JPS6049611B2 - Method for producing oxygen-containing hydrocarbon compound - Google Patents

Method for producing oxygen-containing hydrocarbon compound

Info

Publication number
JPS6049611B2
JPS6049611B2 JP58172892A JP17289283A JPS6049611B2 JP S6049611 B2 JPS6049611 B2 JP S6049611B2 JP 58172892 A JP58172892 A JP 58172892A JP 17289283 A JP17289283 A JP 17289283A JP S6049611 B2 JPS6049611 B2 JP S6049611B2
Authority
JP
Japan
Prior art keywords
catalyst
rhodium
chloride
halfnium
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58172892A
Other languages
Japanese (ja)
Other versions
JPS6064937A (en
Inventor
健一 佐野
伸也 松比良
哲夫 中條
裕子 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58172892A priority Critical patent/JPS6049611B2/en
Publication of JPS6064937A publication Critical patent/JPS6064937A/en
Publication of JPS6049611B2 publication Critical patent/JPS6049611B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は合成ガスからの酸素含有炭化水素化合物の製
造法に関し、特に、ロジウム触媒の存在下に一酸化炭素
と水素を反応させて酢酸、アセトアルデヒドおよび(ま
たは)エタノールを製造する際、助触媒としてマンガン
、ハーフニウム及びリチウムを併用することを特徴とす
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a process for producing oxygen-containing hydrocarbon compounds from synthesis gas, and in particular to a process for producing acetic acid, acetaldehyde and/or ethanol by reacting carbon monoxide and hydrogen in the presence of a rhodium catalyst. The present invention relates to a method characterized in that manganese, halfnium and lithium are used in combination as co-catalysts during production.

合成ガス、実質的にはその中に含まれる一酸化炭素と
水素、から、酢酸、アセトアルデヒド、エタノールなど
の炭素数2の含酸素炭化水素を製造する方法は公知であ
り、その際用いられる触媒としてはロジウム(Rh)触
媒が効果的であることが知られている。
A method for producing oxygenated hydrocarbons having two carbon atoms, such as acetic acid, acetaldehyde, and ethanol, from synthesis gas, essentially carbon monoxide and hydrogen contained therein, is known, and the catalyst used in this process is It is known that a rhodium (Rh) catalyst is effective.

(例えば、特開昭51−80806号、同51−808
07号、同52−14706号、同54−138504
号、同54−141705号、同55−57527号等
参照)。即ち、合成ガス又は一酸化炭素と水素を含むガ
ス混合物を接触的に反応させた場合、使用する触媒や反
応条件によつて反応生成物は極めて多岐に亘り、例えば
、メタンからパラフィンワックスに至る飽和およびα−
オレフィンに富む不飽和の各種脂肪族炭化水素並びに炭
素数6乃至m数個の芳香族炭化水素や、メタノールから
炭素数会見くの高級アルコールに至る各種アルコール類
その他アルデヒド類や脂肪酸類など各種の含酸素炭化水
素化合物が生成する。換言すれば、これら膨大な数の各
種生成物の中から不必要な化合物の生成を抑制し、所望
とする特定の化合物のみを選択的に生成させることは非
常に難しく、そのため好適な触媒の探索を主体に種々の
工夫がなされているが、上述の酢酸、アセトアルデヒド
、エタノールなどの2個の炭素原子を有する含酸素炭化
水素化合物を高い選択率をもつて取得するにはロジウム
触媒が特異的に優れていると言われている。 しかし乍
ら、ロジウム触媒を用いて或る条件下に反応を行つた場
合には、確かに炭酸ガスやメタンその他の炭化水素など
好ましくない副生物の生成は抑制され、或る程度選択的
に炭素数2の含酸素化合物が生成することが認められる
が、触媒活性成分としてロジウム単独では活性が低く、
また、選択性に関しても炭素数2の含酸素化合物のうち
主たる生成物はアセトアルデヒドであるため目的化合物
として酢酸を所望する場合には目的物の収率が充分では
ないという難点がある。
(For example, JP-A-51-80806, JP-A No. 51-808
No. 07, No. 52-14706, No. 54-138504
No. 54-141705, No. 55-57527, etc.). That is, when synthesis gas or a gas mixture containing carbon monoxide and hydrogen is catalytically reacted, the reaction products vary widely depending on the catalyst used and the reaction conditions. and α−
Various unsaturated aliphatic hydrocarbons rich in olefins, aromatic hydrocarbons with 6 to several carbon atoms, various alcohols ranging from methanol to higher alcohols with a large number of carbon atoms, and various other substances such as aldehydes and fatty acids. Oxygen hydrocarbon compounds are formed. In other words, it is extremely difficult to suppress the production of unnecessary compounds and selectively produce only the desired specific compounds from among these vast numbers of various products, and therefore the search for suitable catalysts is required. Although various efforts have been made mainly for It is said to be excellent. However, when the reaction is carried out under certain conditions using a rhodium catalyst, the production of undesirable by-products such as carbon dioxide, methane, and other hydrocarbons is certainly suppressed, and carbon is selectively reduced to a certain extent. It is recognized that several oxygen-containing compounds are produced, but rhodium alone as a catalytic active component has low activity.
In addition, in terms of selectivity, the main product of the oxygen-containing compound having 2 carbon atoms is acetaldehyde, so when acetic acid is desired as the target compound, there is a problem that the yield of the target product is not sufficient.

