JPS6049684B2 - Converter forming detection method - Google Patents

Converter forming detection method

Info

Publication number
JPS6049684B2
JPS6049684B2 JP3936580A JP3936580A JPS6049684B2 JP S6049684 B2 JPS6049684 B2 JP S6049684B2 JP 3936580 A JP3936580 A JP 3936580A JP 3936580 A JP3936580 A JP 3936580A JP S6049684 B2 JPS6049684 B2 JP S6049684B2
Authority
JP
Japan
Prior art keywords
amount
furnace
forming
slag
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3936580A
Other languages
Japanese (ja)
Other versions
JPS56136915A (en
Inventor
明 栗山
健 加藤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3936580A priority Critical patent/JPS6049684B2/en
Publication of JPS56136915A publication Critical patent/JPS56136915A/en
Publication of JPS6049684B2 publication Critical patent/JPS6049684B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4673Measuring and sampling devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Description

【発明の詳細な説明】 この発明は、転炉吹錬中におけるフォーミング検出方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting forming during converter blowing.

転炉の吹錬操業において、吹錬中に溶滓の泡立ち現象(
以下フォーミングという)が生じる場合があるが、該フ
ォーミングの発生によつて脱燐状況にバラツキが生じる
のはもちろんのこと、該フォーミングが激しくなると、
転炉吹錬中の炉口より外部に溶滓があふれ出るおそれも
あるため、早期にフォーミングを検知してフォーミング
を抑制するようにしているが、従来の吹錬中におけるフ
ォーミング検知方法は、転炉の炉口よりマイクロ波を溶
滓面に当て、溶滓面の絶対レベルを測定する方法や転炉
の炉口周辺にマイクロフォンを設置して、フォーミング
発生時の音響変化によりフォーミングの発生を検知する
判定方法があるが、マイクロ波を利用した際は溶滓面レ
ベルの測定誤差が大てあるために、又音響変化を利用し
た際は転曹一 、嘲−に7−、゛j、i6サ 泪代゛
ヱι、↓−s、3、・へ、一・一・、■、j− 、デ
ーー、・ +ーミング発生の伴走が困難であつた。
In converter blowing operations, the bubbling phenomenon of slag during blowing (
(hereinafter referred to as "foaming") may occur, but not only does the occurrence of this foaming cause variations in the dephosphorization status, but when the foaming becomes severe,
During converter blowing, there is a risk of molten slag overflowing from the furnace mouth, so we try to detect forming at an early stage and suppress it. A method of measuring the absolute level of the slag surface by applying microwaves to the slag surface from the furnace mouth, and a method of installing a microphone around the furnace mouth of the converter to detect the occurrence of forming based on the acoustic change when forming occurs. There is a method for determining this, but when microwaves are used, there is a large error in measuring the slag surface level, and when acoustic changes are used, Sa tears ゛ヱι, ↓−s, 3,・he, 1・1・, ■, j−, de
--- It was difficult to follow along when +-ming occurred.

さらに、近年吹錬中のランス自体の振動を測定して、そ
の振動状況によりフォーミングの発生を検知する方法あ
るいは、炉内圧力を測定し、その圧力変化によりフォー
ミングの発生を検知する方法が提案されているが、いず
れにおいても末だ確実な方法とは言えず、実用化し難い
問題があつた。そこで、発明者は上記の問題点を解消す
るために種々実験した結果、転炉吹錬中の炉内ガスを測
定することによりフォーミング発生状況を的確に把握す
る方法を確立するに至つた。
Furthermore, in recent years, a method has been proposed in which the vibration of the lance itself during blowing is measured and the occurrence of forming is detected based on the vibration conditions, or a method in which the pressure inside the furnace is measured and the occurrence of forming is detected based on the pressure change. However, none of these methods can be said to be reliable, and there were problems that made it difficult to put them into practical use. Therefore, the inventor conducted various experiments in order to solve the above-mentioned problems, and as a result, established a method for accurately grasping the occurrence of forming by measuring the gas in the furnace during converter blowing.

