JPS6052568B2 - How to adjust the capacitance of thin film capacitors - Google Patents

How to adjust the capacitance of thin film capacitors

Info

Publication number
JPS6052568B2
JPS6052568B2 JP50034690A JP3469075A JPS6052568B2 JP S6052568 B2 JPS6052568 B2 JP S6052568B2 JP 50034690 A JP50034690 A JP 50034690A JP 3469075 A JP3469075 A JP 3469075A JP S6052568 B2 JPS6052568 B2 JP S6052568B2
Authority
JP
Japan
Prior art keywords
capacitor
thin film
capacitance value
capacitance
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50034690A
Other languages
Japanese (ja)
Other versions
JPS51109462A (en
Inventor
武信 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP50034690A priority Critical patent/JPS6052568B2/en
Publication of JPS51109462A publication Critical patent/JPS51109462A/ja
Publication of JPS6052568B2 publication Critical patent/JPS6052568B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、弁作用を有する金属の酸化物を誘電体とする
薄膜コンデンサの容量値調節を行う方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for adjusting the capacitance of a thin film capacitor whose dielectric is a metal oxide having a valve action.

近年、各種電子機器の集積回路化は目ざましく、薄膜コ
ンデンサもその用途増大に伴ない、高信頼度、高精度の
ものが要求される様になつた。
In recent years, the integration of various electronic devices has been remarkable, and with the increasing use of thin film capacitors, there has been a demand for highly reliable and highly accurate thin film capacitors.

タンタルで代表される弁作用を有する金属の酸化物を誘
電体とする薄膜コンデンサは、第1図に示す様に絶縁基
板6上に、該金属の薄膜をスパッタリング法で形成し、
写真蝕刻法により任意のパターンを形成し該金属の表面
の一部を陽極酸化し、生成した金属酸化物を誘電体4と
し、残つた金属部分を下部電極として用いる。続いて金
やアルミニウムの様な電気抵抗率の小さな値を持つ金属
を真空蒸着法やスパッタリング法等で被着させ、写真蝕
刻法により下部電極の一部及び誘電体4部表面に該金属
のパターンを形成し、各々下部引出し電極5及び対向電
極3としたコンデンサである。従来、薄膜コンデンサの
容量値調節は、米国文献「THINFILMTECHN
0Lf)GY」522頁Fig、11−23(b)(D
VANNOSTRANDCOMPANYCO、1968
)に例示される様に、容量値調節の行われない主コンデ
ンサ以外に容量調節用補助コンデンサを設けておき、ス
クライブラインと示された線に沿つて該補助コンデンサ
の対向電極を超音波、放電、レーザ光等により切断分離
し、薄膜コンデンサの容量値調節を行つていた。最近、
タンタル金属を用いたタンタル薄膜コンデンサが電子回
路によく使用され、容量値調節の為の切断媒体としてレ
ーザ光が注目されている。
A thin film capacitor whose dielectric is an oxide of a metal having valve action, such as tantalum, is produced by forming a thin film of the metal on an insulating substrate 6 by sputtering, as shown in FIG.
A desired pattern is formed by photolithography, a portion of the surface of the metal is anodized, the resulting metal oxide is used as the dielectric material 4, and the remaining metal portion is used as the lower electrode. Next, a metal with a low electrical resistivity, such as gold or aluminum, is deposited by vacuum evaporation or sputtering, and a pattern of the metal is formed on a portion of the lower electrode and the surface of four parts of the dielectric by photolithography. This is a capacitor in which a lower lead-out electrode 5 and a counter electrode 3 are formed. Conventionally, the capacitance value adjustment of thin film capacitors has been described in the U.S. document “THINFILM TECHN.
0Lf)GY” 522 pages Fig, 11-23(b) (D
VANNOSTRAND COMPANYCO, 1968
), an auxiliary capacitor for capacitance adjustment is provided in addition to the main capacitor whose capacitance value is not adjusted, and the opposing electrode of the auxiliary capacitor is exposed to ultrasonic waves and discharge along the line indicated as the scribe line. The capacitance value of thin film capacitors was adjusted by cutting and separating them using laser light or the like. recently,
Tantalum thin film capacitors using tantalum metal are often used in electronic circuits, and laser light is attracting attention as a cutting medium for adjusting the capacitance value.

