JPS6050106A - Relining method of blast furnace wall - Google Patents

Relining method of blast furnace wall

Info

Publication number
JPS6050106A
JPS6050106A JP15767183A JP15767183A JPS6050106A JP S6050106 A JPS6050106 A JP S6050106A JP 15767183 A JP15767183 A JP 15767183A JP 15767183 A JP15767183 A JP 15767183A JP S6050106 A JPS6050106 A JP S6050106A
Authority
JP
Japan
Prior art keywords
furnace
cooling
repair
shell
cooling plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15767183A
Other languages
Japanese (ja)
Inventor
Junichi Kameda
亀田 純一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15767183A priority Critical patent/JPS6050106A/en
Publication of JPS6050106A publication Critical patent/JPS6050106A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/04Blast furnaces with special refractories
    • C21B7/06Linings for furnaces

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Blast Furnaces (AREA)

Abstract

PURPOSE:To decrease rebound loss and to extend service life by projecting a repair cooling plate at a close space between the existing cooling plates in the shell part where refractory lining is dislodged and thermal load is increased then forming a lining layer. CONSTITUTION:A repair horizontal cooling plate 30 of a projection type is mounted at a close space between the adjacent existing horizontal cooling plates 3 in the shell 1 part where refractory lining is stripped and thermal load is increased. Inside circumferential projecting racks 6 in a horizontal direction are formed into an optional number of steps by such plate 30 and the above- described cooling plates 3. A lining layer 11 is formed on the racks 6 by spraying castable refractories 9 from a nozzle 8 thereto. The utilization of refractories which fail thus far to be effectively utilized is made possible by the above- mentioned method, by which rebound loss is decreased. The lining layer 11a is also supported by said racks 6, by which the service life is extended.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高炉炉壁側大物脱落時の補修方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for repairing a large object falling off from the wall of a blast furnace.

従来技術 周知の如く高炉の炉壁には、炉体鉄皮の内側に耐火物が
構築され、その損耗脱落防止の為に冷却盤や支持金物等
によって前記耐火物の支持冷却がされて居る。現在炉壁
構成法Ke」ステーブ方式、冷却盤方式が信頼性の高い
技術として各高炉で採用されて居る。ところでステーブ
高炉で耐火物が脱落した時は、局部的に冷却盤を設置し
たり、耐火物を圧入したり、部分的にステーブクーラー
そのものを取り替えたりする技術が有る。
As is well known in the prior art, refractories are constructed on the inside of the furnace shell on the walls of blast furnaces, and the refractories are supported and cooled by cooling plates, supporting hardware, etc. in order to prevent them from wearing out and falling off. Currently, the furnace wall construction method Ke" stave method and cooling plate method are adopted in each blast furnace as highly reliable technologies. By the way, when refractories fall off in a stave blast furnace, there are techniques to locally install cooling plates, press-fit refractories, or partially replace the stave cooler itself.

一方、冷却盤高炉の場合、耐火物の支持、冷却方式はス
テーブと相違するが長期間の高炉稼働により耐火物は、
機械的、物理的、化学的、熱的アタックで損耗が進展す
る。この耐火物の損耗が進展すると炉体鉄皮に対する熱
負荷が増大し、これによって鉄皮が変形したり、亀裂が
発生して有毒なる炉内ガスが外部に漏洩して安全性を害
す様な事態が生じ、円滑なる高炉操業の続行が不+1J
能となる事態が屡々発生して居た。而して前記耐火物が
脱落して、増大する熱負荷から鉄皮を保護する為、従来
下記の如く種々の方策が]〃案され、がっ、実際に施工
されて来た。
On the other hand, in the case of a cooling plate blast furnace, the support and cooling method for the refractory is different from that of a stave, but due to long-term blast furnace operation, the refractory
Wear progresses due to mechanical, physical, chemical, and thermal attacks. As the wear and tear of this refractory progresses, the heat load on the furnace shell increases, which may cause the shell to deform or crack, causing toxic furnace gases to leak outside and jeopardizing safety. Due to the situation, it is difficult to continue smooth blast furnace operations by +1J.
Disastrous situations often occurred. In order to protect the steel skin from the increased heat load caused by the refractory falling off, various measures have been devised and actually implemented, as described below.

