JPS6052870B2 - Film formation method - Google Patents

Film formation method

Info

Publication number
JPS6052870B2
JPS6052870B2 JP52028818A JP2881877A JPS6052870B2 JP S6052870 B2 JPS6052870 B2 JP S6052870B2 JP 52028818 A JP52028818 A JP 52028818A JP 2881877 A JP2881877 A JP 2881877A JP S6052870 B2 JPS6052870 B2 JP S6052870B2
Authority
JP
Japan
Prior art keywords
base material
rotation
coating
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52028818A
Other languages
Japanese (ja)
Other versions
JPS53113846A (en
Inventor
健三 曾野
耕二 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP52028818A priority Critical patent/JPS6052870B2/en
Publication of JPS53113846A publication Critical patent/JPS53113846A/en
Publication of JPS6052870B2 publication Critical patent/JPS6052870B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Description

【発明の詳細な説明】 本発明は比較的表面の小さな基材(例えば直径3C)
glm以下)の表面にスピンコート法により被膜を塗布
するのに特に優れた方法に関係する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is applicable to substrates with relatively small surfaces (for example, diameter 3C).
It relates to a particularly excellent method for applying a film by spin coating to the surface of a material (less than or equal to glm).

近年、基材表面に薄膜加工を行なつて該基材の有する
欠点を補なつたり、新たな性能を賦与することが暫々実
施せられ、付加価値の高揚が行なわれている。
In recent years, the surface of a base material has been processed with a thin film to compensate for the defects of the base material or to provide new performance, thereby increasing added value.

この場合の薄膜加工法としては、単なる塗料のハケ塗り
やスプレー塗布以外に、電気メッキ、真空蒸着高温焼き
付け、浸漬塗布、或はカーテンコート、スピンコート等
多数存在する。これらの方法は被膜形成物質及び基材と
の組み合せによつて最適の方法が採用されるが、本発明
は、特にスピンコート法に関して研究されたものである
。 一般に比較的小型で平担な基材表面に被膜を被覆す
る時には、スピンコート法が採用される。
In this case, there are many thin film processing methods, such as electroplating, vacuum evaporation, high temperature baking, dip coating, curtain coating, and spin coating, in addition to simple brush coating and spray coating. The most suitable method for these methods is adopted depending on the combination of the film-forming substance and the base material, but the present invention was specifically researched regarding the spin coating method. Generally, when coating a relatively small and flat substrate surface with a film, a spin coating method is employed.

