JPS6049545A - Method of generating electron gun beam - Google Patents

Method of generating electron gun beam

Info

Publication number
JPS6049545A
JPS6049545A JP15636983A JP15636983A JPS6049545A JP S6049545 A JPS6049545 A JP S6049545A JP 15636983 A JP15636983 A JP 15636983A JP 15636983 A JP15636983 A JP 15636983A JP S6049545 A JPS6049545 A JP S6049545A
Authority
JP
Japan
Prior art keywords
voltage
cathode
electron gun
brightness
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15636983A
Other languages
Japanese (ja)
Inventor
Tomoaki Sakai
酒井 智昭
Shinji Aoyama
眞二 青山
Akihira Fujinami
藤波 明平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP15636983A priority Critical patent/JPS6049545A/en
Publication of JPS6049545A publication Critical patent/JPS6049545A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/063Geometrical arrangement of electrodes for beam-forming

Abstract

PURPOSE:To obtain high brightness and high emittance by impressing sepcific positive voltage on the cathode of a bias Wehnelt electrode in an electron gun generating a beam for forming an LSI pattern. CONSTITUTION:An electron gun for forming an LSI pattern is formed of the cathode 1 made of an LaB6 single crystal, a bias Wehnelt electrode 4, the first and second anode electrodes 5 and 6. And the positive voltage 5-50V between the voltage, by which a beam becomes almost a laminar flow and the voltage in the vicinity, where brightness on the formed aperture part reaches its maximum, is impresed on the cathode 1, of the Wehnelt electrode 4 by the power source 12 while impressing the voltage 10-30kV on the first and second anode electrodes 5 and 6 in order to generate the beam. Accordingly, the wide formed beam having high brightness and the current density smoothly changing in response to the changing impressed voltage can be obtained on the surface vertical to the optical axis.

Description

【発明の詳細な説明】 (発明の利用分野) 本発明は、 LSI (大規模集積回路)パターン形成
用の電子銃における成形ビーム発生法に関するもので、
特に、成形アパーチャ部において高輝度高エミンタンス
とすることかでき、かつ、高安定に保つことのできる成
形ビームを発生させることを図ったものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Application of the Invention) The present invention relates to a shaped beam generation method in an electron gun for forming LSI (large scale integrated circuit) patterns.
In particular, the aim is to generate a shaped beam that can have high brightness and high emintance in the shaping aperture portion, and that can be kept highly stable.

(発明の背景) LSI ハターン形成に用いる電子ビーム露光装置では
、生産性を高めるために、電子銃に高輝度。
(Background of the Invention) In the electron beam exposure apparatus used for LSI pattern formation, high brightness is applied to the electron gun in order to increase productivity.

高エミツタンスが要求される。第1図は露光装置用電子
銃として使用されてきた光学系の従来構成を模式的に示
す図である。第1図において、1はカソード、2はウェ
ネルト電極、3はアノード電極である。これを動作させ
るには、カソード1を熱電子放射温度以上にして電子を
カソード1の先端から放射させ、アノード電極3の電圧
でこの電子を所定の速度に加速させる。またウェネルト
電極2はカソード1に対し負の電圧を印加してエミッシ
ョン電流に制限を与え、4度を高く制御している。とこ
ろでエミツタンスを拡大するにはカソード先端の曲率半
径を大きくしあるいは先端を平面にしてエミッタ面積を
太き(することが必要であるが、この場合にはウェネル
ト電圧て制御しても輝度の低下は免れないという欠点が
あった。一方、従来のピアス形電子銃は、カソード先端
の電子を放射させる領域であるエミッタが広いのでエミ
ツタンスは大きくできるが、該エミッタに印加される電
界強度が不充分なため、露光装置用としては輝度が不充
分であった。また従来のピアス形電子銃ではカソード拐
料として高抵抗の酸化物(Ba、O、CaO等)が一般
に使用されていたことも低輝度の一要因であった。輝度
を上げるために。
High emittance is required. FIG. 1 is a diagram schematically showing the conventional configuration of an optical system that has been used as an electron gun for an exposure apparatus. In FIG. 1, 1 is a cathode, 2 is a Wehnelt electrode, and 3 is an anode electrode. To operate this, the cathode 1 is heated to a temperature higher than the thermionic emission temperature and electrons are emitted from the tip of the cathode 1, and the voltage of the anode electrode 3 accelerates the electrons to a predetermined speed. Further, the Wehnelt electrode 2 applies a negative voltage to the cathode 1 to limit the emission current and control the 4 degrees to a high degree. By the way, in order to expand the emittance, it is necessary to increase the radius of curvature of the cathode tip or make the tip flat and increase the emitter area, but in this case, even if the Wehnelt voltage is controlled, the brightness will not decrease. On the other hand, conventional piercing-type electron guns have a wide emitter, which is the area where electrons are emitted at the tip of the cathode, so the emittance can be increased, but the electric field strength applied to the emitter is insufficient. Therefore, the brightness was insufficient for use in exposure equipment.In addition, high-resistance oxides (Ba, O, CaO, etc.) were generally used as cathode fillers in conventional pierce-type electron guns, which resulted in low brightness. This was one of the factors.To increase brightness.