/)不定型耐火物の圧入 圧入材の寿命延長の為、材ネ」の吟味、圧入方法の改善
、圧入材の炉内での拡散性改良、同一場所よシ複数回に
分けて圧入する事による炉内容物の排除された健全圧入
部の形成、圧入材支持の為の傘型形状等に代表さrしる
支持金具の設置 、2)不定型耐火物の吹付 炉内装入物のレベルを下げ−C1耐火物脱落部位を露出
せしめ炉内より専用ノズル、或は専用機械を使用して吹
伺ける。
/) In order to extend the life of press-fit materials for monolithic refractories, we will examine the materials, improve the press-in method, improve the dispersion of the press-fit materials in the furnace, and press-fit them in the same place multiple times. 2) Formation of a sound press-in part from which the furnace contents have been removed, installation of support metal fittings typically shaped like an umbrella to support the press-in material, 2) Adjustment of the level of the furnace contents by spraying monolithic refractories. Lowering - The area where the C1 refractory has fallen is exposed and can be blown from inside the furnace using a special nozzle or a special machine.

この吹付材の鉄皮に対する伺M効果を良好ならしめる為
に、菊型状支持金具、支持金枠等が炉内或は炉外から鉄
皮内面にセットされて居た。
In order to improve the effect of this sprayed material on the steel shell, chrysanthemum-shaped support fittings, support metal frames, etc. were set on the inner surface of the steel shell from inside or outside the furnace.

3)耐火物構成体の取9付は 耐火物脱落部に、事前に炉外で構成された板状の面4大
物構成体を炉内に吊り下げ設置する。
3) Attachment 9 of the refractory structure is carried out by suspending and installing the plate-shaped four-faced structure, which has been constructed outside the furnace in advance, into the furnace at the refractory falling part.

又、金属製のステーブ、又はステーブ表面に耐火物を設
置したものを設置する技術も実施されて居る。
In addition, a technique of installing a metal stave or a stave with refractory material installed on the surface of the stave has also been implemented.

グ)不活性ガスの吹込 耐火物脱落部分K N2ガスの様な安価なる不活性ガス
を鉄皮内に吹込み、鉄皮4・冷却するとともに、何着物
の生成を促進して鉄皮を保護する。
G) Injecting inert gas into the part where the refractories have fallen off K Inject an inexpensive inert gas such as N2 gas into the steel shell to cool the steel shell and promote the formation of other materials to protect the steel shell. do.

等の技術が有り、各々の方法を単独、或は組み合わせて
実施して来たが、効果が無いもの、工事施行が大変であ
るもの、非常に高額なる設備工事費を要する等の欠点が
有った。
There are various techniques such as these, and each method has been implemented singly or in combination, but there are drawbacks such as some being ineffective, some requiring construction work, and requiring extremely high equipment construction costs. It was.

その結果、耐火物による保護が不充分で鉄皮に亀裂が入
ったり、変形したりしてその保守維持に非常々苦労を傾
注すれども、意に反して円滑なる操業の続行が不可能と
なって居た。
As a result, the iron skin cracked and deformed due to insufficient protection by refractories, making it impossible to continue operations smoothly despite much effort being put into maintaining it. I was there.

この鉄皮の保守が困難となって、寿命を終える高炉が最
近の一般的傾向である。
It is a common trend these days for blast furnaces to end their lifespans because maintenance of the steel shell becomes difficult.

発明の目的 本発明は前記問題点を抜本的に解決する事を目的とする
もので、前記冷却盤高炉において補修耐火物を長期間安
定して支持することにより、鉄皮の亀裂、変形の発生を
防止し、しかも、極めて安価に、かつ容易に実施しうる
炉壁補修法を提供するものである。
Purpose of the Invention The purpose of the present invention is to fundamentally solve the above-mentioned problems, and by stably supporting the repaired refractory for a long period of time in the cooling platen blast furnace, cracks and deformation of the steel shell can be avoided. The purpose of the present invention is to provide a method for repairing a furnace wall that prevents the above-mentioned problems and can be carried out easily and at an extremely low cost.

又、耐火物が材質的に劣化して、その機能が消失しても
、炉内容物の停滞部に炉内伺着物の強固維持により、鉄
皮断熱を図る事の出来る前記補修法を提供するものであ
る。
Moreover, even if the refractory material deteriorates and loses its function, the above repair method is capable of achieving iron shell insulation by firmly maintaining the debris in the furnace in the stagnation part of the furnace contents. It is something.

