JPS6052006A - Ferrodielectric ceramic condenser - Google Patents

Ferrodielectric ceramic condenser

Info

Publication number
JPS6052006A
JPS6052006A JP15958183A JP15958183A JPS6052006A JP S6052006 A JPS6052006 A JP S6052006A JP 15958183 A JP15958183 A JP 15958183A JP 15958183 A JP15958183 A JP 15958183A JP S6052006 A JPS6052006 A JP S6052006A
Authority
JP
Japan
Prior art keywords
terminal plate
electrodes
lead wire
capacitor element
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15958183A
Other languages
Japanese (ja)
Other versions
JPS6260803B2 (en
Inventor
飯田 武伸
椎名 城治郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP15958183A priority Critical patent/JPS6052006A/en
Publication of JPS6052006A publication Critical patent/JPS6052006A/en
Publication of JPS6260803B2 publication Critical patent/JPS6260803B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は強誘電体セラミックコンデンサーの改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in ferroelectric ceramic capacitors.

チタン醒バリウム等を主体とする強誘電体セラミックコ
ンデンサーは電子部品として種々の用途に用いられてい
るが、最近はその非線形電圧−電荷特性を利用して、例
えば高圧放電灯に内蔵する始動用パルス発生6等にも使
用されている。
Ferroelectric ceramic capacitors, mainly made of titanium-based barium, are used as electronic components in a variety of applications.Recently, however, their nonlinear voltage-charge characteristics have been utilized to produce, for example, starting pulses built into high-pressure discharge lamps. It is also used in Generation 6.

上記のような用途に使用するコンデンサー素子は、■高
温雰囲気中での使用に十分耐えうろこと、■十分に高い
電圧パルスを発生させることができ、しかも高電圧に対
する耐性を有するとと■振動等の機械的衝撃に対する強
度が大きいこと、等の諸条件が必要とされるが、これら
を総合的に満足させることはかなり難かしい。
The capacitor elements used for the above applications are: 1) sufficiently durable for use in high-temperature atmospheres, 2) capable of generating sufficiently high voltage pulses, and resistant to high voltages, and 2) withstands vibrations, etc. Although various conditions such as high strength against mechanical impact are required, it is quite difficult to satisfy these conditions comprehensively.

例えば、従来から一般の電子部品として用いられている
強誘電体セラミックコンデンサーは、セラミック基板の
両面に銀膜の電極な被着し、これらにリード線を鉛−錫
合金半田等で接続したうえ全体を合成樹脂でオーバーコ
ートしたものが多い。
For example, ferroelectric ceramic capacitors, which have traditionally been used as general electronic components, have silver film electrodes deposited on both sides of a ceramic substrate, lead wires connected to these with lead-tin alloy solder, etc. Many are overcoated with synthetic resin.

しかし、かかる構造のものは、せいぜい150℃程度の
耐熱性しかなく、これ以上の高温雰囲気中での使用には
耐えられない。また、セラミック基板上の電極にリード
線を直接に接続しであるので、コンデンサー素子が圧電
効果によって摂動する際に、リード線が振動を抑制して
しまい、その結果、十分に高い電圧パルスが発生しない
のみならず、リード線接続部の機械的疲労も大きいとい
う問題があった。
However, such a structure has a heat resistance of only about 150° C. at most, and cannot withstand use in a higher temperature atmosphere. In addition, since the lead wires are connected directly to the electrodes on the ceramic substrate, when the capacitor element is perturbed by the piezoelectric effect, the lead wires suppress vibrations, resulting in a sufficiently high voltage pulse. There was a problem in that not only the lead wire connection area was not damaged, but also the mechanical fatigue of the lead wire connection portion was large.

本発明は以上の点に鑑みてなされたもので、先に述べた
ような諸条件を総合的に満足することができる強誘電体
セラミックコンデンサーを提供せんとするものである。
The present invention has been made in view of the above points, and it is an object of the present invention to provide a ferroelectric ceramic capacitor that can comprehensively satisfy the various conditions described above.

