JPS6050241A - Air-fuel ratio moderating control method for electronically controlled engine - Google Patents

Air-fuel ratio moderating control method for electronically controlled engine

Info

Publication number
JPS6050241A
JPS6050241A JP58158863A JP15886383A JPS6050241A JP S6050241 A JPS6050241 A JP S6050241A JP 58158863 A JP58158863 A JP 58158863A JP 15886383 A JP15886383 A JP 15886383A JP S6050241 A JPS6050241 A JP S6050241A
Authority
JP
Japan
Prior art keywords
fuel
amount
engine
procedure
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58158863A
Other languages
Japanese (ja)
Inventor
Kenji Kato
健治 加藤
Soichi Matsushita
宗一 松下
Kiyoshi Nakanishi
清 中西
Tokuta Inoue
井上 悳太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP58158863A priority Critical patent/JPS6050241A/en
Publication of JPS6050241A publication Critical patent/JPS6050241A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/045Detection of accelerating or decelerating state
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • F02D41/107Introducing corrections for particular operating conditions for acceleration and deceleration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To improve drivability by providing a procedure for estimating a target value of fuel amount, a procedure for estimating the amount of an allowable change of the fuel amount in response to the degree of acceleration and deceleration, and a procedure for allowing the target value to approach the fuel amount. CONSTITUTION:An air-fuel ratio annealing control method for an electronic control engine includes a procedure for estimating a targer value of fuel amount and ignition timing in response to an engine operating state, a procedure for detecting the degree of acceleration and deceleration, and a procedure for estimating the amount of allowable changes in the fuel amount in response to said degree of the acceleration and deceleration. In addition, the control method includes a procedure for estimating the amount of correction of ignition timing in responce to the amount of allowable change of the amount of fuel and a procedure for allowing the fuel amount to gradually approach the target value by the amount of allowable change at a time as well as correcting the ignition timing by the aforesaid correction amount. Hereby, drivability can be improved.

Description

【発明の詳細な説明】 本発明は、電子制御エンジンの空燃比なまし制御方法に
係り、特に、電子制御燃料噴射装置を崗えた自動小用リ
ーン燃焼式エンジンに用いるのに好適な、少なくともエ
ンジン負荷及びエンジン回転速厄を菖むエンジン運転状
態に応じて燃料縁を決定するに際して、bll減速時は
燃料量のなまし処理を11″)−(加減)*ショックを
緩和づるようにした電子祠II+−[ンジンの空燃Jと
なJし制御方法の改良に関りる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio smoothing control method for an electronically controlled engine, and particularly to an air-fuel ratio smoothing control method for an electronically controlled engine, which is suitable for use in an automatic small lean combustion engine equipped with an electronically controlled fuel injection device. When determining the fuel edge according to the engine operating condition that affects the load and engine rotation speed, the fuel amount is smoothed during BLL deceleration by 11'') - (adjustment) *Electronic shrine designed to soften the shock. II + - [Related to improvements in engine air/fuel control methods.

上ンジンの?、!i費性能を向上Jるべく、理論空燃比
よりリーン側の空燃比(JメF、リーン空燃比と相1す
る> ’c’ a実用土差克えない運転状態、例えば軽
・中H向械において11%空燃比をΔ、/ F 20以
上のリーン空燃比とし、−7’1.高出力が要求される
運転状態、例えば高負荷域においては、空燃比をA、ト
コ3稈痘の出力空燃比とするようにした、リーン燃焼式
エンジンが知られている。
Upper Jinjin? ,! In order to improve performance, the air-fuel ratio is leaner than the stoichiometric air-fuel ratio (comparable to the lean air-fuel ratio). In the machine, set the air-fuel ratio at 11% to Δ, /F to a lean air-fuel ratio of 20 or more, -7'1. Lean combustion engines are known that have a high output air-fuel ratio.

このようなり一ンm焼式エンジンにおいては、=[ンシ
ン運転状態が、軒・中負荷域から高負荷域に移行Jる際
に、空燃比がリーン空燃比から出力空燃比迄大幅に変化
するため、出力軸トルクが急激に変化し、所謂加速シH
ツクを生じることがあつた。
In this way, in a single combustion type engine, when the engine operating state shifts from the eaves/medium load range to the high load range, the air-fuel ratio changes significantly from the lean air-fuel ratio to the output air-fuel ratio. As a result, the output shaft torque changes rapidly, resulting in the so-called acceleration series H.
Sometimes it caused irritation.

このような問題点をwl消するべく、エンジン運転状態
(R荷)の変化に応しで、燃I!噴射−を許容変化量ず
つ、徐々に目僚飴に近つける、所謂空燃比なよし制御を
行うことが考えられる。
In order to eliminate such problems, the fuel I! It is conceivable to perform so-called air-fuel ratio adjustment control in which the injection level is gradually brought closer to the eyelid by a permissible amount of change.

しかしながら、前記許容変化量を一定(−だの比率又は
一定M)とした場合には、加j*ショックを確実に緩和
するべく、許容変化−を比較的小さい値とJると、急加
速時に出力空燃比になる迄に時間がかかつてしまい、そ
の間にもたつぎ13< R生ずる。一方、このもたつき
を解消Jるべく、前記許容変化量を比較的大きな餡とJ
ると、緩加速時に、空燃比の変化量が大きくなり過ぎ、
加速ショックが残ってしまったり、ドライバビリティが
悪化Jるという問題点を有していた。これは、加速時だ
けでなく、M速時においても隔月薯である。
However, when the above-mentioned allowable change amount is set constant (-ratio or constant M), in order to reliably alleviate the applied shock, the allowable change - is set to a relatively small value. It takes time to reach the output air-fuel ratio, and during that time 13<R occurs. On the other hand, in order to eliminate this sluggishness, the allowable change amount is set to a relatively large amount.
Then, during slow acceleration, the amount of change in the air-fuel ratio becomes too large,
There were problems in that acceleration shock remained and drivability deteriorated. This happens every other month not only when accelerating but also when driving at M speed.

又、空燃比のなまし制御を行った際には、最適点火時期
もこれに応じて変化するので、点火時期を一定とした場
合は、最適点火時期からはすれ、エミッション、燃費、
]:ライバビリテイが悪化り3− るという問題点を有し−(いた。
Furthermore, when performing air-fuel ratio smoothing control, the optimal ignition timing will also change accordingly, so if the ignition timing is kept constant, it will deviate from the optimal ignition timing, causing emissions, fuel consumption,
]: It had the problem of deteriorating privacy.

本発明は、前記従来の問題点を解消Jるべくなされたし
のぐ、加減速状態に合わせて適切な空燃比なまし制御を
行うことがeき、従って、急加減速時のもたつきや緩加
減速時の加減速ショックを解消しく、ドライバビリティ
を向上することができる出子制υ11土ンジンの空燃比
なまし制御方法を捉fjt−dることを第1の目的とν
′る。
The present invention has been made to overcome the above-mentioned conventional problems, and can perform appropriate air-fuel ratio smoothing control in accordance with acceleration/deceleration conditions, thereby eliminating sluggishness during sudden acceleration/deceleration and slow acceleration/deceleration. The first purpose is to find an air-fuel ratio smoothing control method for a υ11 soil engine that can eliminate acceleration/deceleration shocks and improve drivability.
'ru.