発明の構成 耐火ライニングが脱落して熱負荷が増大した鉄皮部分に
水平型の冷却盤を埋込む高炉鉄皮補修方法において、隣
り合う既設冷却盤間Vζ突出型補修冷却盤を密間隔に装
着して水平方向の内周突出棚を任意段数形成する事を特
徴とするものである。
Structure of the Invention In a blast furnace shell repair method in which horizontal cooling plates are embedded in the shell part where the refractory lining has fallen off and the heat load has increased, Vζ protruding repair cooling plates are installed at close intervals between adjacent existing cooling plates. This is characterized by forming an arbitrary number of horizontally protruding shelves on the inner periphery.

さて、本発明者等は、捷ず水平型冷却盤を埋込□ んだ炉壁構造ンζついて、その損耗状況や鉄皮に生ずる
熱負荷1でついて種々調査イiJf死を行ったところ以
下の知見を得た。
The present inventors conducted various investigations regarding the wear and tear of the furnace wall structure in which horizontal cooling plates were embedded and the heat load generated on the steel shell. We obtained the following knowledge.

即ち、第1図は水平型冷却盤(以下単に冷却盤と言う)
3を埋設した炉壁構造を示す部分断面図であり、/が炉
体鉄皮(以下鉄皮と言う)、2は定形耐火物、ρθは前
記鉄皮/と定形面1火物!との間に構築されたキャスタ
ブル層である。
In other words, Figure 1 shows a horizontal cooling plate (hereinafter simply referred to as a cooling plate).
3 is a partial sectional view showing a furnace wall structure in which 3 is buried, / is a furnace body shell (hereinafter referred to as a steel shell), 2 is a shaped refractory, and ρθ is the above-mentioned steel shell / and a shaped surface 1 refractory! This is a castable layer constructed between

而して、定形耐火物βは長年の高炉稼働に伴い物理的、
化学的に損耗を受け、第3図に示す如くその殆どが脱落
し前記キャスタブル層2θや極端な場合には鉄皮/が露
出する事態に達することも屡々発生する。尚、第2図で
3′は脱落部j大物を示す。
Therefore, shaped refractories β undergo physical and
As a result of chemical wear and tear, most of the castable layer 2θ often falls off as shown in FIG. 3, and in extreme cases, the castable layer 2θ or, in extreme cases, the iron skin is exposed. In addition, in FIG. 2, 3' indicates a large object that has fallen off.

ところが前記定形耐火物2が脱落した部分の冷却盤3の
上部には炉内容物が堆積して堆積層ダを形成しているこ
とが判った。この冷却盤上の堆積層ダは、通常の高炉操
業中は、確認できなかったが、高炉内の装入物レベルを
低下ぜしめて、l」視観察することによって、第3図に
立体的に軍す様に冷却盤3の上部に炉内容物が山形に堆
積していることが確認出来た。そこで本発明者等は、通
常操業中に該堆積層グの形成さ′Iした部分の鉄皮/の
表面温度を測定した。この結果その温度は他の部分の鉄
皮温度に比べて著しく低いことが知見された。
However, it was found that the contents of the furnace were deposited on the upper part of the cooling plate 3 where the shaped refractory 2 had fallen off, forming a deposited layer. This deposited layer on the cooling plate could not be confirmed during normal blast furnace operation, but by lowering the charge level in the blast furnace and observing it from the perspective, it was shown in Figure 3. It was confirmed that the contents of the furnace were piled up in a mountain shape on the top of the cooling plate 3. Therefore, the present inventors measured the surface temperature of the iron shell at the part where the deposited layer was formed during normal operation. As a result, it was found that the temperature was significantly lower than that of other parts of the iron skin.

第9図は、冷却盤周囲の定形耐火物3が脱落した鉄皮/
を炉内側より目視した平面図であり、装入物が上より下
へ降下する時、冷却盤3によって入れ替わらず停滞して
三角形の堆積層17 r、形成している。而してこの三
角形の堆積層ダは丁から」二への高温炉内ガス流Aが鉄
皮/と接触することを防止し、炉内装入物自体により鉄
皮/を断熱する。
Figure 9 shows the steel shell where the shaped refractories 3 around the cooling plate have fallen off.
This is a plan view visually viewed from inside the furnace, and when the charge descends from the top to the bottom, it is not replaced by the cooling plate 3 and stagnates, forming a triangular deposited layer 17r. This triangular deposited layer prevents the high-temperature furnace gas flow A from coming into contact with the shell, and insulates the shell by the furnace contents themselves.