この方法は被膜形成用塗液を付着させた基材を基材表面
が回転中心軸線に対して垂直になるように回転(自転)
させて、塗布液に遠心力を与え、基材上に広げる方法で
あり、極めて均一な被膜を形成することができる。然る
に基材表面寸法が小さい場合、例えば基材の直径が30
wgR以下相当の表面積、特に1Ckwl以下になると
、回転による遠心力が充分には大きくないために、均一
な塗膜をうることは困難となる。具体的に言うならば、
例えば、直径3TfgRのガラス板上に粘度約150C
PS(センチポイズ)の溶剤を含む塗液を滴下し、この
基材を約15000にμmで回転させた処、回転につれ
て被膜は均一化するものの、逐次、溶剤が飛散するにつ
れて、塗液の粘度が上昇するために塗液が十分に振り切
られず、回転停止後に基材表面の外周上に被膜の盛り上
り部分が発生することがわかつた。この盛り上りは液溜
りとなつており、塗液の粘度、基材の回転速度、回転半
径、回転時間等の条件を検討することによつて極めて微
小にはなるが、それでも塗膜の性質に大きな悪影響を及
ぼす。即ち、このようにして被膜を塗布した後、加熱焼
付けすることが多いが、この時膜内に発生する熱応力の
分布に大きな歪みが入つて膜にクラックが発生したり、
焼付け後は外観上変化がなくても、実際に使用している
場合に、熱サイクルや外界の変化により、盛り上り部分
から被膜の変質や、膜の剥離等が起る。 一方、基材に
与える影響を考慮すると基材に加える遠心力をあまり大
きくすることは望ましいことではない。
In this method, the base material to which the film-forming coating liquid is attached is rotated (rotated) so that the base material surface is perpendicular to the center axis of rotation.
This method applies centrifugal force to the coating solution and spreads it over the substrate, making it possible to form an extremely uniform coating. However, when the surface dimension of the base material is small, for example, the diameter of the base material is 30 mm.
When the surface area is less than wgR, especially less than 1 Ckwl, it becomes difficult to obtain a uniform coating film because the centrifugal force due to rotation is not sufficiently large. To be more specific,
For example, on a glass plate with a diameter of 3TfgR, the viscosity is about 150C.
When a coating solution containing a PS (centipoise) solvent was dropped and the substrate was rotated at approximately 15,000 μm, the coating became uniform as it rotated, but as the solvent was scattered, the viscosity of the coating solution decreased. It was found that the coating liquid could not be sufficiently shaken off due to the upward movement, and a raised portion of the coating was generated on the outer periphery of the substrate surface after rotation was stopped. This bulge becomes a liquid pool, and although it can be made extremely small by considering conditions such as the viscosity of the coating liquid, the rotation speed of the base material, the rotation radius, and the rotation time, it still affects the properties of the coating film. have a major negative impact. That is, after a film is applied in this way, it is often heated and baked, but at this time, the distribution of thermal stress generated within the film is greatly distorted, causing cracks to occur in the film.
Even if there is no change in appearance after baking, during actual use, thermal cycles and changes in the external environment can cause deterioration of the film or peeling of the film from the raised areas. On the other hand, considering the influence on the base material, it is not desirable to increase the centrifugal force applied to the base material too much.

本発明は上記従来の問題点に鑑みなされたものであつ
て、その要旨は、回転中心軸線が基材以外に位置する回
転(公転)により、基材表面に均一な被膜を形成せしめ
る被膜形成法において、同時に該基材の中心軸線または
その付近を中心にして回転(自転)せしめるとを特徴と
している。本発明によれば、基材の回転停止後において
周縁部に被膜の局部的な肉厚部分を生じるとなく均一な
膜厚がえられ、したがつて後の熱処理工程あるいは使用
時における環境の大きい温度変化に対しても熱歪みに起
因するクラックあるいは剥離を生じることがなく製造歩
留が向上すると共に耐久性に優れた被膜がえられる。以
下更に詳しく説明する。
The present invention was made in view of the above-mentioned conventional problems, and the gist thereof is a film forming method for forming a uniform film on the surface of a base material by rotation (revolution) in which the center axis of rotation is located outside the base material. The base material is simultaneously rotated (rotated) around or around the central axis of the base material. According to the present invention, after the rotation of the base material has stopped, a uniform film thickness can be obtained without producing a locally thick part of the film at the peripheral edge, and therefore, it is possible to obtain a uniform film thickness without producing a locally thick part of the film at the peripheral edge. Even when the temperature changes, cracks or peeling due to thermal strain do not occur, so the manufacturing yield is improved and a coating with excellent durability can be obtained. This will be explained in more detail below.

本発明を実施するに際しても条件の許す範囲内で基材上
の塗液に十分な遠心力を与えておくことは望ましい。
When carrying out the present invention, it is desirable to apply sufficient centrifugal force to the coating liquid on the substrate within the range permitted by the conditions.

基材に遠心力を充分に与える方法については、遠心力f
=Mrw2という式から明らかな通り回転半径を大きく
取るか、回転数を大きく高速にするかのいづれかである
Regarding the method of applying sufficient centrifugal force to the base material, refer to the centrifugal force f
As is clear from the formula = Mrw2, either the radius of rotation should be increased or the number of rotations should be increased to a higher speed.

通常のスピンコート法に於ては、基材の塗布表面が直径
約30wn以上の場合3000〜500〔Pm以下の回
転速度での自転が用いられ、それで充分に均一な被膜が
えられているが基材がそれ以下の小さなものになるに従
つて回転数は飛躍的に大きくする必要がある。
In the normal spin coating method, when the coating surface of the substrate is approximately 30 wn or more in diameter, rotation at a rotational speed of 3000 to 500 Pm or less is used, and a sufficiently uniform coating can be obtained. As the base material becomes smaller, the rotational speed must be increased dramatically.

