JPS604901A - Coated plastic lens - Google Patents

Coated plastic lens

Info

Publication number
JPS604901A
JPS604901A JP58113887A JP11388783A JPS604901A JP S604901 A JPS604901 A JP S604901A JP 58113887 A JP58113887 A JP 58113887A JP 11388783 A JP11388783 A JP 11388783A JP S604901 A JPS604901 A JP S604901A
Authority
JP
Japan
Prior art keywords
film
vapor deposition
refractive index
carbon film
improve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58113887A
Other languages
Japanese (ja)
Other versions
JPH0352601B2 (en
Inventor
Takeshi Yoshioka
剛 吉岡
Akira Doi
陽 土居
Naoharu Fujimori
直治 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP58113887A priority Critical patent/JPS604901A/en
Publication of JPS604901A publication Critical patent/JPS604901A/en
Publication of JPH0352601B2 publication Critical patent/JPH0352601B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • G02B1/105

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To improve the water absorption preventing effect and the scratch resistance by carrying out coating with a transparent carbon film. CONSTITUTION:A part or the whole of the surface of a lens is coated with transparent carbon by a plasma decomposition and vapor deposition method. By this method, vapor deposition can be carried out at a low temp. such as <=300 deg.C which is the temp. of vapor deposition on plastics. A carbon film synthesized by plasma vapor deposition varies from a graphitic film to a diamondlike film. The hardness is increased to >=1,000kg/mm.<2> so as to improve the scratch resistance, and the thickness of the film is increased to >=0.1mum so as to improve the moisture absorption resistance. The refractive index is adjusted to 1.8-2.4. The resulting carbon film has superior hardness and moisture resistance, and 2.4 refractive index is comparable to that of an entirely diamondlike structure.

Description

【発明の詳細な説明】 (イ)技術分野 本発明は、耐候性及び耐傷性に優れた透明カーボン被覆
型プラスチックレンズに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field The present invention relates to a transparent carbon-coated plastic lens with excellent weather resistance and scratch resistance.

(ロ)技術の背景 従来からカメラやメガネに使用される光学レンズはその
ほとんどが曲率一定の球面を組み合わせた型をしている
。ガラス球面レンズは、研磨面との共すりで容易に高精
度な球面を加工できる。為である。ところが球面レンズ
には、平行光線を1点に集束させられないなどの収差が
ある為、複数枚のレンズを使って総合的に収差を補正す
る形式がとられてきた。しかし、性能面ではそれでも大
きな制約になっていることには変わりはない。これら収
差をなくす為には、非球面系のレンズを用いれば良いこ
とは既に16〜17世紀よりわかっていたが、非球面を
得る為の加工技術゛が極めて難しかった事に加えて、加
工した面が目的に合った非球面になっているかどうかを
測定する技術も不十分であった。この為非球面レンズが
実用化されたのは、20世紀に入ってからであるが、そ
れも天体観測用のシーミツトカメラに代表される特殊ど
の精密光学分野で安価で高性能なプラスチックレンズに
対するニーズが急増しつつある。プラスチックの非球面
レンズは射出成型技術及び非球面の加工技術の進歩によ
り精度の高いものが安価に大量生産が可能となったこと
から、中級カメラを中心に実用化が進んでいるが、ガラ
スレンズと比較すると物理的、光学的特性は及ぼす温度
、湿度(吸水率)による屈折率の変動が大きいのに加え
て傷付きやすいという欠点をも合わせて有するわけであ
る。
(b) Background of the technology Most optical lenses conventionally used in cameras and eyeglasses have a combination of spherical surfaces with constant curvature. Glass spherical lenses can be easily machined into highly accurate spherical surfaces by rubbing together with a polished surface. It is for this purpose. However, since spherical lenses have aberrations such as the inability to focus parallel rays on one point, a system has been adopted in which aberrations are comprehensively corrected using multiple lenses. However, there are still major limitations in terms of performance. In order to eliminate these aberrations, it was already known from the 16th to 17th centuries that aspherical lenses could be used, but in addition to the fact that the processing technology to obtain an aspherical surface was extremely difficult, There was also insufficient technology to measure whether the surface was aspherical enough to meet the purpose. For this reason, aspheric lenses were not put into practical use until the beginning of the 20th century, but they were also used in the field of precision optics, such as special cameras for astronomical observation, when they were used as inexpensive, high-performance plastic lenses. Needs are rapidly increasing. Advances in injection molding technology and aspherical surface processing technology have made it possible to mass-produce high-precision plastic aspherical lenses at low cost, so they are being put into practical use mainly in intermediate-grade cameras, but glass lenses Compared to the physical and optical properties, the refractive index fluctuates greatly depending on temperature and humidity (water absorption), and it also has the disadvantage of being easily scratched.