この結果鉄皮/の表面温度が低下し、当然のこと々から
この三角ゾーンが犬である程、鉄皮/に対する熱負荷は
少いことが判った。
As a result, the surface temperature of the iron skin decreased, and it was found that the larger the triangular zone, the smaller the heat load on the iron skin.

本発明は、前記知見を炉壁補修法に積極的に活用したも
のである。さて、本発明者等は前記知見に基ついて冷却
盤3の幅Wと堆積層q等による鉄皮/への断熱割合を調
査した。つまり、鉄皮内側に形成される冷却盤3および
堆積層グの占積部(第9図の斜線部S)が炉内の高熱を
断熱する断熱層としての機能を発揮することから前記占
積率(第9図の破線枠S′に占める斜線部Sの割合)を
、断熱比γとし、該断熱比γと冷却盤3の幅Wとの関係
を調査した。
The present invention actively utilizes the above knowledge in a furnace wall repair method. Now, based on the above-mentioned knowledge, the present inventors investigated the width W of the cooling plate 3 and the insulation ratio of the deposited layer q to the iron shell. In other words, since the cooling plate 3 and the spaced portion (shaded area S in FIG. 9) of the deposited layer formed inside the steel shell function as a heat insulating layer that insulates the high heat inside the furnace, the spaced area is The ratio (the proportion of the shaded area S in the broken line frame S' in FIG. 9) was defined as the heat insulation ratio γ, and the relationship between the heat insulation ratio γ and the width W of the cooling plate 3 was investigated.

第S図は、その調査結果を示すもので横軸に冷却盤3の
横方同地(=Jピッチ/θ0θIIIInK対応する幅
Wを、縦軸に前記断熱比γを表わした。尚、断熱比γは
下記(1)式によりめた。
FIG. γ was determined by the following formula (1).

γ;断熱比 W:冷却盤の幅 θ:堆積層の傾斜角(本実施例では安息角に近いグj0
とした) T:冷却盤厚さく本実施例では75mm)H:冷却盤高
さ方向数イ:1ピッチ(本実施例ではjθθ咽) P:冷却盤横方向数個ピッチ(本実施例では/θθθ咽
) 而して、通常の高炉における冷却盤3は、鉄皮/の強度
を確保するうえから第9図に示すように千鳥状に配列さ
れており、冷却盤3の横方向数句ピッチPK対する幅W
の比丁は一般にθ3〜θ乙であり、断熱比γは/θ〜!
θ係程度に過ぎないことが判る。このため従来の高炉で
は定形耐火物3が脱落すると鉄皮/への熱負荷が急激に
増大し、前記種々の問題を生じていた訳である。一方、
前記第5図の実施例において冷却盤3の幅Wを順次太き
くし、隣り合う冷却盤3との間隔を小さくすると理論的
にめた断熱比γと実際の断熱比γが大きく相違し、前記
間隔が約ろ0咽以下となると断熱比γは/θθチとなる
ことが確認された。つまり隣り合う冷却盤3との間隔が
所定以下の密11:0隔になると第6図に示すように冷
却盤上に連続した堆積層グの形成されることが確認され
た。而して8亥現象について、さらに調査研究を行った
。冷却7上に堆積する炉内容物の主体はコークス、鉱石
等の粉粒体であシ、これらの粉粒体は、前記間隔カニ所
定以下になると第7図に示すようにフ゛リッジ現象を呈
する。定形耐火物ノの損耗の激しい炉壁部分では、粒径
が/θ〜3θ酬のコークスや/〜、5′πmの鉱石が多
く存在している。本発明者等の経験では、前記間隔δを
コークスの平均粒径の3倍以下とするとまずコークス粒
によって前記ブリッジ現象が生じ、その上に鉱石やコー
クス、あるいはその他の溶融物等が順次堆積し、連続し
た堆積層グを形成することができた。
γ; Adiabatic ratio W: Width of the cooling plate θ: Inclination angle of the deposited layer (in this example, the angle of repose is close to the angle of repose)
) T: Thickness of the cooling plate (75 mm in this example) H: Number of height directions of the cooling plate A: 1 pitch (jθθ throat in this example) P: Several pitches in the lateral direction of the cooling plate (in this example / Therefore, the cooling plates 3 in a normal blast furnace are arranged in a staggered manner as shown in Fig. 9 in order to ensure the strength of the steel shell. Width W for PK
The ratio of is generally θ3~θO, and the adiabatic ratio γ is /θ~!
It can be seen that the value is only about θ. For this reason, in conventional blast furnaces, when the shaped refractories 3 fall off, the heat load on the steel shell increases rapidly, causing the various problems mentioned above. on the other hand,
In the embodiment shown in FIG. 5, if the width W of the cooling plate 3 is gradually increased and the distance between adjacent cooling plates 3 is reduced, the theoretically determined thermal insulation ratio γ and the actual thermal insulation ratio γ will differ greatly. It was confirmed that when the spacing is less than about 0, the adiabatic ratio γ becomes /θθ. In other words, it has been confirmed that when the distance between adjacent cooling plates 3 becomes less than a predetermined distance of 11:0, continuous deposited layers are formed on the cooling plates as shown in FIG. Therefore, we conducted further research on the 8-ha phenomenon. The contents of the furnace deposited on the cooling device 7 are mainly granular materials such as coke and ore, and these granular materials exhibit a ridge phenomenon as shown in FIG. 7 when the spacing is less than a predetermined distance. In the furnace wall portion of the shaped refractory where wear and tear is severe, there is a large amount of coke with a particle size of /θ to 3θ and ore with a particle size of /θ to 5′πm. In the experience of the present inventors, when the distance δ is set to three times or less the average particle diameter of coke, the bridging phenomenon occurs first due to the coke particles, and ore, coke, or other molten substances are sequentially deposited on top of the bridging phenomenon. , a continuous sedimentary layer could be formed.