特願昭56−149711のようにカソード拐をL a
、 B 6に変更することも提案されているが、これに
よっても高輝度と高エミツタンスの両方を同時に満足さ
せることは不可能であった。
La
, B6, but it has been impossible to satisfy both high luminance and high emittance at the same time.

(発明の目的) 本発明の目的は、従来技術での上記した問題点を解決し
、ピアス形ウェネルト電極とカソード及びアノード電極
を備えた電子銃において高輝度。
(Object of the Invention) The object of the present invention is to solve the above-mentioned problems in the prior art and to provide a high-brightness electron gun with a pierced Wehnelt electrode and a cathode and an anode electrode.

高エミツタンスでしかも高安定に保つことのできるLS
Iハターン形成形成酸形ビーム発生法を提供することに
ある。
LS that can maintain high emittance and high stability
An object of the present invention is to provide a method for generating an I-hatern-forming acid beam.

(発明の概要) 本発明の特徴は、」二記目的を達成1″るために。(Summary of the invention) The characteristics of the present invention are to achieve the following objects.

従来技術ではカソードに対しピアス形ウェネルト電極に
負の電圧を印加していたのに対し、カソードに対しピア
ス形ウニネル]・電極に、ビームがほぼ層流となる電圧
と成形アパーチャ部での輝度が最大となる近傍の電圧と
の間の正電圧を印加する方法とするにあり、これにより
、カソード先端の電子放射領域であるエミッタへの電界
強度を増加させるとともに電界分布を一様化し、またエ
ミッタ近傍の電界分布を調整して、J、SIパターン形
成用の成形ビームを発生させるようにしだものである。
In the conventional technology, a negative voltage was applied to the pierced Wehnelt electrode with respect to the cathode, whereas a negative voltage was applied to the pierced Wehnelt electrode with respect to the cathode. The method is to apply a positive voltage between the voltage in the vicinity of the maximum voltage, thereby increasing the electric field strength to the emitter, which is the electron emission region at the cathode tip, and making the electric field distribution uniform. It is designed to generate a shaped beam for forming J and SI patterns by adjusting the electric field distribution in the vicinity.

ここで層流とは、電子ビームが乱流を起こすことなく層
状に流れる状態、つまり、隣り合った電子ビーム束が混
合することのlよい状態をいう。
Here, laminar flow refers to a state in which electron beams flow in a layered manner without causing turbulence, that is, a state in which adjacent electron beam fluxes are well mixed.

(発明の実施例) 以下1図面により本発明の詳細な説明する。(Example of the invention) The present invention will be explained in detail below with reference to one drawing.