すなわち、この発明は転炉内で発生した一酸化炭素(以
下Coと称す)量と二酸化炭素(以下CO。
That is, this invention deals with the amount of carbon monoxide (hereinafter referred to as Co) and carbon dioxide (hereinafter referred to as CO) generated in the converter.

と称す)量を計測し、該計測値のCo量とCO。量との
比により、炉内フォーミング現象を検出する方法てある
。以下、その構成内容を具体的に説明すれば、ます吹錬
ランスより炉内に吹込まれた酸素(以下O2と称す)は
溶鋼中の炭素Cと反応してCoとな、る。
Co amount and CO amount of the measured value are measured. There is a method of detecting the in-furnace forming phenomenon based on the ratio to the amount. Hereinafter, the contents of the structure will be explained in detail. Oxygen (hereinafter referred to as O2) blown into the furnace from a mass blowing lance reacts with carbon C in the molten steel to become Co.

c+J−O2−Co そして、このCoが溶滓中を上昇する過程で、溶滓中の
酸化鉄FeOと反応してCO。
c+J-O2-Co Then, in the process of this Co rising through the slag, it reacts with iron oxide FeO in the slag to form CO.

になる。; Co+FeO→C02+Feこの際、CO
がCO2になる確率は、COと溶滓中の酸化鉄との反応
時間が長い程多くなる。
become. ; Co+FeO→C02+Fe At this time, CO
The probability that CO becomes CO2 increases as the reaction time between CO and iron oxide in the slag increases.

すなわち、溶滓層の高さが高くなる程多くなる。したが
つて、CO2量は溶滓層の高さに比例して発生すること
から、COとCO2との比を求めることにより、炉内の
フォーミング発生状況を判定することができる。上記の
見解から炉内の溶滓高さが高い程CO2量が増えCOは
減少する。
In other words, the higher the height of the slag layer, the more the slag layer. Therefore, since the amount of CO2 is generated in proportion to the height of the slag layer, by determining the ratio of CO to CO2, it is possible to determine the occurrence of forming in the furnace. From the above viewpoint, the higher the height of the slag in the furnace, the more the amount of CO2 increases and the less CO2 becomes.

逆に、溶滓高さが低い程CO2量は減少し、CO量が増
えるという相関関係にある。ところで、溶滓と反応しな
かつたCOは、転炉炉口からの侵入空気によつて一部酸
化されるが、これは下述する分析操作により炉内で発生
したCQ量のみを求めることができる。
On the contrary, there is a correlation that the lower the slag height is, the lower the amount of CO2 is and the more the amount of CO2 is. By the way, the CO that has not reacted with the slag is partially oxidized by the air entering from the converter mouth, but this is because only the amount of CQ generated in the furnace can be determined by the analysis procedure described below. can.

すなわち、転炉煙道中のCO2を分析すると、炉内で反
応したCO2量と、侵入空気によつて酸化されたCO2
量との両者が含まれていることになる。
In other words, when we analyze the CO2 in the converter flue, we find that the amount of CO2 that has reacted inside the furnace and the amount of CO2 that has been oxidized by the invading air.
This includes both quantity and quantity.

そこで、CO2量のみならず排ガス分析装置にて窒素(
以下N2と称す)量を質量分析等によつて求め、該N2
量により侵入空気量を推定して侵入02量を推定する。
そして、この侵入02量から排ガス中に残存した02分
析値(0.5%程度)を差し引くことにより、COの燃
焼に使用された侵入02量を求めることができる。すな
わち、炉口よりの侵入02量はN2/0。
Therefore, in addition to the amount of CO2, we also measured nitrogen (
The amount of N2 (hereinafter referred to as N2) is determined by mass spectrometry, etc.
The amount of intrusion air is estimated based on the amount, and the amount of intrusion 02 is estimated.
Then, by subtracting the O2 analysis value (approximately 0.5%) remaining in the exhaust gas from this intruded O2 amount, the intruded O2 amount used for combustion of CO can be determined. In other words, the amount of 02 intruding from the furnace mouth is N2/0.

79×0.21=0.266N2で求まり、COの燃焼
に使用された侵入02量は0.266N2−02(約0
.5%)で求まる。
79 x 0.21 = 0.266N2, and the amount of intruded 02 used for CO combustion is 0.266N2-02 (approximately 0
.. 5%).

