、32・・・比例器、33・・・末
端圧力設定器、34・・・〃rJ算器、35・・・圧力
一定fljIl直回路、5・・・運転台数補正付吐出圧
力一定flill fftl g置、6・・・運転台数
流量換算器、61・・・運転台数流山1換N器、51・
・・自乗器、52・・・比例器、53・・末端圧力設1
5 う 図 イ、40 ′t7乙囚
Figure 1 is a characteristic diagram of compressor load air volume, discharge pressure, and 111I power dynamics, Figure 2 is a characteristic diagram of load air volume, discharge pressure, and piping loss of the piping system, and Figure 3 is a characteristic diagram of conventional discharge pressure -5. Kaimei 1
Fig. 4 is an inertia diagram of the load, discharge pressure, and end pressure during the conventional discharge 1j shoulder --- military system and the discharge sterilization sleeve pressure of the present invention, 'F; The figure is a block diagram of one embodiment of the installation of the flow agitation detector of the O' invention, and Figure 6 is the flow diagram of the fifth embodiment.
・Detailed block diagram of the figure, Figure 7 is a block diagram of one embodiment of O invention when counting the total number of compressors, Figure 8 is a block diagram of the embodiment
FIG. 2 is a detailed block diagram of the figure. C and C1-C5... Indicates a compressor. L and L1~1
.. 5...Load and pneumatic equipment? show. 1...Pressure detector, 2...Discharge pressure-military side j device, 3
...Discharge pressure constant control device with flow sensor, 4..Flow rate detector, 31..Squarer, 32..Proportional device, 33.. Terminal pressure setting device, 34..〃rJ calculation 35... Constant pressure fljIl direct circuit, 5... Constant discharge pressure flill fftl g position with correction for number of operating units, 6... Number of operating units flow rate converter, 61... Number of operating units flow rate 1 conversion N unit, 51・
...Squarer, 52...Proportional device, 53...Terminal pressure setting 1
5 U Figure I, 40't7 Otsu prisoner

Claims (1)

【特許請求の範囲】[Claims] ■、負荷流量の使用開゛捷たは、圧縮機群の運転台数に
応じて吐出圧力の設定値を制御することを特徴とする圧
縮機の高効率側斜方法、。
(2) A high-efficiency side diagonal method for a compressor, which is characterized by controlling the set value of discharge pressure according to the usage of load flow rate or the number of operating compressors in a group.
JP16046383A 1983-09-02 1983-09-02 Method of high efficiently controlling compressor Pending JPS6053686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16046383A JPS6053686A (en) 1983-09-02 1983-09-02 Method of high efficiently controlling compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16046383A JPS6053686A (en) 1983-09-02 1983-09-02 Method of high efficiently controlling compressor

Publications (1)

Publication Number Publication Date
JPS6053686A true JPS6053686A (en) 1985-03-27

Family

ID=15715484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16046383A Pending JPS6053686A (en) 1983-09-02 1983-09-02 Method of high efficiently controlling compressor

Country Status (1)

Country Link
JP (1) JPS6053686A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647508U (en) * 1987-07-04 1989-01-17
JP2002098084A (en) * 2000-09-20 2002-04-05 Hitachi Ltd Screw compression equipment and its operating method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647508U (en) * 1987-07-04 1989-01-17
JPH058092Y2 (en) * 1987-07-04 1993-03-01
JP2002098084A (en) * 2000-09-20 2002-04-05 Hitachi Ltd Screw compression equipment and its operating method
JP4520608B2 (en) * 2000-09-20 2010-08-11 株式会社日立プラントテクノロジー Screw compressor

Similar Documents

Publication Publication Date Title
CN110274361B (en) Water multi-connected air conditioning system and control method of variable-frequency water pump thereof
CN105020845B (en) A kind of air-conditioning system linkage energy-saving control system and method
CN101975434B (en) Variable static pressure control method for variable air volume air conditioning system
CN105042801B (en) A kind of chilled water pump group energy-saving control method and system
CN103994554A (en) Variable pressure difference control device, method and system for air-conditioner
CN104534628A (en) Control method and system of variable-frequency cooling water pump
CN101782260A (en) Optimal control method and device for water system of air conditioning
CN204902127U (en) Terminal coordinated control's of air conditioner water system and air conditioner economizer
CN105757851A (en) Chilled water flow-variable energy-saving control method and system
CN109654680B (en) Robustness-enhanced air conditioner chilled water heat exchanger primary side water pump control method
US8493013B2 (en) Electric motor control algorithm with bypass relay
CN206377791U (en) A kind of central air-conditioning two stage pump air-conditioner water system
CN211551977U (en) Intelligent control variable frequency regulating system for air conditioner circulating water pump
CN202598765U (en) Optimized control device of variable primary flow system
FI83808B (en) FOERFARANDE FOER STYRNING AV LUFTPRODUKTIONEN I EN SCREW COMPRESSOR.
JPS6053686A (en) Method of high efficiently controlling compressor
CN202149568U (en) Cold-hot water set and central air-conditioning system
CN217402906U (en) Secondary pump linkage structure
CN114484948B (en) Energy-saving multistage pump variable frequency linkage system
CN204987368U (en) Refrigerated water pump package energy -saving control system
CN101719722A (en) Control method of ultra-high direct-current transmission voltage
JP5606645B1 (en) Target value setting type demand power proportional control device
CN115898843A (en) Air compressor optimized operation method, equipment and system based on edge cloud cooperative control
JP2009036422A (en) Heat source system
CN210178625U (en) Anti-surge control system of vapor compressor