第2図は本発明の成形ビーム発生に用(・るピアス形電
子銃の構成と電源配置を模式的に示す図で11はカソー
ド、4はピアス形ウェネルト電極、5は第1アノード電
極、6は第2アノード電極、7は光軸、8及び9はそれ
ぞれピアス形ウェネルト電極40表面上の図示の点、 
10は点8と9の延長線、11はカソード1のエミッタ
端点、 J2. J3.14はそれぞれ直流電源である
FIG. 2 is a diagram schematically showing the configuration and power supply arrangement of a pierce-type electron gun used for generating a shaped beam according to the present invention, in which 11 is a cathode, 4 is a pierce-type Wehnelt electrode, 5 is a first anode electrode, and 6 is the second anode electrode, 7 is the optical axis, 8 and 9 are the points shown on the surface of the pierced Wehnelt electrode 40, respectively.
10 is an extension of points 8 and 9, 11 is the emitter end point of cathode 1, J2. J3.14 are each DC power supplies.

以下、ピアス形電子銃として、ピアス形ウェネルト電極
4の延長線10と光軸7どが、はぼ67.5度の角度で
交わる位置関係にある例について説明するが、他の場合
も同様である3、〔小山広部:通研叢書2°“進行波管
”、395〜306頁、昭39年丸善発行参照〕この場
合、ビームがほぼ層流となるピアス形ウェネルト電極4
の電圧は、カソード1に対して零Vである。カソードl
は月料的に輝度を高(とれるL a B 6単結晶であ
り、エミツタ面は(100)面または(110)面をで
きるだけ正確に配し。
Below, we will explain an example of a pierce-type electron gun in which the extension line 10 of the pierce-type Wehnelt electrode 4 and the optical axis 7 intersect at an angle of approximately 67.5 degrees, but the same applies to other cases. 3. [Refer to Hirobu Koyama: Tsuken Series 2° "Traveling Wave Tube", pp. 395-306, published by Maruzen in 1963] In this case, the pierced Wehnelt electrode 4 makes the beam almost laminar.
The voltage is zero V with respect to the cathode 1. cathode l
It is a L a B 6 single crystal that has high luminance on a monthly basis, and the emitter plane is (100) or (110) plane arranged as accurately as possible.

その直径は約帆1朋であり、これを10 ’I’orr
より良い高真空で約1600°Cに加熱し熱電子を放射
させる。エミッタの形状は特に限定されるものではな(
、矩形等でもよく、またその太きさも特に限定されない
Its diameter is approximately 1 tom, which we call 10'I'orr.
It is heated to about 1600°C in a higher vacuum to emit thermoelectrons. The shape of the emitter is not particularly limited (
, a rectangle, etc., and the thickness is not particularly limited.

ここでL a B 6単結晶の(ioo)面、(no)
面を用いるのは、高エミツタンスち高輝度が期待でき。
Here, L a B 6 single crystal (ioo) plane, (no)
By using a surface, high emittance and high brightness can be expected.

しかも安定性が優れているからである。即ち(100)
面、(110)面は他の面を使用する場合に比ベニミッ
ション電流が約1桁上まわり、しかも高温での蒸発速度
が遅いばかりてなく、蒸発しても面の安定性が良いから
である。
Moreover, it has excellent stability. i.e. (100)
When using other surfaces, the (110) surface has a relative venivation current that is approximately one order of magnitude higher than that of other surfaces, and the evaporation rate at high temperatures is not only slow, but also the stability of the surface is good even after evaporation. be.

ピアス形ウェネルト電極4には直流電源12によってカ
ソード1に対し正の電圧(5〜50V)を印加し、エミ
ッション電流の発散を防ぐとともにエミッション電流の
引出しの役割も行なわせる。第1アノード電極5と第2
アノード電極6には直流電源13.14によって+(1
〜30kVを印加し、前者はエミッション電流を引出し
、後者はビーム速度を規定する。第1アノード電極5と
第2アノード電極6の電圧を適当に組み合わせることに
よって2等価的に静電レンズの役目を負わせ、クロスオ
ーバ位置の制御を行なう。
A positive voltage (5 to 50 V) is applied to the pierced Wehnelt electrode 4 with respect to the cathode 1 by a DC power supply 12 to prevent emission current from dissipating and also to draw out the emission current. The first anode electrode 5 and the second
The anode electrode 6 is connected to +(1
~30 kV is applied, the former drawing the emission current and the latter defining the beam velocity. By suitably combining the voltages of the first anode electrode 5 and the second anode electrode 6, they are made to function as two equivalent electrostatic lenses, and the crossover position is controlled.