これにより、炉口からの侵入02によつて燃焼したCO
量が求まり、炉内で発生したCq危及び炉3内で発生し
たCO2量が求まる。すなわち、炉口からの侵入02量
によつて燃焼し、発生したCO2量は11202+CO
−+CO2の関係から2(0.266−02)で求まる
。したがつて、炉内で発生したCqはCO+2(0.2
66N2−02)で求まり、炉内で発生したCO23量
はCO2−2(0.266N2−02)で求まる。そこ
で、上記CO2/CO=Kとおけば、で求まる。
As a result, the CO burned by the intrusion 02 from the furnace mouth
The amount of Cq generated in the furnace and the amount of CO2 generated in the furnace 3 are determined. In other words, the amount of CO2 that was burned and generated was 11202 + CO2 that entered from the furnace mouth.
It can be found as 2 (0.266-02) from the relationship of -+CO2. Therefore, the Cq generated in the furnace is CO+2 (0.2
66N2-02), and the amount of CO23 generated in the furnace is found as CO2-2 (0.266N2-02). Therefore, if we set the above CO2/CO=K, it can be found as follows.

したがつて、上記K値を求めるべく、・転炉内のCO量
とCO2量を計測することにより、該CO量とCO2量
との比に順応して発生する炉内フォーミング現象を的確
に把握することができる。なお、上記排ガス分析装置が
赤外線分析装置や磁気式分析装置でN2の分析が不可能
の場合であつても、全体の排ガス量から、CO量、CO
2量、02量(一定値)を差し引くことによつて、N2
量の概算を求せることができる。
Therefore, in order to obtain the above K value, ・By measuring the amount of CO and CO2 in the converter, we can accurately understand the forming phenomenon in the furnace that occurs depending on the ratio of the amount of CO and the amount of CO2. can do. Note that even if the above exhaust gas analyzer is an infrared analyzer or a magnetic analyzer and cannot analyze N2, the CO amount and CO amount can be calculated from the total exhaust gas amount.
By subtracting the 2 quantity, 02 quantity (constant value), N2
A rough estimate of the amount can be obtained.

次に、この発明を実施するための一例を図面について説
明する。
Next, an example for implementing the present invention will be described with reference to the drawings.

第1図に示すように、転炉1の煙道2に排ガス測定用の
バイブ3を挿入し、該バイブ3に導管4を介して煙道内
の排ガスを採取可ノ能に排ガス分析装置5に配管接続す
る。なお、6はランス、7は溶鋼、8は溶滓を示す。こ
れにより、転炉吹錬中の炉内排ガスのCO,CO2,N
2量を該排ガス分析装置5で測定し、この測定値を演算
装置(図面省略)に送信してK値を、求め、この値に応
じて例えばフォーミングが発生していると検知したとき
は作業者がランスの02供給量を減少させたり、ランス
を下げて溶滓に当る面積を少なくさせるなどの吹錬条件
を調整して常にフォーミング現象の発生を抑制するもの
である。
As shown in FIG. 1, a vibrator 3 for measuring flue gas is inserted into the flue 2 of the converter 1, and the flue gas in the flue can be collected through the vibrator 3 through a conduit 4 and transferred to the flue gas analyzer 5. Connect piping. Note that 6 indicates a lance, 7 indicates molten steel, and 8 indicates molten slag. As a result, CO, CO2, and N of the furnace exhaust gas during converter blowing are reduced.
The amount of K is measured by the exhaust gas analyzer 5, and this measured value is sent to a calculation device (not shown) to obtain the K value. Based on this value, for example, when it is detected that forming has occurred, work is carried out. This is to constantly suppress the occurrence of the forming phenomenon by adjusting the blowing conditions such as reducing the amount of 02 supplied by the lance or lowering the lance to reduce the area in contact with the slag.

次に、上記装置を用いて実際に転炉の排ガス成分を計測
した結果を第1表に示す。
Next, Table 1 shows the results of actually measuring the exhaust gas components of the converter using the above device.

上記第1表かられかるように、K値の増加に伴い、フォ
ーミング現象も増大することが認められる。
As can be seen from Table 1 above, it is recognized that as the K value increases, the forming phenomenon also increases.