このレーザ光を使つて該コンデンサの容量値調節を行う
場合、第1図に示す様に容量値調節用補助・コンデンサ
1の対向電極3を矢印8に沿つて切断すると、主コンデ
ンサ2や該補助コンデンサ1の誘電体4あるいは絶縁基
板6に亀裂を生じ、該電極3切断後薄膜コンデンサの容
量値不安定、漏れ電流の増大等の特性劣化をきたす恐れ
があり、最一悪の場合コンデンサの絶縁不良により故障
に至ることもある。又、該電極3切断直後では薄膜コン
デンサ特性に問題なく、長期間の安定性試験で、容量値
の異常変化や漏れ電流の増大と言つた特性劣化をきたす
場合もあり、従つて対向電極3を切断する方法は信頼性
面で問題がある。
When adjusting the capacitance value of the capacitor using this laser beam, as shown in FIG. Cracks may occur in the dielectric 4 or insulating substrate 6 of the capacitor 1, and after the electrode 3 is cut, the capacitance value of the thin film capacitor becomes unstable, the leakage current increases, and other characteristic deterioration may occur.In the worst case, the insulation of the capacitor may be damaged. Defects may lead to breakdowns. In addition, there is no problem with the thin film capacitor characteristics immediately after the electrode 3 is cut, but a long-term stability test may cause characteristic deterioration such as an abnormal change in capacitance value or an increase in leakage current. The cutting method has problems in terms of reliability.

対向電極材料として、金、ニクロム、パラジウムと言つ
た金属が一般に使用されているが、例えば金を対向電極
としたタンタル薄膜コンデンサの容量値調節をレーザ光
で行う場合、対向電極切断に要するレーザのパワーは、
タンタル薄膜コンデンサの誘電体である五酸化タンタル
を切断するパワーの約1.5倍である。又、時として該
電極切断終了後、コンデンサの容量値を測定すると容量
値は該電極切断前の容量値と同じと言つた現象もある。
これは該電極の被切断部の金が電気的に導通している為
であり、原因はレーザ光による金の切断の難易性と考え
られる。更にタンタル金属を使い、250Vの陽極化成
電圧で形成したタンタル薄膜コンデンサにおいて、第1
図に示す様に矢印8に沿つて対向電極3を順次切断分離
した場合、容量値変化は第2図に示す様になるが容量値
調節の高精度化を実現させるには、該電極3切断ステツ
プ毎の容量値変化を小さくする必要がある。
Metals such as gold, nichrome, and palladium are generally used as counter electrode materials. For example, when using a laser beam to adjust the capacitance of a tantalum thin film capacitor with a gold counter electrode, the laser beam required to cut the counter electrode is The power is
This is about 1.5 times the power to cut tantalum pentoxide, which is the dielectric material of tantalum thin film capacitors. Furthermore, there is a phenomenon in which when the capacitance value of the capacitor is measured after the electrode cutting is completed, the capacitance value is the same as the capacitance value before the electrode cutting.
This is because the gold in the part of the electrode to be cut is electrically conductive, and the reason is thought to be the difficulty of cutting gold with laser light. Furthermore, in tantalum thin film capacitors formed using tantalum metal and an anodizing voltage of 250V, the first
When the counter electrode 3 is sequentially cut and separated along the arrow 8 as shown in the figure, the capacitance value changes as shown in Fig. It is necessary to reduce the change in capacitance value for each step.