殊に、ロジウムは高価な物質であるため、その触媒活性
や目的物の選択性を改善することは工業上重要な意味を
もつている。一般に金属や金属酸化物或いは金属塩を活
性成分とする固体触媒などに於いてその活性や選択性を
改善する方法の一つとして活性の中心となる成分(主触
媒)に他の活性又は補助的な成分(助触媒)を組合せる
ことが種々試みられているが、組合せる成分によつては
活性向上に何の関係も無いものは論外として、狙いとは
逆に活性や選択性の低下を招くものも数多く、また活性
(又は選択性)が向上するものてあつても目的化合物の
選択性(又は活性)に悪影響を及ぼすものも少なくなく
、具体的に好適な組合せを見出すことは容易ではない。
In particular, since rhodium is an expensive substance, improving its catalytic activity and target product selectivity has important industrial significance. In general, one way to improve the activity and selectivity of solid catalysts containing metals, metal oxides, or metal salts as active components is to add other active or auxiliary components to the active component (main catalyst). Various attempts have been made to combine different components (cocatalysts), but it is out of the question to combine the components that have nothing to do with improving the activity, and may cause a decrease in activity or selectivity, which is the opposite of the aim. It is not easy to find a specific suitable combination, as there are many factors that can lead to a reaction, and even if the activity (or selectivity) is improved, there are many that have a negative effect on the selectivity (or activity) of the target compound. do not have.

本発明者らは一酸化炭素と水素を反応させて酢酸、アセ
トアルデヒドおよび(または)エタノールなどの2個の
炭素原子を有する含酸素炭化水素化合物を製造する方法
に於いて、主触媒たるロジウムの触媒性能を改善すべく
、これに数多くの助触媒成分を組合せて試験を行い種々
研究を重ねた結果、ロジウムに助触媒としてマンガン、
ハーフニウム及びリチウムを組合せた触媒が酢酸を主成
分とする炭素数2の含酸素化合物に対して高い選択率を
示すことを見い出し本発明の方法を完成するに至つた。
The present inventors have developed a method for producing oxygenated hydrocarbon compounds having two carbon atoms such as acetic acid, acetaldehyde and/or ethanol by reacting carbon monoxide and hydrogen, using a rhodium catalyst as the main catalyst. In order to improve its performance, we conducted tests in combination with many co-catalyst components, and as a result of various research, we found that rhodium was combined with manganese,
The present inventors have discovered that a catalyst containing halfnium and lithium exhibits high selectivity for an oxygen-containing compound having 2 carbon atoms and whose main component is acetic acid, leading to the completion of the method of the present invention.