本発明は、又、前記第1の目的に加えて、空燃比なよし
制御に児合った最適点火時期を得ることがeき、従つ−
C、ドライバビリティを更に向上づることができる電子
制御エンジンの空燃比なまし一1倒1h法を1品・1ハ
づることを第2の目的とする。
In addition to the first object, the present invention also makes it possible to obtain the optimum ignition timing that is compatible with air-fuel ratio control, and has the following features:
C. The second purpose is to develop one product/one time method for smoothing the air-fuel ratio of an electronically controlled engine, which can further improve drivability.

本発明は、少なくとも」、ンジン負荷及びエンジン回転
)*喧を含むエンジン運転状態に応じて燃料Il!lf
決定するに際して、加減速時は燃料量のなまし処理を行
って加減速ショックを緩和するようにした電子制御エン
ジンの空燃比なまし制御方法におい(、第1図にその敗
−を示づ如く、エンジン運転状態に応じて燃料−の目標
値をめる手順と、加減速の度合を検知づる手順と、該加
減速の度合に応じて燃料−の許容変化mlをめる手順と
、燃料iを、前記許容変化量ずつ、徐々に目1値に近づ
ける手順と、を含むことにより、前記第1の目的を達成
したものである。
According to the present invention, the fuel Il! lf
In determining the air-fuel ratio, an air-fuel ratio smoothing control method for an electronically controlled engine is used, which smoothes the fuel amount during acceleration/deceleration to alleviate acceleration/deceleration shock (as shown in Figure 1). , a procedure for setting a target value of fuel according to the engine operating state, a procedure for detecting the degree of acceleration/deceleration, a procedure for calculating an allowable change in fuel (ml) according to the degree of acceleration/deceleration, and a procedure for determining the fuel i according to the degree of acceleration/deceleration. The first object is achieved by including a procedure of gradually bringing the value closer to the first value by the permissible change amount.

又、本発明の実施態様は、前記加減速の度合を、スロッ
トル開度のψ位時間当りの変化−から検知するようにし
て、加減速の度合を迅速に検知Jることがeきるように
したものである。
Further, in an embodiment of the present invention, the degree of acceleration/deceleration is detected from the change in throttle opening degree per ψ time, so that the degree of acceleration/deceleration can be detected quickly. This is what I did.

又、本発明の他の実施態様は、前記加減速の度合を、吸
気管圧力又は吸入空気−の単位時間当りの変化績から検
知するようにして、スロットル開度を連続的に検出づる
スロットルセンサを用いることなく、本発明による空燃
比なまし制御が行えるようにしたものである。
Further, another embodiment of the present invention provides a throttle sensor that continuously detects the throttle opening degree by detecting the degree of acceleration/deceleration from the change in intake pipe pressure or intake air per unit time. The air-fuel ratio smoothing control according to the present invention can be performed without using the air-fuel ratio.

本発明は、又、少なくともエンジン負荷及びエンジン回
転速度を含むエンジン運転状態に応じて燃料−を決定す
るに際して、加減速時は燃料−のなまし処理を行って加
減速ショックを緩和づるようにした電子制御エンジンの
空燃比なましvI I11方詠においで、第20にその
曹旨を示す如く、エンジン運転状態に応じて燃料樋及び
点火時期の目標値をめる手順と、加減速の度合を検知す
る手順と、該加減速の度合に応じて燃料鮒の許容変化鰻
をめる手順と、該燃1F3Ii1!1の許容変化鮒に応
じて点火時期の補正−をめる手順と、燃料崩を、前記狛
谷変化鯖ずつ、徐々にH律値に近づけると共に、点火時
期を、前記補正線により補正する手順と、を含むことに
より、前記第2の目的を達成したしのである。
The present invention also provides a method for reducing acceleration/deceleration shock by smoothing the fuel during acceleration/deceleration when determining the fuel according to engine operating conditions including at least engine load and engine rotational speed. In the air-fuel ratio smoothing vI I11 of electronically controlled engines, as shown in the 20th summary, the procedure for setting the target values for the fuel gutter and ignition timing according to the engine operating condition, and the degree of acceleration/deceleration are described. A procedure for detecting the permissible change in the fuel crucian carp according to the degree of acceleration/deceleration, a procedure for correcting the ignition timing according to the permissible change in the fuel 1F3Ii1!1, and a procedure for correcting the fuel collapse. The second object has been achieved by including the steps of gradually bringing the value closer to the H-law value one by one, and correcting the ignition timing using the correction line.

本弁明にJjいて11、燃1量のなまし処理を行うに際
し【゛、その許容変化耐を、スロットル開度、吸気協・
圧力又は吸入空気−の単位時間当りの変化kA@から検
知される加減速の度合に応じて変化させるようにしたの
(゛、怠加減速時には迅速に、緩加減速時には徐々に空
燃比を変えることができ、もlごつさや加減速ショック
を防止して、ドライバビリティを向、Fすることができ
る。又、燃料鑓のii′l容変111 tj lこ1−
6じ1、点火時期の補正量をめ、該補正量により点火時
期の目標値を補正するようにしたので、空燃比のなまし
1llJ tM I、:見合った最適点火時期を得るこ
とができ、ドライバビリティを更に向上することができ
る。
11 In this defense, when performing the annealing process for the fuel amount, the permissible change tolerance is
The air-fuel ratio is changed according to the degree of acceleration/deceleration detected from the change in pressure or intake air per unit time (kA@). It is possible to prevent stiffness and acceleration/deceleration shock, and improve drivability.Also, it is possible to improve the drivability of the fuel tank.
6.1. Since the correction amount of the ignition timing is calculated and the target value of the ignition timing is corrected by the correction amount, it is possible to obtain the optimum ignition timing commensurate with the smoothing of the air-fuel ratio. Driveability can be further improved.

以下図面を参照して、本発明に係る電子制御エンジンの
空燃比なまし制御11h法が採用された、吸気管圧力感
知式の電子制御燃利噴I81装置を備えた自動車用リー
ン燃焼式電子制御11ンジンの実施例を詳細に説明りる
Referring to the drawings below, lean combustion electronic control for automobiles equipped with an intake pipe pressure sensing type electronic control fuel injection I81 device employing the air-fuel ratio smoothing control 11h method of the electronic control engine according to the present invention Examples of the No. 11 engine will be explained in detail.