例えば塗布面が直径30Tr1mで回転速度が5000
rpmのときに基材周縁の塗液に生じるのと同じ遠心力
を直径5Tfr!nの基材上の塗液に生ぜしめるには必
要回転数は単純な計算から、大略12200rpmとな
り、極めて速い回転装置を準備しなければならない。
For example, if the coating surface is 30Tr1m in diameter and the rotation speed is 5000
The same centrifugal force that occurs in the coating liquid around the base material when the rpm is 5Tfr in diameter! From a simple calculation, the required number of rotations to generate a coating liquid on a substrate of 12,200 rpm is approximately 12,200 rpm, and an extremely fast rotating device must be prepared.

したがつて例えば直径が30w1n以下といつた比較.
的小さい基材に対しては回転中心軸線を基材外に位置さ
せ、基材をこの中心軸線廻りに公転させた方が装置的に
は有利である。
Therefore, for example, a comparison with a diameter of 30w1n or less.
For a substrate with a small target, it is advantageous in terms of equipment to position the center axis of rotation outside the substrate and make the substrate revolve around this center axis.

発明者らは先に公転式スピンコートについて出願し(昭
51年9月7日出願、特願昭51−107358、スピ
ンコート法)、更に今回は公転と同時に基材を自転させ
るとにより膜面は飛躍的に均一化されることを見い出し
た。
The inventors had previously filed an application for revolution spin coating (filed on September 7, 1972, patent application No. 107358/1973, spin coating method), and this time they have also developed a method to improve the film surface by rotating the substrate at the same time as the revolution. was found to be dramatically uniform.

即ち基材を公転せしめた時は、第1図に示す通り基材1
は点7を中心とする半径Rの円周上を矢印の方向2に回
転(公転)すくる。このとき基材1の塗布表面には矢印
4の方向に遠心力が働いて、表面の塗液は吹き寄せられ
る。その結果、ごくわずかではあるが、液溜り5が基材
1の表面の外側に発生することがある。この液溜りを避
けるために先の出願に於ては、この液を強制的に除去す
る一つの方法として基材の外周部に液体吸収性部材を当
てがう方法を示した。本発明は、この液溜の発生を防止
する他の方法として、基材を公転と同時に第1図3で示
すように基材1の表面の中心6を回転中心軸として自転
をも併せて行なわしめることを特徴としている。その結
果、第1図5で示した液溜部は基材表面上で外周部に沿
つて移動することになり、自転の間に)基材全面に薄め
られ、被膜の厚みは均一化されると同時に液溜りも完全
に消滅することが発見された。自転の角速度があまり大
きすぎる場合には自転による遠心力が公転による遠心力
よりも大きくな・り、基材表面の周囲に液溜りが生じ易
くなり、他方、自転の角速度があまり小さすぎる場合に
は液溜りの発生を効果的に防止することができないので
、定常状態の回転において自転の角速度は公転の角速度
の0.00殆〜3倍の範囲内に保つことが”好ましい。
In other words, when the base material is revolved, the base material 1
rotates (revolutions) in the direction of the arrow 2 on the circumference of a radius R centered on point 7. At this time, a centrifugal force acts on the coating surface of the base material 1 in the direction of the arrow 4, and the coating liquid on the surface is blown away. As a result, a liquid pool 5 may occur outside the surface of the base material 1, although it is very small. In order to avoid this liquid pooling, the previous application showed a method of applying a liquid absorbing member to the outer periphery of the base material as one method for forcibly removing this liquid. In the present invention, as another method for preventing the formation of liquid pools, the base material is simultaneously rotated around its axis about the center 6 of the surface of the base material 1, as shown in FIG. 1, as shown in FIG. It is characterized by tightening. As a result, the liquid reservoir shown in Fig. 1 moves along the outer periphery on the surface of the base material, and is thinned over the entire surface of the base material (during rotation), making the thickness of the coating uniform. At the same time, it was discovered that the liquid pool also completely disappeared. If the angular velocity of rotation is too high, the centrifugal force due to rotation will be greater than the centrifugal force due to revolution, and liquid pools will easily form around the surface of the base material.On the other hand, if the angular velocity of rotation is too low, Since the formation of liquid pools cannot be effectively prevented, it is preferable to maintain the angular velocity of rotation in a range of 0.00 to 3 times the angular velocity of revolution during steady-state rotation.