例えばカソード1のエミツタ面に(100)面を配し、
ピアス形つェネルト電極4の穴径を0.3朋とし、エミ
ッタとピアス形つェネルト電極4との間隔(つまり、第
2図の点8とエミ、り端点11との間隔)を50μmと
し、第1アノード電極5を15kVとし、第2アノード
電極6を20 kVとしたとき。
For example, if the (100) plane is arranged on the emitter plane of cathode 1,
The hole diameter of the pierce-type stranded electrode 4 was set to 0.3 μm, and the distance between the emitter and the pierced-type stranded electrode 4 (that is, the distance between the point 8 in FIG. 2 and the end point 11 of the emitter) was 50 μm. When the first anode electrode 5 was set to 15 kV and the second anode electrode 6 was set to 20 kV.

輝度及びエミツタンスのウェネルト電圧依存性もめると
第3図に示すようになる。ここでエミツタンス導出の際
の半開口角は電流密度の一様性が95%以上の立体角か
らめた。第:(図から判るように上記条件での最高輝度
はウェネルト電圧が路Vにおいて5.5 X 105A
 /crtt2・srとなり、このときエミツタンスは
70μm−m−rad である。ウェネルト電圧が28
Vを超えてさらに高電圧になると輝度が減少しはじめて
いる。これは、」二記範囲を越える高い電圧をピアス形
つェネルト電極に印加するとビームの層流がくずれはじ
めるのと、エミッタとピアス形ウェネルト電極4との間
で放電がはじまるためと考えられる。従って、前記条件
の場合ピアス形つェネルト電極4に与える電圧としては
ビームがほぼ層流となる零Vと、輝度が最大となる近傍
の電圧(9)■との間の正電圧値に設定すれば良い。ピ
アス形ウェネルト電極に負の電圧を印加して、ピアス形
ウェネルト電極に零Vがら30V範囲の正電圧を印加す
る本実施例により、全範囲にわたって高輝度とすること
ができ、特に、はぼZこれは従来構成の場合に得られる
最高輝度に比べて約1桁高い輝度である。前記範囲を越
える高い電圧値での放電発生を抑制する技術が開発され
れば、さらに高い電圧範囲に設定することも可能となる
The Wehnelt voltage dependence of luminance and emittance is as shown in FIG. 3. Here, the half-opening angle for deriving the emittance was determined from the solid angle at which the uniformity of the current density was 95% or more. No.: (As can be seen from the figure, the maximum brightness under the above conditions is 5.5 x 105 A at the Wehnelt voltage of path V.
/crtt2·sr, and in this case, the emittance is 70 μm-m-rad. Wehnelt voltage is 28
When the voltage exceeds V and becomes even higher, the brightness begins to decrease. This is thought to be because when a high voltage exceeding the above range is applied to the pierced Wehnelt electrode, the laminar flow of the beam begins to collapse and discharge begins between the emitter and the pierced Wehnelt electrode 4. Therefore, under the above conditions, the voltage applied to the pierce-type zenert electrode 4 should be set to a positive voltage value between 0V, at which the beam becomes almost laminar, and voltage (9)■, near which the brightness is maximum. Good. By applying a negative voltage to the pierced Wehnelt electrode and applying a positive voltage in the range of 0 V to 30 V to the pierced Wehnelt electrode, high brightness can be achieved over the entire range. This is about an order of magnitude higher in brightness than the maximum brightness obtained with the conventional configuration. If a technique for suppressing the occurrence of discharge at voltage values higher than the above range is developed, it will be possible to set the voltage to an even higher voltage range.