本発明の第1実施例は、第3図に示す如く、スロットル
ボディ12に#i!設された、アクセルペダル(図示省
略)と連動して開閉され、吸入空気の流量を制御するス
ロットル弁14の開度を連続的に検出づるためのスロッ
トルセンサトロと、サージタンク18内の吸入空気圧力
を検出するための吸気管圧力センサ20と、吸気マニホ
ルド22に配設された、エンジン10の各気筒の吸気ボ
ーi・に向【プて加圧燃料を間欠的にIll 射するた
めのインジェクタ24と、エンジン燃焼1flOA内に
吸入された混合気に着火するための点火プラグ26と排
気マニホルド28の下流側に配設された、排気7− ガス中の醗木淵麿にほぼ比例しに出カ他号を発生づるリ
ーンセンサ3oと、イグナイタ付点火コイル32で発生
された高肚の点火二次信号を各気筒の点火プラグ26に
配電Jるためのデストリピユータ34に内載さねlζ、
エンジン回転速瓜を検出4るための回転速度センサ36
と、前記吸気管圧力センサ20出力の吸気管圧力から検
知されるエンジンi萄ど1ijJ i([!回転速度セ
ンサ36出力がらめられるエンジン回転造石に応じて基
本11i射鮒をめ、これを、前記スロットルセンサ16
、り一ンセンサ30等の出力に応じて補正することによ
って実行噴射−をめ、該実行噴射−に対応する開弁時間
だ1j前記インジ1ンタ24が間欠的に開かれるよう、
前記インジェクタ24に開弁FR闇倍信号出力覆る電子
制御ユニット(以下、ECUと称する)38と、から構
成されている。
In the first embodiment of the present invention, as shown in FIG. 3, #i! A throttle sensor is provided to continuously detect the opening degree of the throttle valve 14, which is opened and closed in conjunction with an accelerator pedal (not shown) and controls the flow rate of intake air, and the intake air in the surge tank 18. An intake pipe pressure sensor 20 for detecting pressure, and an injector disposed in an intake manifold 22 for intermittently injecting pressurized fuel toward the intake bow of each cylinder of the engine 10. 24, an ignition plug 26 for igniting the air-fuel mixture sucked into the engine combustion 1 flOA, and an exhaust gas 7 disposed on the downstream side of the exhaust manifold 28. The lean sensor 3o that generates the engine noise and the high-level ignition secondary signal generated by the ignition coil 32 with the igniter are installed in the distributor 34 that distributes power to the spark plug 26 of each cylinder.
Rotation speed sensor 36 for detecting engine rotation speed 4
Then, the engine i pressure detected from the intake pipe pressure output from the intake pipe pressure sensor 20 ([!Basic 11i shooting crucian carp is determined according to the engine rotation stone included in the output of the rotation speed sensor 36, and this is , the throttle sensor 16
, the actual injection is determined by correcting according to the output of the engine sensor 30, etc., and the valve opening time corresponding to the actual injection is determined so that the indicator 24 is opened intermittently.
It is comprised of an electronic control unit (hereinafter referred to as ECU) 38 that outputs a valve opening FR dark double signal to the injector 24.

前記ECU38は、第4図に詳細に示づ如く、各種演算
処理を行うための、例えばフィクロプロセッサからなる
中央処理ユニット(以下、MPUと称する)38Aと、
各種り0ツク信号を発生ず8− るためのクロック発生回路38Bと、制御ブ1」グラム
や各種データ等を記1j!するためのリードオンリーメ
モリ(Jズ下、RO八りと杓Iる〉38Gと、前記MP
tJ38Aにおける演算データ等を一時的に記憶Jるた
めのランダムアクセスメモリ(1ズ下、RAMと称でる
)38Dと、バッファ38Eを介して入力される前記吸
気管圧力センサ2oの出力をデジタル信号に変換するた
めのアナログ−デジタル変換器(以下、A/D変換器と
称づる)38Fと、バッファ38Gを介して入力される
前記スロットルセンサ16出力をデジタル16号に変M
kツるためのA/D変換器38)1と、電流−電圧変換
器(以下、I 、/ V変換器と称する)38J及び増
幅器38Kを介して入力される前記リーンセンサ30出
力をデジタル信号に変換するためのA/D変換器38L
と、前記A/D変換器38F、38H,38L出力、及
び、バッファ38Mを介して入力される前記回転速度セ
ンサ36出力を取込むための入力ボート38Nと、前記
M 13U 38 Aの演算結果に応じて、開弁時間信
号を、駆動回路381」を介して前記7ンジlクタ24
に出カブるための出ツノボーh 38 Qと、同じ< 
M P U 38 Aの油綽結宋に応じて、点火Jll
伯号を、駆動回路38Rを介して前記イグナイタ付点火
」イル32に出力りるための出力ボート388と、前記
各構成(幾器間を接Mりる」モンバス38Tと、から構
成され(いる。
As shown in detail in FIG. 4, the ECU 38 includes a central processing unit (hereinafter referred to as MPU) 38A, which is composed of, for example, a fibroprocessor, for performing various calculation processes;
The clock generation circuit 38B for generating various zero clock signals, control blocks, various data, etc. are described here. Read-only memory for
The output of the intake pipe pressure sensor 2o, which is input via a random access memory (RAM) 38D for temporarily storing calculation data etc. in tJ38A and a buffer 38E, is converted into a digital signal. An analog-to-digital converter (hereinafter referred to as an A/D converter) 38F for conversion and converting the output of the throttle sensor 16 inputted through a buffer 38G into a digital number 16 M
The output of the lean sensor 30, which is inputted through an A/D converter 38) 1 for converting voltage, a current-voltage converter (hereinafter referred to as an I/V converter) 38J, and an amplifier 38K, is converted into a digital signal. A/D converter 38L for converting to
and the input port 38N for taking in the outputs of the A/D converters 38F, 38H, 38L and the output of the rotation speed sensor 36 inputted via the buffer 38M, and the calculation results of the M 13U 38A. Accordingly, the valve opening time signal is sent to the 7-inch regulator 24 via the drive circuit 381.
The same as 38 Q.
According to the MPU 38 A oil connection, the ignition Jll
It is composed of an output boat 388 for outputting the engine to the igniter 32 with the igniter via the drive circuit 38R, and a monbus 38T that connects the various components. .

1ス下、第1芙廁例の作用を説明する。The effect of the first example will be explained below.

本実施例にJ31ブる燃利噴射鮒の計算は、第5図に示
りJ:うな流れ図に従って実行される。即ち、一定時間
経過毎にステップ110に入り、的記回転速麿センサ3
6の出力に応じてエンジン回転速ff1Nを読込む。次
いでステップ112に進み、前記吸気管辻カセンサ20
の出力に応じて吸気管圧〕JPを読込む。次いでステッ
プ114に進み、エンジン回転311i 11 N及び
吸気管圧力Pに基づいて、基本噴射−に対応Jる開弁時
間、即ち、基本噴射パルス幅τb a s eを計算す
る。次いでステップ116トニ進み、1iII ik!
ス1コツドルセンサ16の出力に応じ“(ス1」ツ1〜
ル聞t= r A 4!:読込む。次いでステップ71
8に進み、例えば、スロットル弁14の開度が設定値V
L以上であることから、高負荷域であるか否かを判定す
る。判定v5梁が正である場合、即ち、リーン制御では
なく出力制御を行う必要があると判断される時には、ス
テップ120に進み、例えば、ベース空燃比A / F
baseと出力空燃比(例えばA/ト=12.5)の比
から、次式に示−づ如く、出力空燃比にするための出力
噴射パルス幅τWOtをめて、実行噴射パルス幅τとり
る。
In this embodiment, the calculation of the J31 fuel injection process is performed according to the flowchart shown in FIG. That is, step 110 is entered every predetermined period of time, and the rotation speed sensor 3 detects the target rotation speed.
The engine rotation speed ff1N is read in accordance with the output of step 6. Next, the process proceeds to step 112, where the intake pipe intersection sensor 20
Read the intake pipe pressure] JP according to the output. Next, the process proceeds to step 114, and based on the engine rotation 311i 11 N and the intake pipe pressure P, the valve opening time corresponding to the basic injection, that is, the basic injection pulse width τb a se is calculated. Then proceed to step 116, 1iII ik!
Depending on the output of the dollar sensor 16,
Le listening = r A 4! : Read. Then step 71
8, for example, the opening degree of the throttle valve 14 reaches the set value V.
Since it is greater than or equal to L, it is determined whether or not the load is in a high load range. When the determination v5 beam is positive, that is, when it is determined that it is necessary to perform output control instead of lean control, the process proceeds to step 120, and for example, the base air-fuel ratio A/F
From the ratio of base and output air-fuel ratio (for example, A/T = 12.5), determine the output injection pulse width τWOt to achieve the output air-fuel ratio, as shown in the following formula, and take the effective injection pulse width τ. .