上記目的を達成するために、発明者等は、先ず、前記の
ようなコンデンサー素子においては、セラミック基板に
対するリード線の接続構造が、高電圧パルスの高さ及び
機械的強度等に対してと9わけ大きな関係があることに
着目して、次のような実験を行った。すなわち、強誘電
体セラミック基板の材料として、チタン酸バリウム(B
aTi0−5 )に数モル多のジルコニウム酸バリウム
(naZr03)及びチタン酸ストロンチウム(5rT
iOのと微量の希土類金属酸化物とを添加してなる粉末
にバインダーとしてポリビニルアルコールを加えて撹拌
し、プレス成形した後、1400℃の温度で2時間気中
焼成を行い、直径26鰭、厚み0.5 mの円板状の基
板を作った。この基板の両面1c銀ペーストをスクリー
ン印刷で直径25.7tlに塗布し、乾燥後750℃の
温度で気中焼成して電極を形成した。そしてこの電極部
分に第1図に示すように、リード線1を接続した端子板
2を銀粉末と低融点ガラス粉末とからなるペーストで接
着し、約500℃の温度で気中焼成を行って固定した。
In order to achieve the above object, the inventors first determined that in the capacitor element as described above, the connection structure of the lead wires to the ceramic substrate is 9. Focusing on the fact that there is a significant relationship, we conducted the following experiment. That is, barium titanate (B
aTi0-5), several moles of barium zirconate (naZr03) and strontium titanate (5rT
Polyvinyl alcohol was added as a binder to a powder made by adding iO and a small amount of rare earth metal oxide, and the mixture was stirred and press-molded, and then fired in the air at a temperature of 1400°C for 2 hours. A 0.5 m disk-shaped substrate was made. A 1C silver paste was applied to both sides of this substrate by screen printing to a diameter of 25.7 tl, and after drying, it was baked in the air at a temperature of 750°C to form electrodes. Then, as shown in Fig. 1, a terminal plate 2 to which a lead wire 1 is connected is adhered to this electrode part with a paste made of silver powder and low melting point glass powder, and fired in the air at a temperature of about 500°C. Fixed.

リード線2には直径0.5寓のニッケル線を用い、端子
板は鉄−ニッケルーコバルト−クロム合金を用い、厚み
を0.3 wxとし、直径は11111〜5Mの範囲で
種々異るものを使用した。このようなコンデンサー素子
を第2図に示すように、半導体スイッチング素子3とダ
イオード4並びに抵抗体5の並列回路及び誘導性素子6
を介して変流電源7に接続したうえ、コンデンサー素子
80部分をフレオン液中に保持し、交流200V、50
Hzの入力を加えて、常温におけるパルス電圧のピーク
値を測定した。
For the lead wire 2, a nickel wire with a diameter of 0.5 mm is used, and for the terminal plate, an iron-nickel-cobalt-chromium alloy is used, the thickness is 0.3 wx, and the diameters are various in the range of 11111 to 5M. It was used. As shown in FIG. 2, such a capacitor element includes a parallel circuit of a semiconductor switching element 3, a diode 4, a resistor 5, and an inductive element 6.
In addition, the capacitor element 80 is held in Freon liquid, and the AC voltage is 200V, 50V.
A Hz input was applied, and the peak value of the pulse voltage at room temperature was measured.

第1表に、このときのリード線端子板の直径とパルス電
圧のピーク値の関係を示す。
Table 1 shows the relationship between the diameter of the lead wire terminal plate and the peak value of the pulse voltage at this time.