さらに、前記条件のうち、エミッタとピアス形ウェネル
ト電極4との間隔を変化させ、またウェネルト電圧を調
整したときの最高輝度を第4図に示す。第4図から1間
隔が35μmから65μmの範、U匹 囲において4 A、7cm −sr以上の高い輝度が得
られており、これから1本実施例によれば、カソード1
の消耗に対しても安定した高輝度が得られ、またカソー
ド1の消耗に対して輝度の修正が可能であることが判る
Furthermore, among the above conditions, FIG. 4 shows the maximum brightness when the distance between the emitter and the pierced Wehnelt electrode 4 was changed and the Wehnelt voltage was adjusted. As shown in FIG. 4, a high luminance of 4 A, 7 cm-sr or more was obtained in the range of 35 μm to 65 μm, and in the range of U, and from this, according to this embodiment, the cathode 1
It can be seen that stable high brightness can be obtained even when the cathode 1 is worn out, and that the brightness can be adjusted when the cathode 1 is worn out.

従来のピアス形電子銃ではカソード】とピアス形ウェネ
ルト電極4との位置関係は、狭い範囲の条件で制約され
ているが1以上のように本発明のピアス形電子銃ではこ
の制約は緩やかである。例えばピアス形ウェネルト電極
4が光軸7とほぼ67.5度をなす場合は、従来のピア
ス形電子銃では延長線10がエミッタ端点11をitぼ
通過するように構成しなければならなかったが2本発明
のピアス形電子銃ではこのような厳しい制限を受けるこ
とはない。
In the conventional pierce-type electron gun, the positional relationship between the cathode and the pierce-type Wehnelt electrode 4 is constrained by a narrow range of conditions, but in the pierce-type electron gun of the present invention, this restriction is relaxed as described above. . For example, when the pierce-shaped Wehnelt electrode 4 forms an angle of approximately 67.5 degrees with the optical axis 7, the conventional pierce-type electron gun must be constructed so that the extension line 10 passes approximately through the emitter end point 11. 2. The piercing type electron gun of the present invention is not subject to such severe restrictions.

(発明の効果) 以上説明したように1本発明によれば、輝度が高く、か
つ電流密度が印加電圧の変化に対して滑らかに変化する
広し・成形ビームを光軸に垂直な面に得ることができ、
また印加電圧の調整により簡単に輝度を制御できるから
、 LSi等のパターンを高速描画できるという利点が
ある。
(Effects of the Invention) As explained above, according to the present invention, a wide and shaped beam with high brightness and whose current density changes smoothly with changes in applied voltage can be obtained in a plane perpendicular to the optical axis. It is possible,
Furthermore, since the brightness can be easily controlled by adjusting the applied voltage, there is an advantage that patterns such as LSi can be drawn at high speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の電子銃の構成図、第2図は本発明の詳細
な説明用の構成図及び電源配置図、第3図は本発明にお
ける輝度とエミツタンスのピアス形ウェネルト電極電圧
依存性を示す図、第4図は同じくエミッタとピアス形ウ
ェネルト電極間の間隔を変化したときの輝度を示す図で
ある。 (符号の説明) 1・・・カソード 2・・・ウェネルト電極3・・・ア
ノード電極 4・・・ピアス形ウェネルト電極 5・・・第1アノード電極 6・・・第2アノード電極
7・・・光軸 lO・・・延長線 8.9・・ピアス形つェネルト電極の表面の点11・・
カソードのエミッタ端点 12、13.14・・直流電源 特許出願人 日本電信電話公社 代理人弁理士 中 村 純之助 第1 図 卆3図 ×105 ウェネルト電圧(VJ 1−4 図 XIO′5 間1% Ottn)
Fig. 1 is a block diagram of a conventional electron gun, Fig. 2 is a block diagram and power supply arrangement diagram for explaining the present invention in detail, and Fig. 3 shows the dependence of brightness and emittance on the voltage of the pierced Wehnelt electrode in the present invention. FIG. 4 is a diagram showing the brightness when the distance between the emitter and the pierced Wehnelt electrode is changed. (Explanation of symbols) 1... Cathode 2... Wehnelt electrode 3... Anode electrode 4... Pierce-shaped Wehnelt electrode 5... First anode electrode 6... Second anode electrode 7... Optical axis lO...Extension line 8.9...Point 11 on the surface of the pierced zenert electrode...
Cathode emitter end points 12, 13, 14... DC power supply patent applicant Junnosuke Nakamura, patent attorney representing Nippon Telegraph and Telephone Corporation No. 1 Figure 3 Figure x 105 Wehnelt voltage (VJ 1-4 Figure XIO'5 1% Ottn )