一酸化炭素と水素とをロジウム触媒の存在下に反応させ
て、炭素数2の含酸素化合物を得る方法において、助触
媒としてマンガンとアルカリ金属を併用する方法(特開
昭56−8333号、8334号)、ハーフニウムを添
加する方法(特開昭55−57527号)が知られてい
るが、いずれの方法も酢酸又は炭素数2の含酸素化合物
の活性及び選択率は充分満足できる結果ではない。しか
るに、本発明者らはロジウムに助触媒として、マンガン
、ハーフニウム及びリチウムを組合せた触媒においては
予期し得ない相乗効果が発現し、酢酸又は炭素数2の含
酸素化合物の選択率が大巾に向上することを見い出した
A method in which manganese and an alkali metal are used in combination as co-catalysts in a method of obtaining an oxygen-containing compound having 2 carbon atoms by reacting carbon monoxide and hydrogen in the presence of a rhodium catalyst (Japanese Patent Application Laid-open No. 8333/1983, 8334 (No.) and a method of adding halfnium (Japanese Patent Application Laid-open No. 55-57527) are known, but neither method gives sufficiently satisfactory results in the activity and selectivity of acetic acid or an oxygen-containing compound having two carbon atoms. . However, the present inventors have discovered that an unexpected synergistic effect appears in a catalyst that combines rhodium with manganese, halfnium, and lithium as cocatalysts, and the selectivity of acetic acid or an oxygen-containing compound having two carbon atoms is greatly increased. found that it improved.

以上、本発明の方法について更に詳細に説明する。The method of the present invention will now be described in more detail.

本発明の触媒は前述の如くロジウムに助触媒として、マ
ンガン、ハーフニウム及びリチウムを組合せた触媒であ
るが、反応条件下に於ける動的な状態での真の触媒活性
種は必ずしも詳らかではないものの、その活性の中心と
なるものは本質的には互いに共存する金属種であり、従
つて、触媒自体の形態や触媒中の各成分の形は原則的に
は何ら制限はない。
As mentioned above, the catalyst of the present invention is a catalyst that combines rhodium with manganese, halfnium, and lithium as co-catalysts, but the true catalytic active species in the dynamic state under the reaction conditions are not necessarily clear. However, what plays a central role in its activity is essentially the metal species that coexist with each other, and therefore there is no restriction in principle on the form of the catalyst itself or the form of each component in the catalyst.

ただ、実体的にはロジウム、ハーフニウムは金属又は低
原子価の塩てあり、また、リチウムは酸化物、無機酸塩
、錯塩等としてロジウム等と物理的に混合され或いは化
学的に結合される。また、担体なしでもよいが、通常は
上記触媒成分は担体に担持される。触媒調製上使用され
るロジウム化合物として゛は、例えば塩化ロジウム・臭
化ロジウム・沃化ロジウム、塩化ロジウム酸ナトリウム
・塩化ロジウム酸アンモニウム●硝酸ロジウム●硫酸ロ
ジウム等の無機酸塩、酸化物、酢酸ロジウム・ギ酸ロジ
ウム・蓚酸ロジウム等の有機酸塩或いはアンミン錯塩、
クラスター等が用いられるが特に制限はない。助触媒と
して使用されるマンガン、ハーフニウム、リチウムは、
ハロゲン酸塩・硫酸塩・硝酸塩・炭酸塩等の無機酸塩、
酸化物、水酸化物、酢酸塩、ギ酸塩、蓚酸塩等の有機酸
塩を問わす使用することができる。
However, rhodium and halfnium are actually metals or low-valent salts, and lithium is physically mixed or chemically combined with rhodium as oxides, inorganic acid salts, complex salts, etc. . Further, the above-mentioned catalyst component is usually supported on a carrier, although it may be carried without a carrier. Examples of rhodium compounds used in catalyst preparation include inorganic acid salts and oxides such as rhodium chloride, rhodium bromide, rhodium iodide, sodium rhodium chloride, ammonium rhodium chloride, rhodium nitrate, rhodium sulfate, and rhodium acetate. Organic acid salts or ammine complex salts such as rhodium formate and rhodium oxalate,
A cluster or the like may be used, but there is no particular restriction. Manganese, halfnium, and lithium are used as promoters.
Inorganic acid salts such as halogenates, sulfates, nitrates, carbonates, etc.
Any organic acid salt such as oxide, hydroxide, acetate, formate, oxalate, etc. can be used.