τwot ←r basex ((A/’ F bas
e) /12.5)・・・・・・・・・(1) 次いでステラ/122に進み、+i1′J回も高負荷域
eあったか否かを判定する。判定結果が否である場合、
即、今回始めて高負荷域となったと判断される時には、
ステップ124に進み、なまし制御を行っていることを
示J゛フラグFOをセットする。
τwot ←r basex ((A/' F base
e) /12.5) (1) Next, proceed to Stellar/122, and determine whether there has been a high load area e +i1'J times. If the judgment result is negative,
Immediately, when it is determined that the load has reached the high load range for the first time,
Proceeding to step 124, a J flag FO is set to indicate that smoothing control is being performed.

一方、前出ステップ122の判定結果が正である場合、
即ち、高り荷載が続いていると判断される時には、ステ
ップ126に進み、なまじ制ill実行フラグFnがセ
ットされている否かを判定−4−る。
On the other hand, if the determination result in step 122 is positive,
That is, when it is determined that the high loading continues, the process proceeds to step 126, and it is determined whether or not the slow control ill execution flag Fn is set.

11− スナツフ゛124柊了後、又は、前出ステップ126の
判定結果が止(゛ある場合には、ステップ128に進み
、次式に承り如く、前回のスロットル弁1’tt r’
 A +−+から今回のスロットル開度TA+を引くこ
とに五つ(、ス直」ツトル開度の141位時間当りの変
化−ΔI−A 4r樟出Jる。
11- After the snuff 124 is completed, or if the determination result of step 126 is stopped, the process proceeds to step 128, and the previous throttle valve 1'ttr' is determined according to the following formula.
Subtract the current throttle opening TA+ from A +-+.

Δ−[A←1 A ;−+ I A I ・・・・・・
・・・(2)次いで゛ステップ130に進み、前出RO
M 38Cに予め&!憶されている、第6図に破線A或
いは芙11i1Bで示Jような、スロットル開面の単位
時間当りの変化−Δ1Aと燃料噴射パルス幅の許容変化
−Δrの関係を表わした計算式又はテーブルを用いて、
スl」ットル聞度の単位時間当りの変化量ΔIAに対応
Jる燃料噴射パルス幅の許容変化鮒Δτをめる。次いで
ステップ132に進み、次工(に示J如く、前回算出さ
れたFl変化鯉Δτト1に今回の許容変化−Δτ1を加
える。
Δ-[A←1 A ;-+ I A I ・・・・・・
...(2) Next, proceed to step 130, and perform the above-mentioned RO.
M 38C in advance &! Calculation formula or table representing the relationship between the change in throttle opening surface per unit time - Δ1A and the allowable change in fuel injection pulse width - Δr, as shown by the broken line A or 11i1B in FIG. 6, which is stored in the memory. Using,
Let us calculate the allowable change Δτ in the fuel injection pulse width corresponding to the amount of change ΔIA in the throttle response per unit time. Next, the process proceeds to step 132, where the current allowable change -Δτ1 is added to the previously calculated Fl change Δτ1 as shown in the next step.

Δτ←Δτ1−1+Δτ1 ・・・・・・・・・(3)
次いでステップ134に進み、次式に示(如く、前出ス
テップ114でめられた基本噴射パルス12− 幅τbaseに前出ステップ132で計算された許容変
化量Δτを加えることによって、なまし後の噴射パルス
幅τ0を計算する。
Δτ←Δτ1-1+Δτ1 ・・・・・・・・・(3)
Next, the process proceeds to step 134, and by adding the permissible variation Δτ calculated in step 132 to the basic injection pulse 12-width τbase determined in step 114 as shown in the following equation, Calculate the injection pulse width τ0.

τ0←τl+ a s e十Δτ ・・・・・・・・・
(4)次いでステップ136に進み、前出ステップ13
4で算出されたなまし後の噴射パルス幅τ0が、その時
の実行噴射パルス幅τ、即ち、前出ステップ120で算
出された出力噴射パルス幅でwolよりも大であるか否
かを判定づる。判定結果が否である場合、即ち、なまし
制御を行う必要があると判断される場合には、ステップ
138に進み、実行噴射パルス幅τを、前出ステップ1
34で算出されたなまし後の噴射パルス幅τ0で七換え
て、公知の燃料噴射ルーチンへ進む。
τ0←τl+ a s e ten Δτ ・・・・・・・・・
(4) Next, proceed to step 136, and proceed to step 13 mentioned above.
It is determined whether or not the rounded injection pulse width τ0 calculated in step 4 is larger than the actual injection pulse width τ at that time, that is, the output injection pulse width calculated in step 120 above. . If the determination result is negative, that is, if it is determined that it is necessary to perform the smoothing control, the process proceeds to step 138, and the effective injection pulse width τ is determined from the step 1 described above.
The injection pulse width is changed to the rounded injection pulse width τ0 calculated in step 34, and the process proceeds to a known fuel injection routine.

一方、前出ステップ136の判定結果が正である場合、
即ち、出力空燃比に対応する噴射パルス幅τがなまし後
の噴射パルス幅よりも小さく、従って、なまし制御を行
う必要がないと判断される時には、ステップ140に進
み、なまし制御実行フラグFnをリセットし、前出ステ
ツ1120でめられた出力哨kJパルス幅τwotがそ
のまま実行IJli fJ・1パルス幅τどなるように
して、燃料噴射ルーチンへ進む。
On the other hand, if the determination result in step 136 is positive,
That is, when it is determined that the injection pulse width τ corresponding to the output air-fuel ratio is smaller than the injection pulse width after smoothing, and therefore there is no need to perform smoothing control, the process proceeds to step 140, and the smoothing control execution flag is set. Fn is reset and the output control kJ pulse width τwot determined in step 1120 is changed to the execution IJli fJ·1 pulse width τ, and the process proceeds to the fuel injection routine.

一方、前出スTツ/118の判定結果が否である場合、
即も、軽・中負荷域であると判断される11ミに(Jl
、ステップ142に進み、前出ステップ114でめられ
た基本噴射パルス幅τbaseを実行哨側パルス幅τ(
、:入れる。ステップ142終了後、)((J前出ステ
ラz”+ 26の判定結果が否Cあり、高1荷1d ’
rあるが、なまし制御実行プラグFnが既にリセットさ
れていると判断される場合には、このルーチンを終了し
て、燃料噴剛ルーチンへ進む。
On the other hand, if the judgment result of the above-mentioned ST/118 is negative,
Immediately, the 11mm was determined to be in the light/medium load range (Jl
, proceeds to step 142, executes the basic injection pulse width τbase determined in step 114, and calculates the sentinel pulse width τ(
,:put in. After step 142 is completed, ) ((J previous Stella z" + 26 judgment result is negative C, high 1 load 1d'
However, if it is determined that the smoothing control execution plug Fn has already been reset, this routine is ended and the process proceeds to the fuel injection stiffening routine.