また公転の回転半径Rと塗布すべき基材表面の半径r(
表面が円でない場合には表面面積の2倍を表面の周囲の
長さで除した値)との比は10〜500に保つことが好
ましい。自転は基材の被塗布表面の中心軸線を回転中心
にしておこなうことが最も好ましいけれども、自転中心
軸と基材中心軸線が一致しなくてもそれらの間の距離が
公転回転半径の0.2倍よりも小さければ実用上差し支
えない。基材の公転の間、該基材を自転せしめるために
は種々の方法が考えられる。
Also, the radius of revolution R and the radius r of the surface of the substrate to be coated (
When the surface is not circular, it is preferable to keep the ratio (value obtained by dividing twice the surface area by the circumferential length of the surface) from 10 to 500. Although it is most preferable to rotate around the central axis of the surface of the substrate to be coated, even if the central axis of rotation and the central axis of the substrate do not coincide, the distance between them is 0.2 of the orbital radius of rotation. If it is smaller than twice, there is no problem in practical use. Various methods can be considered for causing the base material to rotate during its revolution.

例えば第2図に示した如くモーター11によつて回転軸
12を駆動し、回転軸12に固定された円形回転テーブ
ル13の周囲に設けられた貫通穴10に試料をミニチユ
アベアリング15を介して挿入する。このとき試料は基
材である細長いガラス繊維(例えば直径1m)17を金
属バイブ18に挿入して固定する。この金属バイブ18
には、金属カラー16が固定されており、試料の落下を
防いである。また金属バイブ18は、遠心力で振れるの
を防止するために、下部にも回転軸に固定された回転テ
ーブル14を用意して、該テーブル中の貫通穴9に挿入
する。この状態でモーター11を回転することにより、
ガラス繊維17の上端面に塗布した液に遠心力を与える
。ベアリング15の介在により、回転テーブル13とカ
ラー16との間の摩擦抵抗が小さく、従つて金属バイブ
18はガラス繊維17とともに慣性により、回転テーブ
ル13の回転方向とは逆の方向に自転する。
For example, as shown in FIG. 2, a rotary shaft 12 is driven by a motor 11, and a sample is inserted through a miniature bearing 15 into a through hole 10 provided around a circular rotary table 13 fixed to the rotary shaft 12. insert. At this time, the sample is fixed by inserting a base material, elongated glass fiber 17 (for example, diameter 1 m) into a metal vibrator 18 . This metal vibrator 18
A metal collar 16 is fixed to prevent the sample from falling. Further, in order to prevent the metal vibrator 18 from swinging due to centrifugal force, a rotary table 14 fixed to a rotating shaft is also provided at the bottom, and the metal vibrator 18 is inserted into the through hole 9 in the table. By rotating the motor 11 in this state,
A centrifugal force is applied to the liquid applied to the upper end surface of the glass fiber 17. Due to the presence of the bearing 15, the frictional resistance between the rotary table 13 and the collar 16 is small, and therefore the metal vibrator 18 rotates in the direction opposite to the direction of rotation of the rotary table 13 due to inertia together with the glass fibers 17.

この場合、自転の速度は一定ではないが、公転せしめる
初期及びモーターを停止する直前のモーターの回転角速
度が急激に変化する時のみならず、角速度が一定になり
、定常的回転中に於ても徐々にではあるが、自転してい
ることが判明した。
In this case, the speed of rotation is not constant, but not only when the rotational angular speed of the motor changes rapidly at the beginning of revolution and just before stopping the motor, but also when the angular speed is constant and during steady rotation. It turns out that it is rotating, albeit slowly.