しかし、これらの触媒成分の担体上への担持を容易なら
しめるため、水又は適当な溶媒に可溶性の化合物が好ま
しく用いられる。本発明に於いて用いられるロジウムに
マンガン、ハーフニウム、リチウムを組合せた触媒の調
製法としては、上記ロジウム、マンガン、ハーフニウム
及びリチウムを水又はn−ヘキサン、アルコール、アセ
トン等の有機溶媒に溶解し、この溶液に多孔質無機担体
物質を力iえ、含浸法・イオン交換法その他の常法によ
り担持させた後、還元又は熱処理することにより担持固
定された目的物を得ることがてきる。
However, in order to facilitate the loading of these catalyst components onto a carrier, compounds soluble in water or an appropriate solvent are preferably used. The catalyst used in the present invention, which is a combination of rhodium, manganese, halfnium, and lithium, can be prepared by dissolving the rhodium, manganese, halfnium, and lithium in water or an organic solvent such as n-hexane, alcohol, or acetone. Then, a porous inorganic carrier material is applied to this solution and supported by an impregnation method, an ion exchange method, or other conventional method, and then a supported and fixed target product can be obtained by reduction or heat treatment.

担体上への触媒成分の担持はすべての触媒成分を同時に
行なつてもよいし、又、各成分ごとに逐次的に担体に担
持する方法、あるいは各成分を必要に応じて還元、熱処
理等の処理を行いながら、逐次的、段階的に担持する方
法などの各手法を用いることができる。上述の手法によ
つて調製された触媒は通常還元処理を行うことによりロ
ジウムを実質的金属状態に活性化し、ついで反応に供せ
られる。還元処理を行うには水素ガス下又は水素及び一
酸化炭素の混合ガス下、場合によつては窒素、ヘリウム
、アルゴン等の不活性ガスで一部希釈された水素ガスま
たは上記混合ガス下で行うことができる。還元処理温度
としては100〜600゜C1好ましくは250〜55
0℃の温度において行う。
The catalyst components may be supported on the carrier at the same time, or each component may be supported on the carrier sequentially, or each component may be supported by reduction, heat treatment, etc. as necessary. Various methods can be used, such as a method of sequentially or stepwise loading while processing. The catalyst prepared by the above method is usually subjected to a reduction treatment to activate rhodium to a substantially metallic state, and then subjected to a reaction. The reduction treatment is performed under hydrogen gas or under a mixed gas of hydrogen and carbon monoxide, or in some cases under hydrogen gas partially diluted with an inert gas such as nitrogen, helium, argon, etc., or under the above mixed gas. be able to. The reduction treatment temperature is 100 to 600° C1, preferably 250 to 55
It is carried out at a temperature of 0°C.

この際、触媒の各成分の活性状態を最適な状態に保つ目
的で、低温より徐々に、あるいは段階的に昇温しながら
還元処理を行つてもよい。又、ロジウム化合物の還元は
メタノール、ヒドラジン、ホルマリン等の還元剤で処理
することによつて行なつてもよい。
At this time, in order to maintain the activation state of each component of the catalyst in an optimal state, the reduction treatment may be performed while raising the temperature gradually or stepwise from a low temperature. Further, the rhodium compound may be reduced by treatment with a reducing agent such as methanol, hydrazine or formalin.