本¥施例にお(プる、加速時の、スUットル聞度IA、
燃料噴射パルス幅及びトルクの変化状態の一例を第7図
に承り。図から明らかな如く、スロットル開度TΔの変
化−に応じて、燃料噴射パルス幅τが、リーン燃焼時の
旦本噴!i1JMτbaseに許容変化−Δτを加えて
いく形で、徐々に増加して113す、従つC、トルクも
徐々に増大Jるので、加速ショックを感じることはない
In this example, (pull, acceleration, throttle level IA,
Figure 7 shows an example of changes in fuel injection pulse width and torque. As is clear from the figure, the fuel injection pulse width τ changes depending on the change in the throttle opening TΔ. By adding the permissible change -Δτ to i1JMτbase, it gradually increases (113), and the torque C and torque also gradually increase, so no acceleration shock is felt.

本実施例においでは、ス0ツ]−ル開If T Aのψ
位時間当りの変化量△T Aに応じ(燃料11ji口J
−の許容変化−Δτを喰化させるようにしでいたので、
適切な許容変化−を迅速に得ることがでる。
In this embodiment, if T A's ψ
Depending on the amount of change △T A (fuel 11ji outlet J
Since the allowable change in -Δτ was made to be negative,
Appropriate tolerance changes can be quickly obtained.

次に、本発明の第2実施例を詳細に説明Jる。Next, a second embodiment of the present invention will be explained in detail.

本実施例は、前記第1実施例と同様の、ス[Jットルセ
ンサ16、吸気管圧力センサ20、インジェクタ24、
点火プラグ26、リーンセンサ30、イグナイタ付点火
」イル32、回転速度センサ36及びECU38を含む
吸気管仕方感知式の電子制御燃料噴射装置を備えlζ自
動車用リーン燃焼式コーンジンにおいて、前記第1実施
例と同様の燃料噴射量のなまし増量に合わせて、点火時
期を徐々に遅角させて、富に要求点火時期が得られるよ
うにしICものである。
This embodiment is similar to the first embodiment, but includes a throttle sensor 16, an intake pipe pressure sensor 20, an injector 24,
The first embodiment of the lean-burning cone gin for automobiles is equipped with an electronically controlled fuel injection device that detects the direction of the intake pipe and includes a spark plug 26, a lean sensor 30, an igniter with an igniter 32, a rotational speed sensor 36, and an ECU 38. It is an IC type that gradually retards the ignition timing in accordance with the smooth increase in the fuel injection amount to obtain the required ignition timing.

即ち、この第2実施例においては、前記第1実施例と同
様の燃料噴射鯖計算ルーチンにおいC1第8図に示J如
く、ステップ114の後でエンジン回転速度N及び吸気
管圧力Pから基本点火時期15− fi base/!r)it K−’Jるステップ゛2
10と、請求めらtr 7ζζ大行噴射パルス幅τがら
点火時111Jの遅角縁βを層沖νるステップ212と
、前出ステップ21 (1−(’ Wi鉾された基本点
大時期θl+ a s eから、(5> 7(に小ダ如
く、遅角縁βを引くことによって、寅?1点火時期θを
計Ilするステップ214と、ステップ134の後でス
テップ132でめられた燃料噴射−の許容変化−Δτが
ら、例えば(6)式に示Jような関係を用いて、なまし
時の点火時期補正jΔθを計算づるステップ216と、
該ステップ216でめられた補正量Δθを、(7) J
:に示4如く、基本点火時期θbaseから引くことに
J: −) ’(、なまし後の点火時期θ0をgt *
−yるステラ/218と、ステップ138の後C,該ス
テツ/218でめられたなまし債の点火時期θを実行点
火時期θとするステップ220と、ステップ142の後
で、基本自火時期θbaseを実行点火時Illθとづ
るステップ222とを付加したものである。
That is, in this second embodiment, in the same fuel injection calculation routine as in the first embodiment, basic ignition is performed from the engine speed N and the intake pipe pressure P after step 114, as shown in FIG. Period 15-fi base/! r) it K-'Jru step゛2
10, Step 212, which sets the retard edge β of 111J at the time of ignition from the large injection pulse width τ, and Step 21, described above, (1-(' Wi) Step 214 calculates the ignition timing θ by subtracting the retard edge β from (5>7), and the fuel determined in step 132 after step 134. Step 216 of calculating the ignition timing correction jΔθ at the time of annealing using, for example, the relationship J shown in equation (6) from the allowable change in injection −Δτ;
The correction amount Δθ determined in step 216 is expressed as (7) J
: As shown in 4, subtracting from the basic ignition timing θbase J: -) '(, ignition timing θ0 after annealing is gt *
-y Stella/218, step 220 where the ignition timing θ of the annealed bond determined in step 218 is set as the actual ignition timing θ, and after step 142, the basic ignition timing A step 222 in which θbase is defined as Illθ at the time of execution ignition is added.

θ←θbase−β ・・・・・・・・・(5)16− Δθ=r (Δ2) ・・・・・・・・・ (6)θ0
←θbase−Δθ ・・・・・・・・・ (7)他の
手順についでは、前記第1実施例と同様であるので、同
一の番号を付して説明は省略する。
θ←θbase−β ・・・・・・・・・(5) 16− Δθ=r (Δ2) ・・・・・・・・・(6) θ0
←θbase−Δθ (7) Since the other procedures are the same as those in the first embodiment, the same numbers are given and the explanation will be omitted.

本実施例においては、燃料噴射量のなまし1M−に合わ
せて、点火時期が徐々に遅角されるので、空が比なまし
制御にみあつ1;適切な要求点火時期を常に得ることが
できる。
In this embodiment, the ignition timing is gradually retarded in accordance with the annealing of the fuel injection amount to 1M-, so that the air is suitable for the annealing control; it is possible to always obtain an appropriate required ignition timing. can.

次に、本発明の第3実施例を詳細に説明づる。Next, a third embodiment of the present invention will be described in detail.

本実施例は、前記第1実施例とほぼ同様の、吸気管圧力
センサ20、インジェクタ24、点火プラグ26、リー
ンセンサ30、イグナイタ付点火」イル32、回転速度
センサ32、ECU38、及び、スロットル弁14の開
麿を断続的に検出するためのスロットルスイッチを含む
吸気管斥力感知式の電子制御燃料噴射装置を備えた自動
車用リーン燃焼式エンジンにおいて、前記第1実施例と
同様の燃料噴射量のなまし制御に際して、加減速の度合
を、吸気管圧ノUPの単位時間当りの変化−から検知す
るようにしたものである。
This embodiment includes an intake pipe pressure sensor 20, an injector 24, a spark plug 26, a lean sensor 30, an ignition valve with igniter 32, a rotational speed sensor 32, an ECU 38, and a throttle valve, which are almost the same as those of the first embodiment. In an automobile lean combustion engine equipped with an electronically controlled fuel injection device that senses intake pipe repulsion and includes a throttle switch for intermittently detecting the opening of 14, the fuel injection amount is the same as in the first embodiment. During smoothing control, the degree of acceleration/deceleration is detected from the change in intake pipe pressure UP per unit time.