本発明は前記現象を積極的VC1かつ有効に活用するた
めに隣り合う既設冷却盤間に突出型補修冷却盤を密間隔
に装着することVCより鉄皮内側に水平方向の内周突出
棚を任意段数形成したものである0 実施例 第5図は本発明に基づく一実施例を示す部分平断面図で
あシ、水平型の既設冷却盤3の相隣わる間に突出型補修
冷却盤(以下補修冷却盤と言う)3θが装着されている
。本実施例の補修冷却盤3θは鋼管3/を屈曲せしめ炉
内に突出する胴部32を栓抜状に形成すると共Vζ胴部
3,2の内外表面にスタッド33を溶着せしめ、不定形
耐火物3グで被覆せしめて構成した。又その数句柄部3
−5′は、前記鋼管、3/を接合し補修冷却盤3θを装
着するための鉄皮開口Sを最小Vζできるよう構成I7
た。
In order to utilize the above-mentioned phenomenon proactively and effectively, the present invention is to install protruding repair cooling panels at close intervals between adjacent existing cooling panels, and to optionally install horizontal inner protruding shelves on the inner side of the steel shell from the VC. Embodiment 5 is a partial plan sectional view showing an embodiment based on the present invention, in which a protruding type repair cooling plate (hereinafter referred to as A 3θ (referred to as a repair cooling board) is installed. The repair cooling plate 3θ of this embodiment is made by bending a steel pipe 3/ to form a body part 32 protruding into the furnace in the shape of a bottle opener, and studs 33 are welded to the inner and outer surfaces of the Vζ body parts 3, 2. It was constructed by covering it with 3g of material. Also, the number of phrases pattern part 3
-5' is configured so that the steel pipe, 3/ is joined and the steel shell opening S for installing the repair cooling plate 3θ can be made minimum Vζ.
Ta.