他の自転の方法としては、回転テーブル上に別のモータ
ーを取り付けて、基材を自転せるとができる。以下実施
例を用いて具体的にその効果を説明する実施例 長さ150m1直径1.′2Tmの光学ガラス繊維(多
数の光学ガラス繊維素線を互に平行に固着したもの)1
7の端面を光学的に研磨したもの8本を用意した。
As another method of rotation, another motor can be attached to the rotary table to rotate the base material. The effect will be specifically explained below using an example. '2Tm optical glass fiber (many optical glass fibers fixed in parallel to each other) 1
Eight pieces of No. 7 with optically polished end faces were prepared.

これを第2図の如くカラー16を接着したステンレスバ
イブ(外径2.577a1内径2.3T1gR,、長さ
12070FFり18に挿入し、バイブから上下各15
T!rl&づつ繊維を突き出した状態で軽くガスバーナ
ーで加熱しながら、バルサムを繊維とバイブの接触部に
塗布し固化させた。この8本の試料を回転テーブル13
の同一円周上(半径30r!r!!t)に等間隔に8本
配列した。このとき、カラー16と回転テーブル13の
間に外径9?、内径3顛のミニチユアベアリング5を1
本おきに4個挿入した。即ちベアリングを用いて本発明
による公転並びに自転を自由に行なわせる試料(4)を
4本とし、従来からの単なる公転のみによる試料(B)
を4本とした。一方、塗布液としては、エチルシリケー
トの4〜6量体液を用意し、この液を上記8本のガラス
繊維端面に滴下してから、モーターを始動し、3000
rpmの回転速度で2紛間回転し、スピンコートを実施
した。試料Aの自転はほぼ30r′Pmであつた。次に
モーターを停止させてから、試料をステンレスバイブご
と回転テーブルから抜き取る。最後にガスバーナーで軽
く加熱しながらバルサムを溶解してガラス繊維をステン
レスバイブから抜き出し、550Cの電気炉内にて1紛
間の加熱を行なつた。この結果エチルシリケートは加熱
分解されてSlO2(二酸化珪素)となり、繊維端面の
耐水性保護膜を形成する。この時の端面保護膜の状態を
光学顕微鏡にて観察した(倍率40@)処、試料Bは4
本とも外周部にそつて約8〜13μに亘つ・て、外周部
から中央部に向けて、約2μの高さまで惰円状の小さな
被膜盛上り(液溜り部分)が発生していたが、試料Aは
全く局部的被膜の盛り上りは発生せず、全面均一な被膜
で覆われていた。
Insert this into the stainless steel vibrator (outer diameter 2.577a1 inner diameter 2.3T1gR, length 12070FF) to which the collar 16 is glued as shown in Fig. 2.
T! With the fibers sticking out, balsam was applied to the contact area between the fibers and the vibrator and solidified while being heated lightly with a gas burner. These eight samples were placed on the rotary table 13.
Eight pieces were arranged at equal intervals on the same circumference (radius 30r!r!!t). At this time, there is an outer diameter of 9? between the collar 16 and the rotary table 13. , 1 miniature bearing 5 with 3 inner diameters
I inserted 4 pieces in every other book. In other words, there are four samples (4) that freely revolve and rotate according to the present invention using bearings, and a sample (B) that uses conventional simple revolutions.
There were 4 pieces. On the other hand, as a coating liquid, prepare a 4- to 6-mer liquid of ethyl silicate, drop this liquid onto the end faces of the 8 glass fibers, start the motor, and apply 3000
Spin coating was performed by rotating the powder twice at a rotational speed of rpm. The rotation of sample A was approximately 30 r'Pm. Next, stop the motor and remove the sample along with the stainless steel vibrator from the rotary table. Finally, the balsam was melted while being lightly heated with a gas burner, the glass fibers were extracted from the stainless steel vibrator, and one powder was heated in an electric furnace at 550C. As a result, the ethyl silicate is thermally decomposed to become SlO2 (silicon dioxide), forming a water-resistant protective film on the end face of the fiber. The state of the end face protective film at this time was observed using an optical microscope (magnification 40@).
In both cases, a small circular-shaped film bulge (liquid pool) was observed along the outer periphery, extending from about 8 to 13 μm, and extending from the outer periphery toward the center to a height of about 2 μm. In sample A, there was no local build-up of the film, and the entire surface was covered with a uniform film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理を示す平面図。 第2図は、本発明の一実施例を示す断面図である。1,
17・・・基材、7,12・・・公転中心軸、6・・・
自転の中心軸。
FIG. 1 is a plan view showing the principle of the present invention. FIG. 2 is a sectional view showing an embodiment of the present invention. 1,
17... Base material, 7, 12... Revolution center axis, 6...
The central axis of rotation.