即も、この第3実施例の燃料噴射量の計算に際しCは、
第9図に小−4如く、前記第1実施例と同様の燃料V^
射−計iルーチンにおいて、ステップ116の代わりL
二ft1J Iノられた、(8)式に示ず如く、前回の
吸気U+:f、力P1−1から今回の吸気管圧力]〕1
を引くことによって、吸気管圧力のψ位時間当りの変化
−八IJをめるステップ310と、ステップ128及び
130の代わりに設けられた、予めl<0八43 B 
に lこ占14憶されている、第70図にポリJ、うな
、吸気管圧力のψ位時間当りの変化量△IJど燃1噛ム
Jパルス幅の許容変化量Δτの関係を示Jテーブルを用
いて、吸気管圧力の単位時間当りの変化量△Pに応じた
許容変化量Δτを計算Jるステップ312とを設けたも
のである。
Immediately, when calculating the fuel injection amount in this third embodiment, C is
As shown in Fig. 9, the same fuel V^ as in the first embodiment is shown.
In the shooting i routine, instead of step 116, L
2 ft1J I, as shown in equation (8), from the previous intake U+:f, force P1-1 to the current intake pipe pressure]]1
Step 310, which calculates the change in intake pipe pressure by ψ time -8 IJ, and the pre-defined l<0843 B provided in place of steps 128 and 130.
Fig. 70 shows the relationship between polyJ, eel, and the amount of change per ψ time in intake pipe pressure △IJ and the permissible amount of change Δτ in one-bite J pulse width. A step 312 is provided in which, using a table, an allowable change amount Δτ corresponding to the change amount ΔP of the intake pipe pressure per unit time is calculated.

ΔP←P i−+ P i ・・・・・・・・・(8)
他の手順についCは前記第1実施例と同様であるので、
ILII]−のfflを付して説明は省略りる。
ΔP←P i−+ P i ・・・・・・・・・(8)
Other steps in C are the same as in the first embodiment, so
ILII]-ffl will be added and the explanation will be omitted.

本実施例における、スロットル開度TAと吸気管圧力P
の関係の例を#A11図に示j。図において、vl−は
、高i萄域を表わすス[]ットル開度であり、このVL
J、り低開度(軽・中負荷域)のリーン制tll11f
tでは、吸気管圧力Pとエンジン回転速度Nに応じて@
9A鯖が制御され、一方、高開度(高負荷域)の出力制
御lll1I!では、噴射謙が徐々に増量されて、出ノ
j空燃比とされる。今、急加速時に、スロットル開度が
TAaからTAc迄変化し、この時吸気管仕方の単位時
間当りの読込み値が△Paだけ変化したとすると、前出
第10図より燃料噴射パルス幅の許容変化−△τaがま
り、このΔτaは大きな値なので、迅速にリッチ化され
る。一方、緩加速時に、スロットル開度がT A bか
らl’ A c迄変化し、l1liI lfiにこの時
の吸気管圧力の単位時間当りの読込み値がΔPbだ1プ
変化したとり−ると、前出第10図より燃料噴射パルス
幅の許容変化量Δτ1)がまり、このΔτIJは小さな
値なので、ゆっくりとリッチ化される。
In this embodiment, throttle opening TA and intake pipe pressure P
An example of the relationship is shown in Figure #A11. In the figure, vl- is the throttle opening indicating the high i region, and this VL
J, Lean control tll11f with low opening (light/medium load range)
At t, depending on the intake pipe pressure P and engine speed N, @
9A mackerel is controlled, and on the other hand, high opening degree (high load area) output controllll1I! Then, the injection quantity is gradually increased to reach the output air-fuel ratio. Now, when the throttle opening changes from TAa to TAc during sudden acceleration, and at this time the read value of the intake pipe arrangement per unit time changes by △Pa, the permissible fuel injection pulse width is determined from Figure 10 above. The change -Δτa is small, and since this Δτa is a large value, it is quickly enriched. On the other hand, when the throttle opening changes from T A b to l' A c during gentle acceleration, and the read value of the intake pipe pressure per unit time changes by ΔPb at this time, As shown in FIG. 10, the permissible amount of change Δτ1) in the fuel injection pulse width is small, and since this ΔτIJ is a small value, it is enriched slowly.

本実施例におCプる、急加速時のスロットル開度TA、
吸気管圧力P及び燃料噴射パルス幅τの変化状態の関係
の例を第12図に承り、、時刻下0で加速を始め、第1
1図に示−jスロワ1〜ル開度TA19− の変It; を加速したとするど、吸気管仕方PのA 
、/1)鼓I条1山は図のように変化【ノ、A 、、、
’ D変換よりも長い時間間隔(・吸気管圧力Pの変化
−ΔPo4 、Δ1−J48、△P81□、・・・を読
込んで、その都度RAMのΔ1)に出込ん(゛いく。更
に、各時点の読込み舶からu不噴射パルス幅TI)as
eを肘締して、RAへ4にス]ヘアー46.時劾1−1
0で高負荷域となると、それ1ス酵は燃料IJA !)
:I illのなまし制御が行われる。
In this embodiment, the throttle opening TA during sudden acceleration is
Fig. 12 shows an example of the relationship between the change state of the intake pipe pressure P and the fuel injection pulse width τ.
As shown in Fig. 1, when the change in the opening degree TA19 of the throat 1 to TA19 is accelerated, the intake pipe arrangement P
, /1) Drum I line 1 mountain changes as shown in the figure [ノ, A ,,,
' Read the time interval longer than the D conversion (・Change in intake pipe pressure P - ΔPo4, Δ1 - J48, ΔP81□, ..., and go in and out of Δ1 in RAM each time. From the reading vessel at the time u non-injection pulse width TI) as
Elbow e to RA 4] hair 46. Tokigai 1-1
When it comes to high load range at 0, the first fermentation is fuel IJA! )
:Iill smoothing control is performed.

即ち、J:f時刻’l u ’t’、RAMに記憶され
ている変化量ΔP4Bを取込んで、前出第10図の関係
よりh!l−容変化鯖△τ1をめ、噴射鮒をτ+△τ、
とJる。次に時刻下12で1」、吸気管圧力Pの変化−
を胱込んでΔP812に動き換える。次に時刻T 13
で、上記のΔPと12からΔτ2をめて、同様にτを補
正Jる。以後も同様に制御づると、燃料噴射パルス幅r
は実線のように推移Jるので、破線でポリ従来のli′
l−@ 女化鯖一定の場合に比較して、速くリッチ化し
、加速もたつきが解消される。
That is, by taking in the J:f time 'l u 't' and the amount of change ΔP4B stored in the RAM, h! l - Change the volume of the mackerel △τ1, and add the injection carp to τ+△τ,
and J. Next, at time 12, 1'', change in intake pipe pressure P -
I swallowed it and moved to ΔP812. Next time T 13
Then, Δτ2 is calculated from the above ΔP and 12, and τ is similarly corrected. From now on, by controlling in the same way, the fuel injection pulse width r
changes as shown by the solid line, so the broken line shows the polyconventional li'
l-@ Compared to the case where the feminized mackerel is constant, the mackerel becomes rich faster and the sluggishness in acceleration is eliminated.

−h、緩加速の場合も、第13図に示す如く、同様の1
III 111を(1うど、燃料噴射パルス幅τは実線
20− のようにJ「移覆るので、破KAr示1従来法に仕較し
て、リッチ化がゆるやかになり、従って、加速ショック
が緩和される。
-h, also in the case of slow acceleration, the same 1
III 111 (1), the fuel injection pulse width τ changes as shown by the solid line 20-. be done.

本実施例においては、吸気管圧力の単位時間当りの変化
量ΔPから加減速の度合を検知づるようにしたのr1ス
Uットル聞険T Aを連続的に検出づるスUットルセン
サが不要となり、構成が単純である。
In this embodiment, there is no need for a throttle sensor that continuously detects the degree of acceleration/deceleration from the amount of change ΔP in intake pipe pressure per unit time. The configuration is simple.

