JPS6052746A - Apparatus for emission spectrochemical analysis - Google Patents

Apparatus for emission spectrochemical analysis

Info

Publication number
JPS6052746A
JPS6052746A JP16100883A JP16100883A JPS6052746A JP S6052746 A JPS6052746 A JP S6052746A JP 16100883 A JP16100883 A JP 16100883A JP 16100883 A JP16100883 A JP 16100883A JP S6052746 A JPS6052746 A JP S6052746A
Authority
JP
Japan
Prior art keywords
circuit
spark discharge
integrator
output
fet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16100883A
Other languages
Japanese (ja)
Other versions
JPH0467144B2 (en
Inventor
Naoki Imamura
直樹 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP16100883A priority Critical patent/JPS6052746A/en
Publication of JPS6052746A publication Critical patent/JPS6052746A/en
Publication of JPH0467144B2 publication Critical patent/JPH0467144B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • G01N21/67Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence using electric arcs or discharges

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To improve sensitivity and precision of spark discharge emission spectrochemical analysis by providing a sample holding circuit not to an inputting side of a circuit following a light detector but to an outputting side of said circuit being a low impedance. CONSTITUTION:An integrator is composed of an operational amplifier CA and a feedback capacitor C, and an FET for integrator reset switch is connected parallelly to the capacitor C. The sample holding circuit SH samples and holds an output of the integrator. The held signal is read in computor after the A/D conversion, and integrated by a prescribed discharged number. A trigger signal of spark discharge is sent to a controlling pulse generator G from a spark discharge circuit S of a light source, a controlling pulse synchronizing with the spark discharge is generated, and (g) of the FET for a sampling switch of the sample holding circuit and the FET for resetting integrator is controlled. The controlling pulse generator G consists of the first monostable-multi vibrator circuit m1 and the second monostable-multi vibrator circuit m2, the first monomulti m1 is triggered by the trigger signal, and second monostable-multi vibrator m2 is triggered at a trailing edge of an output pulse of the m1.

Description

【発明の詳細な説明】 ビ)産業上の利用分野 本発明は火花放電を光源とする発光分析装置に関する。[Detailed description of the invention] B) Industrial application fields The present invention relates to an optical emission analyzer using spark discharge as a light source.

(ロ)従来技術 第1図はスパーク放電における発光曲線の一例を示す。(b) Conventional technology FIG. 1 shows an example of a light emission curve in spark discharge.

横軸は時間で縦軸は発光強度を示すOこの発光曲線にお
いて、光電流を積分する時間範囲は元素の種類によって
異っておシ、放電初期の鋭くせまいピークの部分につい
てだけ積分した方が良いもの、或は逆に放電後期のなだ
らかなピーク部分についてだけ積分した方がよいもの等
色々である。火花放電を光源とする発光分析では、−秒
間に数百回と云った速さで放電を繰返し、数秒間にわた
って毎回の放電における発光の測光出力を積分した信号
を更に積算するのであるが、各放電毎に最適期間だけ測
光出力をサンプリングするために必要なスイッチング素
子として適当なものがなく、従来は一放電の全域にわた
る測光出力の積分を行っていた。即ち、放電中の最適期
間に測光出力をサンプリングするだめのスイッチとして
例えばFETのようなものを用いても、光検出器が高イ
ンピーダンスの定電流型の回路素子であシ、従ってその
出力を増幅等するアンプの類も高人出インピーダンスで
あるため、ソースドレイン間の遮断時の抵抗不足による
リークが無視できず、毎秒数百回の速さで放電を行うの
で浮遊容量を通してのゲートパルスの測定信号への混入
等が無視できずそのため一放電中の最適期間においての
み測光出力を積分すると云うことが行われてぃなかった
The horizontal axis is time and the vertical axis is luminescence intensity.In this luminescence curve, the time range for integrating the photocurrent varies depending on the type of element, and it is better to integrate only the sharp and narrow peak at the beginning of the discharge. There are various methods, including some that are good, and others that require integration only for the gentle peak portion in the late stage of discharge. In luminescence analysis using a spark discharge as a light source, the discharge is repeated at a rate of several hundred times per second, and the signal obtained by integrating the photometric output of the luminescence from each discharge over several seconds is further integrated. There is no suitable switching element necessary to sample the photometric output for an optimum period for each discharge, and conventionally the photometric output has been integrated over the entire region of one discharge. That is, even if a switch such as an FET is used to sample the photometric output during the optimal period during discharge, the photodetector is a high impedance constant current type circuit element, and therefore the output cannot be amplified. Similar amplifiers also have high output impedance, so leakage due to insufficient resistance when disconnecting between source and drain cannot be ignored, and discharge occurs at a rate of several hundred times per second, making it difficult to measure gate pulses through stray capacitance. Mixing into the signal cannot be ignored, and therefore the photometric output has not been integrated only during the optimum period during one discharge.