この為、容量値調節用補助コンデンサ2の面積を小形に
しなければならないが、誘電率の大きいコンデンサの場
合、面積の小形化だけでは、容量値変化率を小さくする
ことに困難がある。以上の様にコンデンサの容量値調節
方法において、容量値調節用補助コンデンサの対向電極
を切断分離する従来の方法は、コンデンサの信頼性面、
該電極切断作業面、高精度容量値調節面で問問題があつ
た。本発明は、上記問題にかんがみてなされたもので、
その目的とするところは無極性補助コンデンサの対向電
極の形成されていない部分を超音波、放電、レーザ光等
により、コンデンサの信頼性を!そこなわず切断分離の
優れた作業性を持ち、容量値の高精度調節が出来ると云
つた特性を持ちつつ、切断分離し、コンデンサの容量値
調節方法を提供することである。
For this reason, the area of the auxiliary capacitor 2 for adjusting the capacitance value must be made small, but in the case of a capacitor with a large dielectric constant, it is difficult to reduce the rate of change in capacitance value only by making the area small. As described above, in the capacitance value adjustment method of a capacitor, the conventional method of cutting and separating the opposing electrode of the auxiliary capacitor for capacitance value adjustment has a negative effect on the reliability of the capacitor.
Problems arose regarding the electrode cutting work and high precision capacitance value adjustment. The present invention has been made in view of the above problems, and
The purpose of this is to improve the reliability of the capacitor by using ultrasonic waves, electric discharge, laser light, etc. on the part of the non-polar auxiliary capacitor where the counter electrode is not formed! It is an object of the present invention to provide a method for cutting and separating and adjusting the capacitance value of a capacitor while having characteristics such as excellent workability in cutting and separating and being able to adjust the capacitance value with high precision.

次に本発明によるコンデンサの容量値調節方法一につい
て、実施例を図面を参照して説明すると、第3図に示し
た様に絶縁基板6上にタンタル金属を選択的に形成し、
主コンデンサ1となる部分の該金属の表面の一部、無極
性補助コンデンサ2となる部分の該金属の表面の全部を
陽極酸化して酸化物とし、これらを誘電体4−1,4−
2,4一3とする。
Next, an embodiment of a capacitance value adjustment method of a capacitor according to the present invention will be described with reference to the drawings. As shown in FIG. 3, tantalum metal is selectively formed on an insulating substrate 6,
A part of the surface of the metal in the part that will become the main capacitor 1 and the entire surface of the metal in the part that will become the non-polar auxiliary capacitor 2 are anodized to form an oxide, and these are made into dielectrics 4-1, 4-
2,4-3.

引続いてニクロム、金を真空蒸着法により被着させ、選
択的に電極パターンを設けることにより、下部引出し電
極5、対向電極3を形成し、主コンデンサ1と、これと
並列接続した複数個の無極性補助コンデンサ2とから成
る薄膜コンデンサを形成する。そして、矢印8で示す様
に無極性補助コンデンサ2の対向電極3でない部分・を
、レーザ光により切断分離し、主コンデンサ1と並列に
接続した複数個の該補助コンデンサ2を分離させること
により、該補助コンデンサ2の容量値分を減少させ、コ
ンデンサの容量値調節を行う。第4図は本発明の他の実
施例であり、複数個の無極性補助コンデンサ2の誘電体
巾4−2,4−3,4−4を変えたコンデンサを形成し
たものであり、同図の矢印8に沿つてレーザ光を振らせ
て該補助コンデンサの対向電極3の形成されていない部
分を切断分離し、コンデンサの容量値調節を行う。
Subsequently, nichrome and gold are deposited by vacuum evaporation, and an electrode pattern is selectively provided to form the lower lead electrode 5 and the counter electrode 3. A thin film capacitor consisting of the non-polar auxiliary capacitor 2 is formed. Then, as shown by the arrow 8, the portion of the non-polar auxiliary capacitor 2 that is not the opposing electrode 3 is cut and separated using a laser beam, and the plurality of auxiliary capacitors 2 connected in parallel with the main capacitor 1 are separated. The capacitance value of the auxiliary capacitor 2 is decreased to adjust the capacitance value of the capacitor. FIG. 4 shows another embodiment of the present invention, in which a capacitor is formed in which dielectric widths 4-2, 4-3, and 4-4 of a plurality of non-polar auxiliary capacitors 2 are changed. A laser beam is swung along the arrow 8 to cut and separate the portion of the auxiliary capacitor where the counter electrode 3 is not formed, thereby adjusting the capacitance value of the capacitor.