この第3実施例においては、燃料噴射量のなまし制御の
みを行っていたが、前記第2実施例と同様に、点火R1
1lの補正を付加Jることも可能である。
In this third embodiment, only smoothing control of the fuel injection amount was performed, but similarly to the second embodiment, the ignition R1
It is also possible to add 1l of correction.

尚、前記実施例においては、何れも、加速時のみについ
て説明していたが、減速時についても、同様の制fi1
1を行うことにより、減速ショックの緩和等のドライバ
ビリティ改善を図ることができる。
Incidentally, in each of the above embodiments, only the case of acceleration was explained, but the same control fi1 is applied also to the case of deceleration.
By performing step 1, it is possible to improve drivability such as alleviating deceleration shock.

前記実施例においては、何れも、本発明が、吸気管圧力
感知式の電子制御燃料噴tJ4装−を備えた自動申用リ
ーン燃焼式エンジンに適用されていたが、本発明の適用
範囲はこれに限定されず、吸入空気−感知式の電丁制御
燃料噛釦装置を賜えた自動車用リーン燃焼式■ンジンや
、リーン燃焼を行わない、通出の電子制御lエンジンに
も同様に適用できること(J明らかである。
In each of the above embodiments, the present invention was applied to an automatically applied lean combustion engine equipped with an electronically controlled fuel injection tJ4 system that senses intake pipe pressure. The present invention is not limited to, but can be similarly applied to automobile lean combustion engines equipped with an intake air-sensing electrically controlled fuel button device, as well as electronically controlled engines that do not perform lean combustion. J is obvious.

Jス上説明した通り1本発明によれば、加減速状態に合
わせ(適切な空燃比なまし制御を行うことができ、従−
)′C,恕加減速時のもだつぎゃ緩加減速時の加減速シ
ョックの発生を確実に防止して、ドライバビリティを向
上4ることができる。又、点火111期し同時に補正し
た場合には、更にドライバビリティを向上Jることがぐ
きるという優れた効果を有でる。
As explained above, according to the present invention, it is possible to perform appropriate air-fuel ratio smoothing control according to acceleration/deceleration conditions,
)'C, drivability can be improved by reliably preventing the occurrence of acceleration/deceleration shocks during slow acceleration/deceleration. Further, when the ignition is adjusted and the correction is made at the same time, there is an excellent effect that the drivability can be further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

鈎11図及び第2図は、本発明に係る電子制御エンジン
の空燃比なまし制御り法の要旨を示す流れ図、第3図は
、本発明が採用された、吸気管圧力感知式の゛市子制御
燃1F3I噴射iA置を備えた自動車用リーン燃焼式−
[ンジンの第1実施例の構成を示す、一部)1」ツク縮
図を含む断…1図、第4図は、前記第1実施例で用いら
れている電子制御ユニットの構成を示づブUツク線図、
第5図は、同じく、燃料噴IJ M計算ルーチンを示J
流れ図、第6図は、前記ルーチンで用いられている、ス
ロットル囲1哀の単位時間当りの変化量と燃料噴射パル
ス幅の許容変化−の関係の例を示1線図、第7図は、前
記第1実施例における、加速時のスロットル開度、燃料
噴射パルス幅及びトルクの変化状態の例を示ず線図、第
8図は、本発明に係る電子制御エンジンの空燃比なまし
制御方法の第2実施例で用いられている燃料噴!)J 
量計算ルーチンを示す流れ図、第9図は、同じく、第3
実施例で用いられている燃料噴射鱒計鋒ルーチンを示づ
流れ図、第10図は、前記ルーチンで用いられ−Cいる
、吸気管圧力の単位時間当りの変化量ど燃料噴射パルス
幅の許容変化量の関係の例を示1線図、第11図は、前
記第3実施例における、スロットル開度と吸気管圧力の
変化状態の関係の例を示JIfI1図、第12図は、同
じく、第3実施例及び従来例における、急加速時のスロ
ットル開度、吸気管圧力及び燃料噴射パルス幅の関係の
例を比較して示V線図、第11′3図1j、、同じく、
前記第3実施例及び従来例にお1プる、1m加速詩のス
[1ットルl#11度、吸気管圧力及び燃祠噴舅パルス
幅の変化状態の例を比較しτ示゛51線図C′ある。 10・・・コンジン、 16・・・スロットルセンサ、
20・・・吸気舌圧力ゼンサ、 24・・・インジLクタ、 26・・・点火プラグ、3
2・・・イグナイタ付点火J−(ル、36・・・回転3
1度センザ、 38・・・電子制御」−ツ1−(ECU)。 代理人 高 矢 論 (1よか1名) 第1図 第2図 第5図 第6ズ メ液g+噴雨量計算 ′″°′しづ P2誂込t−112Aτ NfP よソ 114 71)056 !計算 TAE誂入む116 −ΔTA 18 1鉛・ 、 τ−7,。 120 +42 ( 14問−6O−50241(9) 第7図 ?−7bO5e 嫡回も Y126 N Fn=l? ” Fn←1 .128 aTA TAi−+ TA1 第11図 リーン8IIO1犠 止力占り9〃人 第12図 第13図
11 and 2 are flowcharts showing the gist of the air-fuel ratio smoothing control method for an electronically controlled engine according to the present invention, and FIG. Lean combustion type for automobiles equipped with secondary control fuel 1F3I injection iA position -
[A section showing the configuration of the first embodiment of the engine] 1) A cross section including a reduced size diagram... Figures 1 and 4 are block diagrams showing the configuration of the electronic control unit used in the first embodiment. Utsuk diagram,
FIG. 5 also shows the fuel injection IJM calculation routine.
The flowchart, FIG. 6, shows an example of the relationship between the amount of change per unit time in the throttle radius and the permissible change in the fuel injection pulse width, which is used in the routine. FIG. 8 is a diagram showing an example of changes in the throttle opening degree, fuel injection pulse width, and torque during acceleration in the first embodiment, and FIG. 8 shows the air-fuel ratio smoothing control method for an electronically controlled engine according to the present invention. Fuel injection used in the second embodiment! )J
The flow chart illustrating the quantity calculation routine, FIG.
A flowchart showing the fuel injection control routine used in the embodiment, FIG. Figure 11 shows an example of the relationship between the throttle opening and intake pipe pressure in the third embodiment. V diagram 11'3, FIG. 1j, which compares and shows an example of the relationship between throttle opening, intake pipe pressure, and fuel injection pulse width during rapid acceleration in the three embodiments and the conventional example.
Comparing the example of the change state of the intake pipe pressure and the combustion jet pulse width at 1 meter acceleration with the third embodiment and the conventional example, There is a diagram C'. 10...Conjin, 16...Throttle sensor,
20... Intake tongue pressure sensor, 24... Indicator L controller, 26... Spark plug, 3
2... Ignition with igniter J-(Le, 36... Rotation 3
1 degree sensor, 38...electronic control"-tsu 1- (ECU). Agent Takaya Theory (1 or 1 person) Figure 1 Figure 2 Figure 5 Figure 6 Calculation of liquid g + amount of rain '''°' ShizuP2 customization t-112Aτ NfP Yoso 114 71) 056 !Calculation TAE custom 116 -ΔTA 18 1 lead・ , τ-7,. 120 +42 (14 questions-6O-50241(9) Fig. 7?-7bO5e Ordinary times also Y126 N Fn=l? ” Fn←1 .128 aTA TAi-+ TA1 Fig. 11 Lean 8 IIO 1 Sacrifice Stopping force fortune-telling 9 people Fig. 12 Fig. 13