3− 第1表 第1表から明らかなように、端子板の直径が2目を越え
ると、パルス電圧のピーク値は急激に低下する傾向が見
られる。これは、端子板と導電性ガラス接着剤が強誘電
体セラミック板の直径方向の振動を抑制するためである
と考えられ、かかる理由からリード線の端子板の面積は
できるだけ小さくすることが望ましい。しかしながら、
端子板の面積を小さくすることは強誘電体セラミック板
及び電極に対するリード線の接続強度が小さくなること
につながる。放電灯等への組み込んだ場合の機械的強度
を考慮した場合、前記端子板の直径は少なくとも3m以
上にする必要がある。前記実験において端子板の直径を
3鰭とした場合、第1表から明らかなようにパルス電圧
のピーク値は2000Vでアシ、高圧放電灯を始動させ
ること4− は可能である。ところが、かかる端子板を具えたコンデ
ンサー素子を実際に高圧放電灯の外球内部に組み込んで
使用したところ、フレオン液中の動作ではみられなかっ
た不都合な現象が発生した。
3-Table 1 As is clear from Table 1, when the diameter of the terminal plate exceeds the second diameter, the peak value of the pulse voltage tends to decrease rapidly. This is thought to be because the terminal plate and the conductive glass adhesive suppress vibrations in the diametrical direction of the ferroelectric ceramic plate, and for this reason it is desirable to make the area of the lead wire terminal plate as small as possible. however,
Reducing the area of the terminal plate leads to a reduction in the connection strength of the lead wires to the ferroelectric ceramic plate and the electrodes. When considering mechanical strength when incorporated into a discharge lamp or the like, the diameter of the terminal plate needs to be at least 3 m or more. In the above experiment, when the diameter of the terminal plate was set to three fins, as is clear from Table 1, the peak value of the pulse voltage was 2000 V, and it was possible to start the high pressure discharge lamp. However, when a capacitor element equipped with such a terminal plate was actually incorporated into the outer bulb of a high-pressure discharge lamp and used, an inconvenient phenomenon occurred that was not observed when operating in Freon liquid.

す表わち基板の両面に接着した端子板間で耐圧不良によ
るスパークが頻発した。この原因は、強誘電体セラミッ
クコンデンサーの基板が圧電効果によシ振動した際に端
子板の接着部に応力が集中して、その部分にクラックが
入り、そこにスパークが生ずるものと考えられる。!、
た、コンデンサ二′素子を組み込む外球の内部が真空で
あると、コンデンサー素子の縁面に放電が生じたり、放
電灯の点灯に伴う高温によシコンデンサー基体中の酸素
がうばわれてコンデンサー素子の固有抵抗が低下する等
の不都合も生ずる。
In other words, sparks frequently occurred between the terminal plates bonded to both sides of the board due to poor voltage resistance. The reason for this is thought to be that when the substrate of the ferroelectric ceramic capacitor vibrates due to the piezoelectric effect, stress concentrates on the bonded area of the terminal plate, causing cracks in that area and sparks. ! ,
In addition, if the inside of the outer bulb in which the capacitor element is installed is in a vacuum, discharge may occur on the edge of the capacitor element, or the high temperatures associated with lighting a discharge lamp may evaporate oxygen in the capacitor base, causing damage to the capacitor element. Inconveniences such as a decrease in specific resistance also occur.

そこで、発明者等はコンデンサー素子の構造を以下のよ
うに工夫してみた。先ず、前記実験と同様に、チタン酸
バリウムを主体とする材料で、直径26111.厚み0
.5露の基体を形成した。次にこの基体の両面に銀ペー
ストをスクリーン印刷で直径25.7 mに塗布し、7
50℃の温度で気中焼成して電極を形成した。次いで第
3図に示すように、基体9及び電極10a・10bの周
囲を電極10a・10bの中心部の直径2鮎だけを除い
て、低融点ガラスペースト11で完全にオーバーコート
し、乾燥させた後、550℃の温度で気中焼成を行って
基体の周囲を無機質ガラスで被覆した。次に、第4図に
示すように、無機質ガラスの非被覆部分の外側に該非被
覆部分の面積より大きい面積を有する第1図に示すごと
き構造の端子板2a・2bを当てがい、これを導電性ガ
ラスペースト12a−12bによって電極10a・10
bに接着したうえ、約500℃の温度で気中焼成を行っ
て固定した。このように構成したコンデンサー素子を前
記実験と同様に第2図に示すような回路に接続し、フレ
オン液中で交流200V、501−Izの入力を加えて
、常温におけるパルス電圧のピーク値を測定した。第2
表はそのときのリード線端子板の直径とパルス電圧のピ
ーク値の関係を示すものである。
Therefore, the inventors devised the structure of the capacitor element as follows. First, as in the previous experiment, a material mainly composed of barium titanate was used, and a diameter of 26111. Thickness 0
.. A 5-layer substrate was formed. Next, silver paste was applied to both sides of this substrate by screen printing to a diameter of 25.7 m.
An electrode was formed by firing in air at a temperature of 50°C. Next, as shown in FIG. 3, the surroundings of the substrate 9 and electrodes 10a and 10b were completely overcoated with low melting point glass paste 11, except for only the diameter 2 mm at the center of electrodes 10a and 10b, and dried. Thereafter, firing was performed in air at a temperature of 550° C. to cover the periphery of the substrate with inorganic glass. Next, as shown in FIG. 4, terminal plates 2a and 2b having a structure as shown in FIG. 1 and having an area larger than the area of the non-coated portion of the inorganic glass are applied to the outside of the non-coated portion of the inorganic glass, and these are conductive. The electrodes 10a and 10 are made of glass paste 12a and 12b.
b, and then baked in the air at a temperature of about 500°C to fix it. The capacitor element constructed in this way was connected to the circuit shown in Figure 2 in the same way as in the previous experiment, and the peak value of the pulse voltage at room temperature was measured by applying an input of AC 200 V and 501-Iz in Freon liquid. did. Second
The table shows the relationship between the diameter of the lead wire terminal plate and the peak value of the pulse voltage at that time.