第5図は、この容量値調節の容量変化率を示すが、容量
値調節用補助コンデンサ2の誘電体4−2,4−3,4
−4巾に応じて容量値変化率が変わる。すなわち該補助
コンデンサの誘電体巾を細くすることにより高精度の容
量値調節が出来る。以上説明した方法によれば、下記の
様な効果を挙げ得る。
FIG. 5 shows the capacitance change rate of this capacitance value adjustment.
-4 The capacitance value change rate changes depending on the width. That is, by narrowing the dielectric width of the auxiliary capacitor, the capacitance value can be adjusted with high precision. According to the method described above, the following effects can be achieved.

第3図に示す様に矢印8に沿つてレーザ光を走らせるこ
とにより切断されるものは容量値調節用補助コンデンサ
2部の誘電体、弁金属であり、切断作業により万一誘電
体、弁金属に亀裂が生じても、該補助コンデンサ2は切
断分離されるのであり、何ら主コンデンサの特性に悪影
響を与えない。又、最近注目されているレーザ光で容量
値調節を行う場合、対向電極を切断するに要するレーザ
パワーは従来より少なくて済み、且つ被切断部が電気的
に導通すると言つたこともない。更に容量値調節用補助
コンデンサの誘電体巾をスリツト状にすることにより、
コンデンサの高精度容量値調節が出来る。以上本発明に
関する説明を若干の例にとり行つたが、上記例は本特許
の請求範囲を何ら限定するものではない。
As shown in Figure 3, what is cut by running the laser beam along the arrow 8 is the dielectric material and valve metal of the second part of the auxiliary capacitor for capacitance adjustment. Even if a crack occurs in the metal, the auxiliary capacitor 2 is cut and separated, and the characteristics of the main capacitor are not adversely affected in any way. Furthermore, when adjusting the capacitance value using a laser beam, which has recently been attracting attention, the laser power required to cut the opposing electrode is less than that of the conventional method, and there is no possibility that the part to be cut will be electrically conductive. Furthermore, by making the dielectric width of the auxiliary capacitor for capacitance adjustment into a slit shape,
Capacitance value of capacitor can be adjusted with high accuracy. Although the present invention has been described above using some examples, the above examples do not limit the scope of the claims of this patent in any way.

図面の簡単な説明第1図は、従来の方法でコンデンサの
容量値調節を行う場合の薄膜コンデンサの平面図であり
、第2図は容量値調節を行つた場合の容量値変化率であ
る。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a plan view of a thin film capacitor when the capacitance value of the capacitor is adjusted by a conventional method, and FIG. 2 is a diagram showing the rate of change in capacitance value when the capacitance value is adjusted.

Claims (1)

【特許請求の範囲】[Claims] 1 主コンデンサの誘電体膜が一方向に延在し、補助コ
ンデンサの複数の誘電体膜がその幅を異ならせてそれぞ
れ前記主コンデンサの誘電体膜と平行に延在し、下部引
出し電極が前記主コンデンサの誘電体膜上から前記複数
の誘電体膜上にかけて設けられ、対向電極が前記主コン
デンサの誘電体膜上から前記複数の誘電体膜上にかけて
設けられた薄膜コンデンサの容量調節方法であつて、前
記下部引出し電極と対向電極との間の選ばれた補助コン
デンサの誘電体膜の部分およびその誘電体膜を形成した
弁金属の切断を幅の広い順に行うことによつて容量の調
節を行うことを特徴とする薄膜コンデンサの容量調節方
法。
1. The dielectric film of the main capacitor extends in one direction, the plurality of dielectric films of the auxiliary capacitor have different widths and extend parallel to the dielectric film of the main capacitor, and the lower extraction electrode extends in one direction. A method for adjusting the capacitance of a thin film capacitor, wherein the thin film capacitor is provided from a dielectric film of a main capacitor to a plurality of dielectric films, and a counter electrode is provided from a dielectric film of the main capacitor to a plurality of dielectric films. Then, the capacitance is adjusted by cutting the dielectric film portion of the auxiliary capacitor selected between the lower extraction electrode and the counter electrode and the valve metal forming the dielectric film in order of widest width. A method for adjusting the capacitance of a thin film capacitor, characterized in that:
JP50034690A 1975-03-20 1975-03-20 How to adjust the capacitance of thin film capacitors Expired JPS6052568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50034690A JPS6052568B2 (en) 1975-03-20 1975-03-20 How to adjust the capacitance of thin film capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50034690A JPS6052568B2 (en) 1975-03-20 1975-03-20 How to adjust the capacitance of thin film capacitors