各触媒成分の使用量については必ずしも厳密な制限はな
いが、担体の表面積(約1rr11y〜1000ボ1q
)を考慮して通常の条件下に於いては、担持触媒中のロ
ジウムの含有量としては0.01〜15重量%、好まし
くは0.1〜1唾量%、助触媒マンガン、ハーフニウム
及びリチウムとロジウムの比率(Mn/Rh..Hf/
Rh..Li/Rh)はそれぞれ原子比で0.001〜
10好ましくは0.01〜3、0.001〜m好ましく
は0.01〜3、0.001〜W好ましくは0.01〜
5の範囲が用いられる。
There is not necessarily a strict limit on the amount of each catalyst component used, but the surface area of the carrier (approximately 1rr11y to 1000bo
), under normal conditions, the content of rhodium in the supported catalyst is 0.01 to 15% by weight, preferably 0.1 to 1% by weight, and the cocatalyst manganese, halfnium and Ratio of lithium and rhodium (Mn/Rh..Hf/
Rh. .. Li/Rh) each has an atomic ratio of 0.001 to
10 Preferably 0.01-3, 0.001-m Preferably 0.01-3, 0.001-W Preferably 0.01-m
A range of 5 is used.

本触媒に用いる担体としては、1〜1000dIyの比
表面積をもつものか好ましく、シリカ、活性アルミナ、
酸化チタン、酸化トリウム、活性炭、ゼオライト等が用
いうるが特にシリカ系担体が好ましい。
The carrier used in the present catalyst is preferably one having a specific surface area of 1 to 1000 dIy, such as silica, activated alumina,
Titanium oxide, thorium oxide, activated carbon, zeolite, etc. can be used, but silica-based carriers are particularly preferred.

これらの担体は粉末状、ペレット状等あらゆる形状のも
のについて適用可能である。反応は通常気相て行われ、
例えば、触媒を充填した固定床式反応器に一酸化炭素と
水素を含む原料ガスを導通させる。この場合、原料ガス
には酸化炭素と水素以外に、例えは、二酸化炭素、窒素
、アルゴン、ヘリウム、水蒸気、メタン等の他一の成分
を含んても良い。また、触媒反応器は固定床式に限らず
移動床式や流動床式等の形式であつても良い。また、場
合によつては触媒を適当な溶媒中に懸濁して原料ガスを
導通して反応させる液相反応でも実施することができる
。反応条件は広い範囲で変えることができるが、固定床
流通式反応装置に適用される反応条件を代表的な範囲と
して以下に示す。
These carriers can be in any shape such as powder or pellets. The reaction is usually carried out in the gas phase,
For example, a raw material gas containing carbon monoxide and hydrogen is passed through a fixed bed reactor filled with a catalyst. In this case, the raw material gas may contain, in addition to carbon oxide and hydrogen, other components such as carbon dioxide, nitrogen, argon, helium, water vapor, and methane. Further, the catalytic reactor is not limited to a fixed bed type, but may be of a moving bed type, a fluidized bed type, or the like. In some cases, a liquid phase reaction may also be carried out, in which the catalyst is suspended in a suitable solvent and a raw material gas is introduced therethrough. Although the reaction conditions can vary within a wide range, the reaction conditions applicable to a fixed bed flow reactor are shown below as a typical range.

一酸化炭素と水素のモル比:50:1〜1:5、好まし
くは10:1〜1:3、反応温度150〜450−゜C
1200〜350℃、圧力1〜3001tm1好ましく
は20〜20011tm..S■:100〜103H−
1、好ましくは1000〜1CPH−1程度が適当であ
る。
Molar ratio of carbon monoxide and hydrogen: 50:1 to 1:5, preferably 10:1 to 1:3, reaction temperature 150 to 450°C
1200-350°C, pressure 1-3001 tm1, preferably 20-20011 tm. .. S: 100~103H-
1, preferably about 1000 to 1 CPH-1.