第2表 第2表から明らかなように、第4図に示すような構造に
すると、リード線端子板の直径が2.5m〜5nの範囲
ではパルス電圧のピーク値が極めて安定しており、しか
も端子板を直接コンデンサー基体に接着した場合に比較
して、端子板直径を大きくしても高いパルス電圧ピーク
値が得られる。
As is clear from Table 2, when the structure shown in Figure 4 is used, the peak value of the pulse voltage is extremely stable when the diameter of the lead wire terminal plate is in the range of 2.5 m to 5 nm. Furthermore, compared to the case where the terminal plate is directly adhered to the capacitor base, a higher pulse voltage peak value can be obtained even if the terminal plate diameter is increased.

このことは、ピーク値を下げることなくリード線の接続
強度を高め得ることを意味している。因みに、上記構造
によると、放電灯への組み込みを考慮してリード線端子
板の直径を3mmとした場合のパルス電圧ピーク値は2
500Vであシ、この値は、高圧放電灯を確実に始動さ
せるのに十分な値である。また、上記構造によるとコン
デンサー素子の基体は無機質ガラスで完全に被覆された
形となっているので、これを高圧放電灯の外球等の中7
− に組み込んだ場合にも、耐熱性は大きく、縁面放電も生
じに<<、さらにはコンデンサー基体中の酸素かうはわ
れて固有抵抗が低下するといった現象も防ぐことができ
る。
This means that the connection strength of the lead wire can be increased without lowering the peak value. Incidentally, according to the above structure, the pulse voltage peak value is 2 when the diameter of the lead wire terminal plate is 3 mm in consideration of integration into a discharge lamp.
500V, which is sufficient to reliably start a high-pressure discharge lamp. In addition, according to the above structure, the base of the capacitor element is completely covered with inorganic glass, so it is placed inside the outer bulb of a high-pressure discharge lamp, etc.
- Even when incorporated into a capacitor, the heat resistance is high and it is possible to prevent the occurrence of edge discharge and furthermore, the phenomenon that oxygen in the capacitor base is evaporated and the specific resistance is lowered.

以上の説明から明らかなように、本発明に係る強誘電体
セラミックコンデンサーは、強誘電体セラミック基板の
表面に電極を被着し、これら全体を前記電極に対する通
電部を除いて無機質ガラスで完全に被覆するとともに、
前記無機質ガラスの非被覆部分に該非被覆部分の面積よ
シ大きい面積を有する端子板を設置してこれを導電性ガ
ラスによシミ極に接着したうえ、端子板にリード線を接
続した構造であシ、これによシ、先に述べたような種々
の効果を得ることができるものである。
As is clear from the above description, the ferroelectric ceramic capacitor according to the present invention has electrodes attached to the surface of a ferroelectric ceramic substrate, and the entire structure is made of inorganic glass except for the current-carrying parts for the electrodes. Along with coating,
It has a structure in which a terminal plate having an area larger than the area of the non-coated portion is installed on the non-coated portion of the inorganic glass, this is adhered to the stain electrode with conductive glass, and a lead wire is connected to the terminal plate. By doing so, various effects such as those mentioned above can be obtained.