Claims (1)

【特許請求の範囲】[Claims] カソードと、ピアス形ウェネルト電極と、アノード電極
とを備えた電子銃において、前記ピアス形ウェネルト電
極に前記カソードに対し、前記ビームがほぼ層流となる
電圧と成形アパーチャ部での輝度が最大となる近傍の電
圧との間の正の電圧を印加することを特徴とする電子銃
のビーム発生法。
In an electron gun comprising a cathode, a pierced Wehnelt electrode, and an anode electrode, the pierced Wehnelt electrode has a voltage at which the beam becomes substantially laminar with respect to the cathode, and a maximum brightness at a shaped aperture portion. An electron gun beam generation method characterized by applying a positive voltage between the neighboring voltages.
JP15636983A 1983-08-29 1983-08-29 Method of generating electron gun beam Pending JPS6049545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15636983A JPS6049545A (en) 1983-08-29 1983-08-29 Method of generating electron gun beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15636983A JPS6049545A (en) 1983-08-29 1983-08-29 Method of generating electron gun beam

Publications (1)

Publication Number Publication Date
JPS6049545A true JPS6049545A (en) 1985-03-18

Family

ID=15626242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15636983A Pending JPS6049545A (en) 1983-08-29 1983-08-29 Method of generating electron gun beam

Country Status (1)

Country Link
JP (1) JPS6049545A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1052678A2 (en) * 1999-05-07 2000-11-15 Lucent Technologies Inc. Electron guns for lithography tools

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59152622A (en) * 1983-02-21 1984-08-31 Toshiba Corp Electron beam exposure device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59152622A (en) * 1983-02-21 1984-08-31 Toshiba Corp Electron beam exposure device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1052678A2 (en) * 1999-05-07 2000-11-15 Lucent Technologies Inc. Electron guns for lithography tools
EP1052678A3 (en) * 1999-05-07 2006-07-05 Lucent Technologies Inc. Electron guns for lithography tools
KR100850034B1 (en) * 1999-05-07 2008-08-04 루센트 테크놀러지스 인크 Electron emitters for lithography tools

Similar Documents

Publication Publication Date Title
GB644327A (en) Projection cathode ray tubes
US2348133A (en) Method and apparatus for developing electron beams
JP2009283434A (en) Electron beam focusing electrode, electron gun using the same, and method for reducing diffusion phenomenon of electron beam having square section
US2214729A (en) Magnetic field neutralizing system
US2935636A (en) Electron gun structure
JPS6049545A (en) Method of generating electron gun beam
KR20020038696A (en) Compact field emission electron gun and focus lens
US8450917B2 (en) High-definition cathode ray tube and electron gun
JPH09260237A (en) Electron gun, electron beam equipment and electron beam irradiation method
JPH0785812A (en) Crt electron gun having electron-beam-divergence-angle controlled by current quantity
US5889359A (en) Field-emission type cold cathode with enhanced electron beam axis symmetry
US2244260A (en) Electron discharge tube
JPS5851438A (en) Electron beam source
JPH01186539A (en) Cathode ray tube electron gun
US6307309B1 (en) Field emission cold cathode device and manufacturing method thereof
JP3089115B2 (en) Electron beam exposure equipment
JP2617317B2 (en) Electron beam generator
US3846663A (en) Electron gun device having a field emission cathode tip protected from destruction due to ion impingement
JPS59152622A (en) Electron beam exposure device
US2128639A (en) Electronic device
CN108231527B (en) Uniform projection type electronic optical structure
US4146818A (en) Electron gun
JPH05114368A (en) Cathode-ray tube provided with electron gun having parallel planar optical system
US3141988A (en) Electron-gun using combined magnetic and electrostatic focussing
JPH0521003A (en) Formation of field emission type electrode