以下、本発明について、実施例をもつて、更に詳細に説
明するが、これらの例は本発明についての理解を容易に
するため、あえて条件を統一して示すもので本発明はこ
れらの例によつて何ら制限されないことは勿論である。
触媒調製 実施例1 塩化ロジウム(RhCl3・31120)2.04y1
塩化マンガン(MnCl2・4H20)0.51y1塩
化ハーフニウム(HfCl4)0.828g、塩化リチ
ウム(LiCl)ノ0.220ダ加えた純水23m1に
溶解した水溶液中に700℃1時間焼成処理したシリカ
ゲル(富士デヴイソン化学(株)#57)20yを加え
、均一に含浸させた。
Hereinafter, the present invention will be explained in more detail with reference to Examples.However, in order to make it easier to understand the present invention, these examples are purposely shown under unified conditions, and the present invention is not limited to these examples. Therefore, it goes without saying that there are no restrictions whatsoever.
Catalyst Preparation Example 1 Rhodium chloride (RhCl3.31120) 2.04y1
Silica gel (calcined at 700°C for 1 hour) was placed in an aqueous solution containing 0.51y1 of manganese chloride (MnCl2.4H20), 0.828 g of halfnium chloride (HfCl4), and 0.220 da of lithium chloride (LiCl), dissolved in 23 ml of pure water. Fuji Davison Chemical Co., Ltd. #57) 20y was added and uniformly impregnated.

時々、攪拌しながら、室温下で1時間、80℃で20時
間乾燥した。この触媒を石英ガラス製還元反応−管に入
れ、水素1!5Ne1H流通下、450℃2時間水素還
元した。得られた触媒は第1表実施例1の組成をもつ。
実施例2 塩化ロジウム(RhCl3・3H20)2.04y1硝
酸マ″ンガン(Mn(NO3)2・61(20)0.7
43y1塩化ハーフニウム(HfCl4)0.828q
1塩化リチウム(LiCl)0.220y加えた純水2
3m1に完全に溶解させてから、実施例1で用いたシリ
カゲル20yに含浸させた。
The mixture was dried at room temperature for 1 hour and at 80° C. for 20 hours with occasional stirring. This catalyst was placed in a reduction reaction tube made of quartz glass, and hydrogen reduction was carried out at 450° C. for 2 hours while flowing 1.5 Ne1 H of hydrogen. The resulting catalyst had the composition shown in Table 1, Example 1.
Example 2 Rhodium chloride (RhCl3.3H20) 2.04y1 Manganese nitrate (Mn(NO3)2.61(20) 0.7
43y1 halfnium chloride (HfCl4) 0.828q
Pure water 2 with 0.220y of lithium monochloride (LiCl) added
After it was completely dissolved in 3 ml of water, it was impregnated into the silica gel 20y used in Example 1.

これに実施例1と同様に乾燥及び還元処理を行ない、第
1表実施例2の触媒を得た。実施例3塩化ロジウム(R
hCl3・3H20)2.04y1塩化マンガン(Mn
Cl.・4H20)0.51y1塩化ハーフニウム(H
fCl4)0.828y1酢酸リチウム(LlOAc)
0.342y加えた純水23m1に完全に溶解させてか
ら、実施例1で用いたシリカゲル20yに含浸させた。
This was subjected to drying and reduction treatment in the same manner as in Example 1 to obtain the catalyst of Example 2 in Table 1. Example 3 Rhodium chloride (R
hCl3・3H20)2.04y1 Manganese chloride (Mn
Cl.・4H20) 0.51y1 halfnium chloride (H
fCl4)0.828y1 lithium acetate (LlOAc)
After completely dissolving in 23 ml of pure water to which 0.342y was added, 20y of silica gel used in Example 1 was impregnated.