Publications (2)

Publication Number Publication Date
JPS51109462A JPS51109462A (en) 1976-09-28
JPS6052568B2 true JPS6052568B2 (en) 1985-11-20

Family

ID=12421370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50034690A Expired JPS6052568B2 (en) 1975-03-20 1975-03-20 How to adjust the capacitance of thin film capacitors

Country Status (1)

Country Link
JP (1) JPS6052568B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082329U (en) * 1983-11-14 1985-06-07 横河メディカルシステム株式会社 Auxiliary power supply circuit for storage devices
JPS62259154A (en) * 1986-05-02 1987-11-11 Hitachi Ltd Security memory
JPS63234340A (en) * 1987-03-23 1988-09-29 Omron Tateisi Electronics Co Electronic equipment equipped with data robbery preventing function
JPH0191947U (en) * 1987-12-10 1989-06-16

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645016A (en) * 1979-09-19 1981-04-24 Hitachi Ltd Capactance adjustment of capacitor
JPS6016413A (en) * 1983-07-08 1985-01-28 株式会社村田製作所 Step trimmer condenser
JPS6016412A (en) * 1983-07-08 1985-01-28 株式会社村田製作所 Step trimmer condenser

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082329U (en) * 1983-11-14 1985-06-07 横河メディカルシステム株式会社 Auxiliary power supply circuit for storage devices
JPS62259154A (en) * 1986-05-02 1987-11-11 Hitachi Ltd Security memory
JPS63234340A (en) * 1987-03-23 1988-09-29 Omron Tateisi Electronics Co Electronic equipment equipped with data robbery preventing function
JPH0191947U (en) * 1987-12-10 1989-06-16

Also Published As

Publication number Publication date
JPS51109462A (en) 1976-09-28

Similar Documents

Publication Publication Date Title
US4020222A (en) Thin film circuit
US3988824A (en) Method for manufacturing thin film circuits
US3987676A (en) Relative humidity detector
US3617834A (en) Monolithic capacitor components and process for producing same
US3781610A (en) Thin film circuits and method for manufacture
US5345361A (en) Shorted trimmable composite multilayer capacitor and method
US3949275A (en) Electric thin-film circuit and method for its production
JPS6052568B2 (en) How to adjust the capacitance of thin film capacitors
US3542654A (en) Process of making an rc circuit and calibrating same
US3821617A (en) Film type capacitor and method of adjustment
US3778689A (en) Thin film capacitors and method for manufacture
JPS63248112A (en) Thick film capacitor
US2910766A (en) Method of producing an electrical component
US20030057518A1 (en) Rc terminator and production method therefor
US3665346A (en) Thin film distributed rc structure
US3997411A (en) Method for the production of a thin film electric circuit
JPS60102727A (en) Trimming condenser and method of producing same
US4107834A (en) Capacitors with minimum ESR and method of making the same
CN1262516A (en) Resistance for high-voltage and its method for regulating resistance
JPS60102725A (en) Trimming condenser and method of producing same
US3786557A (en) Fabrication of thin film resistors
US3407465A (en) Techniques for charting and removing defects in thin film capacitors
Sato et al. An SiO 2-Ta 2 O 5 thin film capacitor
JPS60219703A (en) Ladder resistor pattern
SU1121703A1 (en) Process for manufacturing thin-film capacitor