而して補修冷却盤3θと既設冷却盤3との間隔δは前述
した所定以下の密間隔となり、既設冷却盤3.3と補修
冷却盤3θとによって水平方向の内周突出棚乙を形成す
る。第2図および第1θ図は補修冷却盤の他の実施例を
示すもので第2図の補修冷却盤3θaは鋼管3/をU型
に屈曲せしめ胴部3.2の内側に不定形制火物3’lを
構築して構成したものである。又第1θ図の補修冷却盤
3θbは純銅あるいは鋼板等によって箱型に形成さえし
たものであシ、いずれの補修冷却盤3θa、3θbも、
その装着のための鉄皮開口Sを最小とするよう取付柄部
3Sのみが鉄皮/を貫通し、固着できるよう構成した。
Therefore, the spacing δ between the repaired cooling plate 3.3 and the existing cooling plate 3 is a close spacing below the predetermined value mentioned above, and the existing cooling plate 3.3 and the repaired cooling plate 3.3 form a horizontally protruding inner peripheral shelf B. . Fig. 2 and Fig. 1θ show other embodiments of the repair cooling board, and the repair cooling board 3θa in Fig. 2 has a steel pipe 3/ bent into a U shape, and an unshaped fire suppressor inside the body 3.2. It is constructed by constructing 3'l. In addition, the repair cooling plate 3θb in Fig. 1θ is not even formed into a box shape of pure copper or steel plate, and both repair cooling plates 3θa and 3θb are
In order to minimize the opening S of the steel shell for mounting, only the mounting handle 3S is configured to penetrate through the steel shell and be fixed.

尚、前記実施例では隣シ合う既設冷却盤間に7個の補修
冷却盤3θを装着したが既設冷却盤間に対し補修冷却盤
3θの幅が小さい場合、あるいは既設冷却盤3が部分的
に破損し、既設冷却盤間が広くなっている場合等には補
修冷却盤3θを2個、又は2個以上の複数個、密間隔に
装着することによって内周突出棚乙を形成することもで
きる。又炉高方向に対しても定形耐火物2の損耗状況に
応じて任意段数、前記内周突出棚乙を形成すればよい0 さて、鉄皮内側に前記内周突出棚乙を形成したら例えば
第1/図に示すように吹伺ノズルとより不定形耐火物を
吹付けるか、あるいは鉄皮/を開口して取付けられた圧
入ノズル7より不定形耐火物ソを圧入する等してライニ
ング層//を形成することによって炉内の高熱よシ鉄皮
/を確実に保護することができる。
In the above embodiment, seven repair cooling panels 3θ were installed between adjacent existing cooling panels, but if the width of the repair cooling panels 3θ is smaller than the width between existing cooling panels If the existing cooling panels are damaged and the space between them is wide, an inner protruding shelf can be formed by installing two or more 3θ repair cooling panels closely spaced. . Also, in the furnace height direction, an arbitrary number of stages of the inner protruding shelves B may be formed depending on the state of wear of the shaped refractories 2. Now, if the inner protruding shelves B are formed inside the steel shell, for example, 1/ As shown in the figure, the lining layer is sprayed with an unshaped refractory using a blowing nozzle, or the unshaped refractory is press-fitted through a press-fit nozzle 7 installed by opening the iron shell. By forming /, the steel skin / can be reliably protected from the high heat inside the furnace.