これに実施例1と同様に乾燥及び還元処理を行ない、第
1表実施例3の触媒を得た。実施例4 塩化ロジウム(RhCl3・記,0)2.04y1酢酸
マンガン(Mn(0Ac)2・2H20)0.54g、
塩化ハーフニウム(HfCl4)0.311f1酢酸リ
チウム〔LlCl)0.220y加えた純水23m1に
完全に溶解させてから、実施例1で用いたシリカゲル2
0yに含浸させた。
This was subjected to drying and reduction treatment in the same manner as in Example 1 to obtain the catalyst of Example 3 in Table 1. Example 4 Rhodium chloride (RhCl3.0) 2.04y1 Manganese acetate (Mn(0Ac)2.2H20) 0.54 g,
After completely dissolving in 23 ml of pure water containing 0.311 f1 of halfnium chloride (HfCl4) and 0.220 y of lithium acetate [LlCl], the silica gel 2 used in Example 1 was added.
It was impregnated with 0y.

これに実施例1と同様に乾燥及び還元処理を行ない、第
1表実施例4の触媒を得た。実施例5塩化ロジウム(R
hCl3・3H20)2.04q1塩化マンガン(Mr
lCl2・4H20)0.51y1塩化ハーフニウム(
HfCl,)0.311y、臭化リチウム(LlBr・
H2O)0.543ダ加えた純水23m1に完全に溶解
させてから、実施例1で用いたシリカゲル20yに含浸
させた。
This was subjected to drying and reduction treatment in the same manner as in Example 1 to obtain the catalyst of Example 4 in Table 1. Example 5 Rhodium chloride (R
hCl3・3H20)2.04q1 Manganese chloride (Mr
lCl2・4H20) 0.51y1 halfnium chloride (
HfCl,)0.311y, lithium bromide (LlBr・
After completely dissolving in 23 ml of pure water to which 0.543 Da of H2O was added, it was impregnated into 20y of silica gel used in Example 1.

これに実施例1と同様に乾燥及び還元処理を行ない、第
1表実施例5の触媒を得た。参考例1塩化ハーフニウム
を用いない他は実施例1と同様にして、第1表参考例1
の触媒を得た。
This was subjected to drying and reduction treatment in the same manner as in Example 1 to obtain the catalyst of Example 5 in Table 1. Reference Example 1 In the same manner as in Example 1 except that halfnium chloride was not used, Reference Example 1 in Table 1 was carried out.
A catalyst was obtained.

参考例2 塩化リチウムを用いない他は実施例1と同様にして第1
表参考例2の触媒を得た。
Reference Example 2 The same procedure as Example 1 was carried out except that lithium chloride was not used.
The catalyst shown in Table Reference Example 2 was obtained.

参考例3 塩化ロジウム(RhCl3・川20)2.04y)塩化
ハM*−フニウム(HfCl4)0.311g、塩化リ
チウム(LiCl)0.083ダを加えた純水23m1
に完全に溶解させてから、実施例1で用いたシリカゲル
20ダに含浸させた。
Reference Example 3 23 ml of pure water to which rhodium chloride (RhCl3/River 20) 2.04 y) haM*-funium chloride (HfCl4) 0.311 g and lithium chloride (LiCl) 0.083 da were added
After completely dissolving the solution, it was impregnated into 20 Da of the silica gel used in Example 1.

これに実施例1と同様に、乾燥及び還元処理を行ない、
第1表参考例3の触媒を得た。活性評価及び結果上記触
媒10m1をステンレススチール製U字型反応管に充填
し、原料ガス(CO/H。
This was subjected to drying and reduction treatment in the same manner as in Example 1,
The catalyst of Reference Example 3 in Table 1 was obtained. Activity Evaluation and Results 10 ml of the above catalyst was filled into a stainless steel U-shaped reaction tube, and raw material gas (CO/H) was charged.