(ハ) 目 的 本発明は一放電中に任意期間を設定してその間のみ測光
出力を取入れることのできる高速サンプリング積分回路
を提供しようとするものである。
(C) Purpose The present invention provides a high-speed sampling and integration circuit that can set an arbitrary period during one discharge and take in photometric output only during that period.

に)構 成 本発明は光検出器に後続する回路が高入力インピーダン
スであるので、同回路の入方側でなく、低インピーダン
スである同回路の出方側にサンプルホールド回路を設け
ることにょシ上述した目的を達成した。
2) Configuration Since the circuit following the photodetector has a high input impedance, the present invention has the above-mentioned arrangement in which the sample and hold circuit is provided not on the input side of the circuit but on the output side of the circuit, which has a low impedance. achieved the purpose.

(ホ)実施例 第2図は本発明の一実施例を示す。Pは光検出器、Aは
プリアンプであり、OAはオペアンプで帰還用コンデン
サCと共に積分器を構成しておシ、コンデンサCと並列
に積分器リセットスイッチ用のFETが接続しである。
(E) Embodiment FIG. 2 shows an embodiment of the present invention. P is a photodetector, A is a preamplifier, and OA is an operational amplifier that forms an integrator together with a feedback capacitor C, and an FET for an integrator reset switch is connected in parallel with the capacitor C.

SHはサンプルホールド回路で、上記積分器の出力をサ
ンプリングして保持する。この保持された信号は図外の
A / D変換器でA / D変換された後コンピュー
タに読込まれ、所定放電回数分だけ積算される。Gは制
御パルス発生器で、光源の火花放電回路Sから火花放、
電のトリガ信号が送られて来て、火花放電と同期した制
御パルスを発生し、積分器リセット用FET及びサンプ
ルホールド回路のサンプリングスイッチ用FETのgを
制御する。
SH is a sample and hold circuit that samples and holds the output of the integrator. This held signal is A/D converted by an A/D converter (not shown), read into a computer, and integrated for a predetermined number of discharges. G is a control pulse generator that emits sparks from the spark discharge circuit S of the light source;
An electric trigger signal is sent to generate a control pulse synchronized with the spark discharge to control g of the integrator reset FET and the sampling switch FET of the sample and hold circuit.

制御パルス発生器は第1のモノマルチ回路m1と第2の
モノマルチ回路m2とよシなシ、第3図イに示すトリガ
信号によシ第1のモノマルチm1がトリガされ、mlの
出力パルスの立下シで第2ノモノマルチm2がトリガさ
れる。各モノマルチ回路は出力パルスの幅が調整可能で
ある。第3図口、ハは第1.第2のモノマルチ回路の出
力パルスを示す。積分器リセット用FETのゲートには
第1のモノマルチ・mlの出力パルスが印加されて、積
分器をリセットする。サンプリング用FETのgのゲー
トには第2のモノマルチの出力パルスが印加される。第
3図二は第1図に示しだ発光曲線であり、同ホは積分器
の出力を示す。モノマルチm1の出力の立下り時点t1
までは積分器はコンデンサCがショートされた状態でリ
セットがか\つたま\であり、t1時点から測光出力の
積分が始壕る。サンプルホールド回路SHのサンプリン
グスイッチgはハのパルスが印加されている間導通して
おり、同パルスの立下り時点t2でオフとなるので、t
2時点の積分器カニがサンプルホールド回路SHに保持
される。この積分出力は二の発光曲線で斜線を入れた部
分の積分に相当する。
The control pulse generator is composed of a first mono multi circuit m1 and a second mono multi circuit m2.The first mono multi circuit m1 is triggered by the trigger signal shown in Fig. 3A, and outputs ml. The second monomulti m2 is triggered at the falling edge of the pulse. Each monomulti circuit has an adjustable output pulse width. Figure 3 mouth, Ha is 1st. The output pulse of the second monomulti circuit is shown. A first monomultiml output pulse is applied to the gate of the integrator reset FET to reset the integrator. A second mono-multi output pulse is applied to the gate of sampling FET g. FIG. 3 2 is the emission curve shown in FIG. 1, and 3 B shows the output of the integrator. Falling point t1 of output of monomulti m1
Until then, the integrator is only reset with the capacitor C shorted, and integration of the photometric output starts from time t1. The sampling switch g of the sample-and-hold circuit SH is conductive while the pulse C is applied, and turns off at the fall time t2 of the pulse, so the sampling switch g
The integrator curve at two points in time is held in the sample and hold circuit SH. This integral output corresponds to the integral of the hatched part of the second emission curve.