Claims (4)

【特許請求の範囲】[Claims] (1)少なくとしエンジン負荷及びエンジン回転速度を
含むエンジン運転状態に応じて燃料量を決定するに際し
く、加減速時は燃料−のなまし処理を行つ(加減速ショ
ックを緩和Jるようにした電子−ill ]−ンジンの
空燃比なまし制御方法において、エンジン運転状態に応
じて燃料口の目標値をめる手順と、加減速の庫合を検知
する手順と、該加減;*の度合に応じて燃l!I−の許
容変化量をめる手順と、#!i料−を、前記許容変化−
ずつ、徐々に目11aに近づける手順と、を含むことを
特徴と(る電子ルリ御土ンジンの空燃[Lなまし制(財
)方法。
(1) When determining the amount of fuel according to the engine operating conditions, including the engine load and engine rotational speed, perform fuel annealing processing during acceleration and deceleration (so as to alleviate acceleration and deceleration shocks). In the engine air-fuel ratio smoothing control method, there are a procedure for setting the target value of the fuel inlet according to the engine operating state, a procedure for detecting the acceleration/deceleration, and the degree of the adjustment; *. The procedure for calculating the allowable change amount of fuel l!I- according to #!i fuel
It is characterized by including a step of gradually approaching the eye 11a.
(2)前記加減速の度合を、スロットル開度の単位時間
当りの変化−から検知覆るようにした特許請求の範囲第
1項記載の電子l1lIIIIエンジンの空燃比なまし
制御1万1去。
(2) The air-fuel ratio smoothing control for an electronic 111III engine according to claim 1, wherein the degree of acceleration/deceleration is detected from the change in throttle opening per unit time.
(3)市記加緘j*の度合を、吸気管圧力又は吸入空気
−の単位時間当りの変化−から検知するようにした特許
請求の範囲第1項1iIll!載の電子−I IIIエ
ンジンの空燃比なまし制一方法。
(3) The degree of the air pressure is detected from the change in intake pipe pressure or intake air per unit time. A method for controlling the air-fuel ratio of the E-I III engine.
(4)少なくともエンジン負荷及びエンジン回転速度を
含むエンジン運転状態に応じて燃料kを決定するに際し
て、加減速時は燃料口のなまし処理を行って加減速ショ
ックを緩和(るようにした電子制御エンジンの空燃比な
ましm制御方法において、エンジン運転状態に応じて燃
料i及び点火時期の目標値をめる手順と、加減速の度合
を検知づる手順と、該加減速の度合に応じて燃料−の許
容変化量をめる手順と、該燃料量の許容変化量に応じて
点火時期の補正量をめる手順と、燃料量を、前記許容変
化量ずつ、徐々に目標値に近づけると共に、点火時期を
、前記補正量により補正づる手順と、を含むことを特徴
とする電子制師エンジンの空燃比なまし制御方法。
(4) Electronic control to reduce acceleration/deceleration shock by smoothing the fuel port during acceleration/deceleration when determining fuel k according to engine operating conditions, including at least engine load and engine speed. In the engine air-fuel ratio smoothing control method, there are a procedure for setting target values of fuel i and ignition timing according to the engine operating state, a procedure for detecting the degree of acceleration/deceleration, and a procedure for determining the target value of fuel i and ignition timing according to the engine operating condition. - a procedure for calculating the allowable change amount of the fuel amount, a step for calculating the correction amount of the ignition timing according to the allowable change amount of the fuel amount, and gradually bringing the fuel amount closer to the target value by the above-mentioned allowable change amount, An air-fuel ratio smoothing control method for an electronically controlled engine, comprising the step of correcting ignition timing using the correction amount.
JP58158863A 1983-08-30 1983-08-30 Air-fuel ratio moderating control method for electronically controlled engine Pending JPS6050241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58158863A JPS6050241A (en) 1983-08-30 1983-08-30 Air-fuel ratio moderating control method for electronically controlled engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58158863A JPS6050241A (en) 1983-08-30 1983-08-30 Air-fuel ratio moderating control method for electronically controlled engine

Publications (1)

Publication Number Publication Date
JPS6050241A true JPS6050241A (en) 1985-03-19

Family

ID=15681039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58158863A Pending JPS6050241A (en) 1983-08-30 1983-08-30 Air-fuel ratio moderating control method for electronically controlled engine

Country Status (1)

Country Link
JP (1) JPS6050241A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6158940A (en) * 1984-08-29 1986-03-26 Mazda Motor Corp Air-fuel ratio control device for engine
JPS61171851U (en) * 1985-04-15 1986-10-25
JPS6282242A (en) * 1985-10-07 1987-04-15 Nippon Denso Co Ltd Air-fuel ratio controller for internal combustion engine
JPH01249934A (en) * 1988-03-30 1989-10-05 Japan Electron Control Syst Co Ltd Electronically controlled fuel injection type internal combustion engine and ignition controller thereof
US4938198A (en) * 1988-08-30 1990-07-03 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
US5054451A (en) * 1988-03-25 1991-10-08 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6158940A (en) * 1984-08-29 1986-03-26 Mazda Motor Corp Air-fuel ratio control device for engine
JPH0531652B2 (en) * 1984-08-29 1993-05-13 Mazda Motor
JPS61171851U (en) * 1985-04-15 1986-10-25
JPS6282242A (en) * 1985-10-07 1987-04-15 Nippon Denso Co Ltd Air-fuel ratio controller for internal combustion engine
US5054451A (en) * 1988-03-25 1991-10-08 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion
JPH01249934A (en) * 1988-03-30 1989-10-05 Japan Electron Control Syst Co Ltd Electronically controlled fuel injection type internal combustion engine and ignition controller thereof
US4938198A (en) * 1988-08-30 1990-07-03 Toyota Jidosha Kabushiki Kaisha Internal combustion engine

Similar Documents

Publication Publication Date Title
JPS603458A (en) Fuel feed controlling method in internal-combustion engine
JP3331789B2 (en) Ignition timing control device for internal combustion engine
JPS6050241A (en) Air-fuel ratio moderating control method for electronically controlled engine
JPS58144642A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPS6250653B2 (en)
JPH0573907B2 (en)
JPS58144633A (en) Method for electronically controlling fuel injection in internal-combustion engine
JPS5912164A (en) Ignition timing control for internal-combustion engine
JPH051393B2 (en)
JP3282890B2 (en) Engine ignition timing control device
JPS6062640A (en) Internal-combustion engine for vehicle
JPS63248973A (en) Ignition timing controller for engine equipped with supercharger
JP3057373B2 (en) Engine fuel control device
JPS58150049A (en) Electronically controlled fuel injection method of internal-combustion engine
JPS63140867A (en) Engine controller
JPH02294561A (en) Ignition timing control method for internal combustion engine
JPS6166865A (en) Ignition timing controller for engine
JPH01190969A (en) Ignition timing control method
JPS62253963A (en) Ignition timing controller for engine
JPS58206837A (en) Device for controlling injection advance of diesel engine
JPS59194049A (en) Fuel control device for engine
JPH0510490B2 (en)
JPS6116271A (en) Control device of ignition timing in internal-combustion engine
JPS62147048A (en) Ignition timing control device for engine
JPS63248956A (en) Fuel feeding amount controller for internal combustion engine