このように、K値はフォーミング発生程度と比例関係に
あるから、吹錬中に排ガス分成分のK値が高くなり始め
ると、フォーミングが発生しつつあると考えられるため
、直ちにフォーミング防止剤の投入や吹錬条件の調整を
行つて、フォーミングの発生を抑制するものである。こ
のことは、K値が溶滓高さに比例してフォーミング現象
の大きさを十分表し得るフォーミング指数とすることが
できる。換言すれば、K値を高くないように吹錬するこ
とにより、フォーミングを防止した最適な吹錬を確実に
行うことができる。
In this way, the K value is proportional to the degree of foaming, so if the K value of the exhaust gas component starts to rise during blowing, it is considered that foaming is occurring, and a foaming inhibitor should be added immediately. This method suppresses the occurrence of forming by adjusting the blowing conditions. This means that the K value can be used as a forming index that can adequately represent the magnitude of the forming phenomenon in proportion to the slag height. In other words, by blowing so that the K value is not high, it is possible to reliably perform optimal blowing that prevents forming.

又、この発明法は転炉吹錬中における炉内排ガス成分を
連続して測定するもので、正確に炉内ガス成分の経時変
化を把握できる。次に、フォーミング指数として求めた
この発明のK値を、フォーミングの発生と共に問題視さ
れるところのスロツピング現象に当てはめてみた場合を
第2図に示す。
In addition, this invention method continuously measures the exhaust gas components in the furnace during converter blowing, so that changes in the furnace gas components over time can be accurately grasped. Next, FIG. 2 shows a case in which the K value of the present invention, which is determined as a forming index, is applied to the slopping phenomenon, which is regarded as a problem with the occurrence of forming.

図は既知のスロツピング発生時に同時計測した排ガス成
分より求めたK値と、その際のスロツピング指数との関
係を示すもので、縦軸のスロツピング指数は、スロツピ
ングの発生程度をNO.l〜NO.4まで4段階に符号
を用いて示し、微細な溶滓が散発的に炉口より飛散する
のをNO.lとし、これより順次増大するのをNO.2
、NO.3とし、NO.4に至つては多量の溶滓が激し
く炉口よりあふれ出るものを示した。この図かられかる
ように、K値が約0.帛以下ではスロツピングの発生が
全くみられないのに対し、K値が0.12を越えて増加
するに従たがい、しだいにスロツピング指数も増加する
ことが認められる。すなわち、フォーミングのみならず
、スロツピングの抑制にも十分役立つものと考えられる
。又、炉内フォーミング状況がわかると、周知のごとく
、フォーミングの発生に伴い脱燐性も良好になることか
ら、脱燐状況も正確に推定することができる。この発明
は上記のごとく、転炉の吹錬中に発生しやすいフォーミ
ングを直ちに抑制するために、このフォーミングの発生
と密接な関係がある炉内で発生したCO量とCO2量と
の比を求めることにより、炉内の吹錬状態を正確に把握
して常に適正な吹錬を行うことができる。
The figure shows the relationship between the K value obtained from the exhaust gas components measured simultaneously at the time of known sloping occurrence and the sloping index at that time.The sloping index on the vertical axis indicates the degree of sloping occurrence. l~NO. No. 4 is used to indicate the sporadic scattering of fine slag from the furnace mouth. 1, and increasing sequentially from this is NO. 2
, NO. 3 and NO. At No. 4, a large amount of slag was violently overflowing from the furnace mouth. As can be seen from this figure, the K value is approximately 0. While no sloping is observed below the K value, it is observed that as the K value increases beyond 0.12, the sloping index gradually increases. In other words, it is considered to be sufficiently useful not only for forming but also for suppressing slopping. Furthermore, if the in-furnace foaming situation is known, as is well known, the dephosphorization performance improves with the occurrence of foaming, so the dephosphorization situation can also be accurately estimated. As mentioned above, in order to immediately suppress the foaming that tends to occur during converter blowing, this invention calculates the ratio between the amount of CO generated in the furnace and the amount of CO2, which is closely related to the occurrence of this foaming. By doing so, it is possible to accurately grasp the blowing state inside the furnace and always perform proper blowing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明を実施するための一例を示す説明図、
第2図はこの発明のフォーミング指数として求めたK値
とスロツピング指数との関係を示す図表である。 1・・・・・・転炉、2・・・・・・煙道、3・・・・
・・バイブ、4・・・・・導管、5・・・・・・排ガス
分析装置、6・・・・・・ランス、7・・・・・・溶鋼
、8・・・・・・溶滓。
FIG. 1 is an explanatory diagram showing an example for carrying out this invention,
FIG. 2 is a chart showing the relationship between the K value determined as the forming index of the present invention and the slopping index. 1... converter, 2... flue, 3...
... Vibrator, 4 ... Conduit, 5 ... Exhaust gas analyzer, 6 ... Lance, 7 ... Molten steel, 8 ... Molten slag .