Claims (1)

【特許請求の範囲】[Claims] 1 回転中心軸線が基材以外に位置する回転(公転)に
より、基材表面に被膜を形成せしめる被膜形成法におい
て、公転しつつある該基材の中心軸線またはその付近を
中心にして回転(自転)せしめることを特徴とした被膜
形成法。
1 In a coating formation method in which a coating is formed on the surface of a substrate by rotation (revolution) in which the rotation center axis is located outside the substrate, rotation (autorotation) about the center axis of the rotating substrate or its vicinity is used. ) A film forming method characterized by the following:
JP52028818A 1977-03-15 1977-03-15 Film formation method Expired JPS6052870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52028818A JPS6052870B2 (en) 1977-03-15 1977-03-15 Film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52028818A JPS6052870B2 (en) 1977-03-15 1977-03-15 Film formation method

Publications (2)

Publication Number Publication Date
JPS53113846A JPS53113846A (en) 1978-10-04
JPS6052870B2 true JPS6052870B2 (en) 1985-11-21

Family

ID=12258977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52028818A Expired JPS6052870B2 (en) 1977-03-15 1977-03-15 Film formation method

Country Status (1)

Country Link
JP (1) JPS6052870B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01178274A (en) * 1988-01-06 1989-07-14 Nitta Ind Corp Spectacles for golf training
KR20200052971A (en) * 2018-08-22 2020-05-15 가부시키가이샤 오리진 Manufacturing method of coating material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6643767B2 (en) * 2018-01-16 2020-02-12 株式会社オリジン Method for manufacturing coated object and spreader for coated material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01178274A (en) * 1988-01-06 1989-07-14 Nitta Ind Corp Spectacles for golf training
KR20200052971A (en) * 2018-08-22 2020-05-15 가부시키가이샤 오리진 Manufacturing method of coating material

Also Published As

Publication number Publication date
JPS53113846A (en) 1978-10-04

Similar Documents

Publication Publication Date Title
US5874128A (en) Method and apparatus for uniformly spin-coating a photoresist material
JPS6052870B2 (en) Film formation method
JPH08229499A (en) Method for spin coating
JPS63200866A (en) Method for coating optical disk with protective film
US5102685A (en) Method and jig for lcd-production
JPS60130830A (en) Film formation device
JPH01159080A (en) Rotary coating device
JPS5941788B2 (en) Rotary coating device
JPS62185322A (en) Applicator for photo-resist
KR0127189Y1 (en) Stacked tube of semiconductor device
JPH09319094A (en) Spin coating method and spin coating device
JP2697226B2 (en) How to apply coating liquid
JPS591384B2 (en) Coating method and coating device
JP2840182B2 (en) Rotary coating method for substrate and rotary coating apparatus for substrate
JPS5914890B2 (en) Rotary coating method
JPS61238050A (en) Coating method
JPH05136039A (en) Resist coating device and method of manufacturing semiconductor device
JPH04230016A (en) Coating method and coating device
JP2011035168A (en) Rotary application device
JP2001319851A (en) Method for coating photoresist
SU746702A1 (en) Magnetic disc manufacturing method
JPH0248078A (en) Spin coating method
JPS62160171A (en) Method for coating resin
JPH05115828A (en) Coating device
JP2527804Y2 (en) Spinner device