このようにして各放電毎に上述動作が行われ、毎回の積
分出力が所定放電回数分だけ更に積算される。
In this way, the above-mentioned operation is performed for each discharge, and the integrated output of each discharge is further integrated by a predetermined number of discharges.

上の例では積分が発光曲線の後の方のピークにおいて行
われているが、元素によっては最初のピークにおいて積
分した方がよいものがある。このような元素に対しても
第1のモノマルチの出力パルスの幅を充分短かくシ、第
2のモノマルチの出遅 力パルスの立下りt2が第3図のtlの時点付7になる
ように出力パルスの幅を調節すればよい。
In the example above, integration is performed at later peaks in the emission curve, but for some elements it is better to integrate at the first peak. For such elements, the width of the output pulse of the first monomulti is made sufficiently short so that the falling edge t2 of the output delayed output pulse of the second monomultiple becomes 7 at time tl in Fig. 3. The width of the output pulse can be adjusted accordingly.

その他、ml、m2の出力パルスの幅の調整で一放電期
間中の測光出力の積分区間は自由に設定できる。
In addition, the integration interval of the photometric output during one discharge period can be freely set by adjusting the width of the output pulses in ml and m2.

(へ)効 果 本発明によるときは、光検出器と後続回路との間にスイ
ッチを設けてサンプリングするのでなく、上記後続回路
の出力側でサンプリング動作を行うの、で、遮断時抵抗
を通してのリークとを浮遊容量を通しての信号のもれの
影響を受けず、−放電期間中の測光出力の積分区間を分
析元素忙応じて最適に設定できるから、火花放電発光分
析の感度及び精度を向上させることができる。
(F) Effect According to the present invention, sampling is not performed by providing a switch between the photodetector and the subsequent circuit, but the sampling operation is performed on the output side of the subsequent circuit. The integration interval of the photometric output during the discharge period can be optimally set according to the busyness of the analytical element, without being affected by signal leakage through stray capacitance, improving the sensitivity and accuracy of spark discharge luminescence analysis. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は火花放電発光分析におけるースパーク放電にお
ける発光曲線、第2図は本発明の一実施例装置の構成を
示す回路図、第3図は上記回路の動作を説明するタイム
チャートである。 P・・・光検出器、A・・・プリアンプ、OA・・・積
分器を構成するオペアンプ、C・・・積分器を構成する
コンデンサ、FET・・・積分器リセット用スイッチの
FET、SH・・・サンプルホールド回路、g・・・サ
ンプリングスイッチのFE、T、G・・・制御(サンプ
リング)パルス発生器、ml、 m2・・・モノマルチ
回路、S・・・火花放電回路。 代理人 弁理士 縣 浩 介
FIG. 1 is a luminescence curve in spark discharge in spark discharge emission analysis, FIG. 2 is a circuit diagram showing the configuration of an apparatus according to an embodiment of the present invention, and FIG. 3 is a time chart illustrating the operation of the above circuit. P: Photodetector, A: Preamplifier, OA: Operational amplifier that constitutes the integrator, C: Capacitor that constitutes the integrator, FET: FET for integrator reset switch, SH. ...Sample hold circuit, g...Sampling switch FE, T, G...Control (sampling) pulse generator, ml, m2...Mono multi circuit, S...Spark discharge circuit. Agent Patent Attorney Kosuke Agata