【図面の簡単な説明】 第1図は本発明に係るコンデンサー素子に使用するリー
ド線端子板の斜視図、第2図は同端子板を使用したコン
デンサー素子の試販回路図、第3図は本発明に係るコン
デンサー素子の完成途中の断面図、第4図は同じく完成
後の断面図である。 8−
[Brief explanation of the drawings] Fig. 1 is a perspective view of a lead wire terminal plate used in a capacitor element according to the present invention, Fig. 2 is a trial sales circuit diagram of a capacitor element using the same terminal plate, and Fig. 3 is a perspective view of a lead wire terminal plate used in a capacitor element according to the present invention. FIG. 4 is a cross-sectional view of the capacitor element according to the present invention during completion, and FIG. 4 is a cross-sectional view of the capacitor element after completion. 8-

Claims (1)

【特許請求の範囲】[Claims] 強誘電体セラミック基板の両面に電極を被着し、これら
全体を前記電極に対する通電部を除いて無機質ガラスで
完全に被覆するとともに、無機質ガラスの非被祖部分の
外側に該非被覆部分の面積より大きい面積を有する端子
板を設置してこれを導電性ガラスによシミ極に接着した
うえ、該端子板にリード線を接続したことを特徴とする
強誘電体セラミックコンデンサー。
Electrodes are attached to both sides of a ferroelectric ceramic substrate, and these are completely covered with inorganic glass except for the current-carrying parts for the electrodes, and a layer larger than the area of the non-covered part is placed on the outside of the non-covered part of the inorganic glass. A ferroelectric ceramic capacitor characterized in that a terminal plate having a large area is installed, this is adhered to a stain electrode using conductive glass, and a lead wire is connected to the terminal plate.
JP15958183A 1983-08-31 1983-08-31 Ferrodielectric ceramic condenser Granted JPS6052006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15958183A JPS6052006A (en) 1983-08-31 1983-08-31 Ferrodielectric ceramic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15958183A JPS6052006A (en) 1983-08-31 1983-08-31 Ferrodielectric ceramic condenser

Publications (2)

Publication Number Publication Date
JPS6052006A true JPS6052006A (en) 1985-03-23
JPS6260803B2 JPS6260803B2 (en) 1987-12-18

Family

ID=15696835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15958183A Granted JPS6052006A (en) 1983-08-31 1983-08-31 Ferrodielectric ceramic condenser

Country Status (1)

Country Link
JP (1) JPS6052006A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6356037B1 (en) 1998-04-08 2002-03-12 Murata Manufacturing Co., Ltd. Dielectric ceramic and a capacitor using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0367904U (en) * 1989-10-31 1991-07-03

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6356037B1 (en) 1998-04-08 2002-03-12 Murata Manufacturing Co., Ltd. Dielectric ceramic and a capacitor using the same

Also Published As

Publication number Publication date
JPS6260803B2 (en) 1987-12-18

Similar Documents

Publication Publication Date Title
US4931899A (en) Ceramic cased capacitor
GB2334377A (en) Monolithic capacitor
JP2016143882A (en) Multi-layered ceramic electronic component and mounting board therefor
JP2900596B2 (en) Composite ceramic capacitors
JPS62157752A (en) Electrostatic chuck
JPH08107039A (en) Ceramic electronic component
CN109817452A (en) Combined electronical assembly and plate with it
JPS6052006A (en) Ferrodielectric ceramic condenser
AU608607B2 (en) Nonlinear capacitor for generating high-voltage pulses
JPH10144561A (en) Terminal electrode paste and multilayered ceramic capacitor
JPH06140683A (en) Stacked piezoelectric actuator and manufacture thereof
JPS6052007A (en) Pulse generator
US3191108A (en) Electrical capacitor and method of making the same
JPH0476969A (en) Electrostrictive effect element
US3570113A (en) Method of making semiconductive ceramic capacitor
JPS63136612A (en) Capacitor for high voltage pulse generation
JP3596266B2 (en) Nonlinear dielectric element
JPH02266578A (en) Electrostrictive effect element
JPS638125Y2 (en)
JP2870136B2 (en) Metal halide lamp
US3585460A (en) Miniature ceramic capacitor and method of manufacture
JP2002083737A (en) Nonlinear dielectric element
JPH02177412A (en) Nonlinear capacitor for high voltage pulse generation
US3671818A (en) Semiconductive ceramic capacitor
JP2775916B2 (en) Multilayer ceramic capacitors