=9/1)を100NIIHの速度で送入し、反応圧力
100k91c11G)反応速度300’Cにおいて反
応を行なつた。加圧冷却一捕集した液体生成物及び反応
ガスをガスクロマトグラフ法により分析した結果を第1
表に示した。C2−O欄に示したものは酢酸、アセトア
ルデヒド、及びエタノ〜−ルへの選択率の合計値であX
る。
=9/1) was fed at a rate of 100 NIIH, and the reaction was carried out at a reaction pressure of 100k91c11G) and a reaction rate of 300'C. The results of analyzing the liquid product and reaction gas collected under pressure and cooling by gas chromatography are
Shown in the table. What is shown in the C2-O column is the total value of selectivity to acetic acid, acetaldehyde, and ethanol.
Ru.

Claims (1)

【特許請求の範囲】[Claims] 1 ロジウム触媒の存在下に一酸化炭素と水素を反応さ
せて酢酸、アセトアルデヒドおよび(または)エタノー
ルを製造する方法に於いて、助触媒としてマンガン、ハ
ーフニウム及びリチウムを併用することを特徴とする方
法。
1. A method for producing acetic acid, acetaldehyde and/or ethanol by reacting carbon monoxide and hydrogen in the presence of a rhodium catalyst, characterized in that manganese, halfnium and lithium are used together as co-catalysts. .
JP58172892A 1983-09-21 1983-09-21 Method for producing oxygen-containing hydrocarbon compound Expired JPS6049611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58172892A JPS6049611B2 (en) 1983-09-21 1983-09-21 Method for producing oxygen-containing hydrocarbon compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58172892A JPS6049611B2 (en) 1983-09-21 1983-09-21 Method for producing oxygen-containing hydrocarbon compound

Publications (2)

Publication Number Publication Date
JPS6064937A JPS6064937A (en) 1985-04-13
JPS6049611B2 true JPS6049611B2 (en) 1985-11-02

Family

ID=15950259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58172892A Expired JPS6049611B2 (en) 1983-09-21 1983-09-21 Method for producing oxygen-containing hydrocarbon compound

Country Status (1)

Country Link
JP (1) JPS6049611B2 (en)

Also Published As

Publication number Publication date
JPS6064937A (en) 1985-04-13

Similar Documents

Publication Publication Date Title
JPS6155416B2 (en)
JPS6339634A (en) Conversion of synthetic gas using ror-activated catalyst
US4568699A (en) Process for producing oxygen-containing hydrocarbon compounds
CA1147749A (en) Process for the manufacture of oxygen-containing carbon compounds and olefins from synthesis gas
JPH0542298B2 (en)
JPS6049611B2 (en) Method for producing oxygen-containing hydrocarbon compound
JPS6113689B2 (en)
JPS6341893B2 (en)
JPS58134040A (en) Manufacture of acetic acid, acetaldehyde and ethanol
JPS5978130A (en) Preparation of hydrocarbon compound containing oxygen
JPS6039654B2 (en) Method for producing oxygen-containing hydrocarbon compound
JPS6341892B2 (en)
JPS6049612B2 (en) Method for producing oxygen-containing hydrocarbon compound
JPS6233215B2 (en)
JPS611630A (en) Production of lower alcohol
JPS6183134A (en) Production of unsaturated hydrocarbon
JPS6064938A (en) Production of oxygen-containing hydrocarbon compound
JP2903073B2 (en) Method for producing ethylene
JPS63203637A (en) Production of oxygen-containing hydrocarbon compound
JPS60199841A (en) Production of oxygen-containing c2 compound
JPS6210485B2 (en)
JPS60114342A (en) Sulfur-containing rhodium catalyst
JPS60161935A (en) Production of oxygen-containing hydrocarbon compound
JPS6238336B2 (en)
JPS63227531A (en) Production of oxygen-containing compound