Claims (1)

【特許請求の範囲】 測光出力を積分する積分回路の出力側にサンフ。 ルホールド回路を接続し、光源の火花放電回路における
火花放電と同期し、火花放電期間中の任意のタイミング
で制御パルスを発生する制御ノくルス発生器を有し、同
パルス発生器の化カッくルスによシ上記積分回路リセッ
トのタイミングとサンプルホールド回路の積分出力サン
プリングのタイミングを制御するようにしたことを特徴
とする発光分析装置。
[Claims] A sunf is provided on the output side of an integrating circuit that integrates photometric output. It has a control pulse generator that is connected to the control pulse hold circuit, synchronizes with the spark discharge in the spark discharge circuit of the light source, and generates a control pulse at any timing during the spark discharge period. A luminescence spectrometer characterized in that the timing of resetting the integration circuit and the timing of sampling the integral output of the sample and hold circuit are controlled by a pulse.
JP16100883A 1983-08-31 1983-08-31 Apparatus for emission spectrochemical analysis Granted JPS6052746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16100883A JPS6052746A (en) 1983-08-31 1983-08-31 Apparatus for emission spectrochemical analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16100883A JPS6052746A (en) 1983-08-31 1983-08-31 Apparatus for emission spectrochemical analysis

Publications (2)

Publication Number Publication Date
JPS6052746A true JPS6052746A (en) 1985-03-26
JPH0467144B2 JPH0467144B2 (en) 1992-10-27

Family

ID=15726822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16100883A Granted JPS6052746A (en) 1983-08-31 1983-08-31 Apparatus for emission spectrochemical analysis

Country Status (1)

Country Link
JP (1) JPS6052746A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156742A (en) * 2007-12-27 2009-07-16 Shimadzu Corp Emission spectrometer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546184A (en) * 1978-09-29 1980-03-31 Shimadzu Corp Light emission spectral analyzer
JPS57175940A (en) * 1981-04-24 1982-10-29 Horiba Ltd Analysis device for fluorescence gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546184A (en) * 1978-09-29 1980-03-31 Shimadzu Corp Light emission spectral analyzer
JPS57175940A (en) * 1981-04-24 1982-10-29 Horiba Ltd Analysis device for fluorescence gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156742A (en) * 2007-12-27 2009-07-16 Shimadzu Corp Emission spectrometer

Also Published As

Publication number Publication date
JPH0467144B2 (en) 1992-10-27

Similar Documents

Publication Publication Date Title
US4469946A (en) Fluorescent gas analyzer
JPH0225136B2 (en)
JP2007256251A (en) Data collection processor
US4442349A (en) Circuitry for the generation and synchronous detection of optical pulsed signals
JPS6052746A (en) Apparatus for emission spectrochemical analysis
JPH01265154A (en) Method of analyzing sample by sputtering using particle beam and apparatus for implementing the same
JPS6411134B2 (en)
SU1453189A1 (en) Method of atomic-absorption measurements
SU1068731A1 (en) Method and device for nuclear abosrption analysis
JPS59151039A (en) Optical scattering type particle counting device
SU805076A1 (en) Method of measuring amplitude-frequency response of a photomultiplier
JP2970697B2 (en) Background removal Fourier transform spectroscopy
JPS58139036A (en) Spectrophotometer
JPS59182344A (en) Emission spectrochemical analysis device
JPH0354437Y2 (en)
RU1383979C (en) Intraresonator laser spectrometer
SU1167508A1 (en) Device for stroboscopic detecting and recording of repeating broad-band signals
JPH05223640A (en) Time-resolving fourier transform spectrometric apparatus
US3593098A (en) Spectrometer integrator system for providing overlapping integration periods
SU972421A1 (en) Semiconductor structure non-destructive checking device
JPS60117640A (en) Stroboscopic electron beam device
JP2003123686A (en) Time-of-flight mass spectroscope
JPH0319947B2 (en)
JPH055618A (en) Optical type displacement meter
JPS60187876A (en) Shaping of waveform