効果 本発明では前述の如く既設冷却盤間に補修冷却盤3θが
密間隔に装着され内周突出棚6を形成していることから
前記第1/図に示す如きライニング層//を形成する場
合に不定形耐火物等の吹付材が飛散し落下するリバウン
ドロスが30係 から/θチ迄減少した。即ち、飛散落
下する不定形耐火物7が密間隔の棚上に落]ミシて、本
来落下して有効に使用出来ない耐火物(第1/図の/θ
)を利用出来るため前記リバウンドロスを大+lJVこ
減少できる。又、前記圧入により形成されたライニング
層//aも、内周突出棚4VCよって確実に支持される
ことからその耐用寿命が飛躍的に向上した1、一方、前
記ライニング層//も高炉の稼働しで1tつて順次損耗
する。ところが本発明の実施により、ライニング層//
が損耗し、内周突出棚乙が露出すると直ちに第7.2図
に示す如く内周突出棚上に炉内容物による堆積層グが形
成される。該用二積層ダは冷却機能を有する内周突出棚
乙で冷却され、又、上下の冷却盤間を流通ずるガス流B
、Cも非常に弱い事1(より炉内のデポジット生成物が
生じ易く、極めて安定的なイ」着物と々り得る。この付
着物はガスの透過性が非常に悪く、第7.2図のガス流
Cの様なガス流れは益々弱くなる。従ってライニング層
が損耗しても鉄皮/は/θθθ℃〜/Sθθ℃程71の
炉内ガスと直接、接触し加熱される事が無く、亀裂、変
形等のトラブルの発生も全くなくなった。
Effects In the present invention, as mentioned above, the repair cooling plates 3θ are installed at close intervals between the existing cooling plates to form the inner circumferential protruding shelves 6. Therefore, when forming the lining layer as shown in FIG. Rebound loss caused by sprayed materials such as monolithic refractories flying off and falling has been reduced from 30 to /θ. In other words, the monolithic refractories 7 that scatter and fall fall onto shelves that are closely spaced.
), the rebound loss can be reduced by a large amount. In addition, the lining layer //a formed by the press-fitting is also reliably supported by the inner circumferential protruding shelf 4VC, so its service life has been dramatically improved. 1 ton is gradually worn out. However, by implementing the present invention, the lining layer//
As soon as the inner protruding shelf is exposed due to wear and tear, a deposited layer of the contents of the furnace is formed on the inner protruding shelf as shown in Fig. 7.2. The two-layer plate is cooled by an inner protruding shelf B which has a cooling function, and a gas flow B is circulated between the upper and lower cooling plates.
, C is also very weak 1 (deposit products in the furnace are more likely to form, and extremely stable A) can be deposited. This deposit has very poor gas permeability; The gas flow, such as gas flow C, becomes weaker and weaker.Therefore, even if the lining layer is worn out, the iron shell / does not come into direct contact with the furnace gas at temperatures of /θθθ℃~/Sθθ℃ and be heated. Problems such as cracks, deformation, etc. have completely disappeared.

その結果として鉄皮からのガスリークも非常に減少して
炉体周辺での作業が安全なイ、のとなった。
As a result, gas leaks from the steel shell have been greatly reduced, making work around the furnace body safer.

以上のように本発明の実用的効果は極めて犬である。As described above, the practical effects of the present invention are extremely significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は水平型冷却盤を埋設した炉壁構造を示す部分断
面図、第3図は損耗耐火物炉壁を示す部分断面図、第3
図は冷却盤上面の炉内容物堆積状況を示す立体図、第7
図は炉内側より見た冷却盤配列状況を示す平面図、第S
図は冷却盤の幅方向サイズ変更時の鉄皮断熱割合の変化
状況を調査した結果を示す図表、第6図は、密間隔に取
付けた冷却盤の上部に堆積する炉内容物のイメージを示
す斜視図、第7図は冷却盤間で炉内容物がブリッジをか
け連続化するイメージを示す部分断面図、第5図、第2
図、第1θ図は本発明に基づく補修冷却盤と、その装着
状況のそれぞれ異なった実施例を示す部分乎断面図、第
1/図はライニング層形成状況を示す断面図、第7.2
図は、本発明実施後の堆積層を示す断面図である。 /:炉体鉄皮 、、2=定形耐火物 β′:脱落耐火物 !θ:キャスタブル層3:既設冷却
盤 グ:堆積層 3θ:補修冷却盤 S:鉄皮開ロ 乙:内周突出棚 7:圧入ノズル g:吹付ノズル 2:不定形削大物 /θ:落下耐火物 //、 //a ニライニング層第
1図 第4図 第5rl W(ヘー) 第1図 第置2図
Figure 1 is a partial sectional view showing the furnace wall structure in which a horizontal cooling plate is buried; Figure 3 is a partial sectional view showing the worn-out refractory furnace wall;
The figure is a three-dimensional view showing the accumulation of contents in the furnace on the top surface of the cooling plate.
The figure is a plan view showing the arrangement of cooling plates seen from inside the reactor.
The figure is a chart showing the results of investigating changes in the insulation ratio of the steel shell when changing the size of the cooling disk in the width direction. Figure 6 shows an image of the contents of the furnace depositing on the top of the cooling disks installed at close intervals. A perspective view, Fig. 7 is a partial sectional view showing an image of the furnace contents bridging and becoming continuous between cooling disks, Fig. 5, Fig. 2
Fig. 1θ is a partial sectional view showing a repair cooling board based on the present invention and different embodiments of its mounting situation, Fig. 1/Fig. 1 is a sectional view showing a state of lining layer formation, Fig. 7.2
The figure is a cross-sectional view showing the deposited layer after implementing the present invention. /: Furnace shell,, 2 = Shaped refractory β': Fallen refractory! θ: Castable layer 3: Existing cooling panel G: Accumulated layer 3θ: Repair cooling panel S: Steel shell opening O: Inner periphery protruding shelf 7: Press-fit nozzle g: Spraying nozzle 2: Irregular shaped large object/θ: Falling refractory //, //a Ni lining layer Fig. 1 Fig. 4 Fig. 5rl W (heh) Fig. 1 Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 耐火ライニングが剥落し、熱負荷の増大した鉄皮部分に
水平型冷却盤を埋込む高炉鉄皮補修方法において、隣り
合う既設冷却盤間に突出型補修冷却盤を密間隔に装着し
て水平方向の内周突出棚を任意段数形成する事を特徴と
する高炉炉壁補修方法。
In the blast furnace shell repair method, which embeds horizontal cooling panels in the shell parts where the refractory lining has peeled off and the heat load has increased, protruding repair cooling panels are installed at close intervals between adjacent existing cooling panels. A blast furnace wall repair method characterized by forming an arbitrary number of inner protruding shelves.
JP15767183A 1983-08-29 1983-08-29 Relining method of blast furnace wall Pending JPS6050106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15767183A JPS6050106A (en) 1983-08-29 1983-08-29 Relining method of blast furnace wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15767183A JPS6050106A (en) 1983-08-29 1983-08-29 Relining method of blast furnace wall