Claims (1)

【特許請求の範囲】[Claims] 1 転炉内で発生した一酸化炭素量と二酸化炭素量を計
測し、該計測値の一酸化炭素量と二酸化炭素量との比に
より、炉内フォーミング現象を検出することを特徴とす
る転炉のフォーミング検出方法。
1. A converter furnace characterized by measuring the amount of carbon monoxide and carbon dioxide generated in the converter, and detecting the forming phenomenon in the furnace based on the ratio of the measured values to the amount of carbon monoxide and the amount of carbon dioxide. Forming detection method.
JP3936580A 1980-03-26 1980-03-26 Converter forming detection method Expired JPS6049684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3936580A JPS6049684B2 (en) 1980-03-26 1980-03-26 Converter forming detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3936580A JPS6049684B2 (en) 1980-03-26 1980-03-26 Converter forming detection method

Publications (2)

Publication Number Publication Date
JPS56136915A JPS56136915A (en) 1981-10-26
JPS6049684B2 true JPS6049684B2 (en) 1985-11-05

Family

ID=12551028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3936580A Expired JPS6049684B2 (en) 1980-03-26 1980-03-26 Converter forming detection method

Country Status (1)

Country Link
JP (1) JPS6049684B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6375701B1 (en) * 1998-04-21 2002-04-23 Kawasaki Steel Corporation Method of judging slag forming state in electric furnace steel production and method of operating electric furnace

Also Published As

Publication number Publication date
JPS56136915A (en) 1981-10-26

Similar Documents

Publication Publication Date Title
JPS6049684B2 (en) Converter forming detection method
JP7036142B2 (en) Sloping prediction method of converter, operation method of converter and sloping prediction system of converter
JPH05263120A (en) Method for controlling blowing in converter
JP2013144819A (en) Method for recovering exhaust gas of converter
JPH06256832A (en) Blowing method of converter
JP2004156119A (en) Process for controlling decarbonizing treatment time in vacuum decarbonization method of molten steel
JPH07113112A (en) Method for suppressing occurrence of spitting in converter
TWI732490B (en) Conversion control method and conversion control device of converter type dephosphorization refining furnace
JP2697535B2 (en) Operating method of smelting furnace
JPH06306437A (en) Control method for restraining slopping in converter
JPH0860211A (en) Method for judging completion time of iron tapping of blast furnace
SU1715859A1 (en) Method of converter process control
JPH06145753A (en) Method for predicting slopping in converter
JPH02101110A (en) Method for assuming carbon concentration in vacuum degassing refining
JPH06256834A (en) Detection of firing in converter
JP5760982B2 (en) Method for refining molten steel
JP2730339B2 (en) How to decarburize stainless steel
JPH036312A (en) Method for controlling blowing in converter
US20230142051A1 (en) Decarburization refining method for molten steel under reduced pressure
JPH06248321A (en) Method for predicting slopping in refining furnace
JPH0435528B2 (en)
KR100399223B1 (en) Control method and control device of carbon steel concentration in molten steel in converter operation
KR100428582B1 (en) Method for forecasting post combustion ratio of corbon in converter for top and bottom blowing process and method for forecasting carbon concentration in molten steel
JP3293674B2 (en) Control method of end point carbon concentration in RH degassing process
JPS62238312A (en) Converter blowing control method