Publications (1)

Publication Number Publication Date
JPS6050106A true JPS6050106A (en) 1985-03-19

Family

ID=15654833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15767183A Pending JPS6050106A (en) 1983-08-29 1983-08-29 Relining method of blast furnace wall

Country Status (1)

Country Link
JP (1) JPS6050106A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02111805A (en) * 1988-10-19 1990-04-24 Sumitomo Metal Ind Ltd Method for repairing stave type blast furnace
CN103233090A (en) * 2013-05-30 2013-08-07 河北天宇高科冶金铸造有限公司 Dot-matrix type brick inlaid cooling wall and preparation process thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02111805A (en) * 1988-10-19 1990-04-24 Sumitomo Metal Ind Ltd Method for repairing stave type blast furnace
CN103233090A (en) * 2013-05-30 2013-08-07 河北天宇高科冶金铸造有限公司 Dot-matrix type brick inlaid cooling wall and preparation process thereof

Similar Documents

Publication Publication Date Title
SU814287A3 (en) Smelting furnace
EP2553371B1 (en) Plate cooler stave apparatus and methods for ferrous or non-ferrous metal making furnace
WO2000046561A1 (en) Water-cooling panel for furnace wall and furnace cover of arc furnace
KR100333760B1 (en) Refractory wall metallurgical vessel comprising such a refractory wall and method in which such a refractory wall is applied
US3994676A (en) Method and apparatus for protecting basic refractory shapes in a basic oxygen furnace
KR100468248B1 (en) Rotary hearth furnace for producing reduced metal and method of producing reduced metal
KR101574777B1 (en) firebrick liner unit
JPS6050106A (en) Relining method of blast furnace wall
JP3796981B2 (en) Stave
US2175291A (en) Method of lining smelting furnaces
JP2914185B2 (en) Water-cooled refractory panels for blast furnace wall repair
CN209166112U (en) A kind of operating platform for smelting furnace slag-drip opening
CN214496367U (en) Wall plate protection system for metallurgical furnace and metallurgical furnace wall plate body
JP3940182B2 (en) Alternative stave for cooling panel blast furnace
JPH0345108Y2 (en)
JPS60152606A (en) Method for repairing wall of blast furnace
HOSSAIN et al. BF Stove 1 External Combustion Chamber Hot Major Repair by Ceramic Welding at Tata Steel Kalinganagar (TSK)
JPS5916914A (en) Cooling construction of furnace wall of blast furnace constituted of two layers cooling zone
JP2000309813A (en) Working method for fitting cooling stave on furnace body of blast furnace
SU1086017A1 (en) Chilled lining of metallurgical furnace
SU992433A1 (en) Glass melting tank furnace
JPS6244981Y2 (en)
JPH08199211A (en) Cooling disk in blast furnace
JPH09272905A (en) Method for repairing side wall brick of furnace bottom part in blast furnace
RU2082744C1 (en) Refractory shaped product for laying of hatch masonry