Qタ 発明の開示 本発明の特徴は、透明カーボン膜をコーティングするこ
とにより上記プラスチックレンズの有する吸水性及び耐
傷性を改善せしめたことにある。
Disclosure of the Invention The present invention is characterized by improving the water absorption and scratch resistance of the plastic lens by coating it with a transparent carbon film.

周知のようにプラズマ蒸着法により合成したカーボン膜
はダイヤモンドと類似した特性を有し、可視〜赤外領域
での透光性に優れ透明であるうえに優れた硬度及び耐蝕
性を有する為耐傷性、吸水防止に適している。尚、同カ
ーボン膜の有する高屈折率(n:1.8〜2,4)は、
屈折率の差の大きい薄膜物質を交互に重ね合わせること
により、反射防止膜もしくは反射強調膜波長選択性フィ
ルター等を形成せしめるのに有利であることは言うまで
もない。以下に本発明の限定理由を述べる。
As is well known, carbon films synthesized by plasma deposition have properties similar to diamond, and are transparent with excellent light transmission in the visible to infrared region, as well as excellent hardness and corrosion resistance, making them scratch resistant. , suitable for preventing water absorption. The high refractive index (n: 1.8 to 2.4) of the carbon film is
It goes without saying that it is advantageous to form an antireflection film, a reflection enhancement film, a wavelength selective filter, or the like by alternately overlapping thin film materials having large differences in refractive index. The reasons for the limitations of the present invention will be described below.

先ず同カーボン膜の蒸着方法をプラズマ分解蒸着法に限
定した理由については、蒸着温度の低温下が挙げられる
。通常カーボン膜をCVD等で合成するには700°C
以上の高温が必要となるが、プラスチック上に蒸着させ
る為には300°C以下の温度領域で合成する必要があ
る。この為には、原料ガスの反応性を高める事が必要で
あるがこの手段としては、高周波電解もしくは直流型圧
印がもしくはマイクロ波等の伺加により、原料ガスをプ
ラズマ分解せしめることが最も有効である。上記6種の
励起方法により本発明の性能の差はない。
First, the reason why the method for depositing the carbon film was limited to the plasma decomposition deposition method is that the deposition temperature is low. Normally, carbon film is synthesized at 700°C by CVD etc.
However, in order to deposit it on plastic, it is necessary to synthesize it at a temperature of 300° C. or lower. For this purpose, it is necessary to increase the reactivity of the raw material gas, and the most effective means for this is to cause the raw material gas to undergo plasma decomposition using high-frequency electrolysis, direct current coining, or the addition of microwaves. be. There is no difference in the performance of the present invention among the above six types of excitation methods.

尚、フラスマMW法で合成されるカーボンIl’A (
D 特性については、その合成条件を変化させることに
より種々変化させうる。すなわちグラファイト状からダ
イヤモンド状まで変化する。しがし耐傷性を向上せしめ
る為には、硬度が1000 髪警以上であることが必要
である。さらに耐吸湿性を向−Lせしめる為には、その
膜厚を0.1μm以上にすることが必要であることが判
明した。又、屈折率についても、間膜の合成条件によっ
て様々に変化するが、屈折率が1.8以下のカーボン膜
については、硬度及び耐湿性が優れていないことが判明
した。本発明のカーボン膜12屈折率が2.4以上とは
なりえないがこれは100%ダイヤモンド状構造を有す
る場合でも2.4である為である。以下実施例にて詳細
を述べる。
In addition, carbon Il'A (
The D characteristics can be varied in various ways by changing the synthesis conditions. That is, it changes from graphite-like to diamond-like. In order to improve the scratch resistance, it is necessary that the hardness is 1000 or higher. Furthermore, it has been found that in order to improve the moisture absorption resistance, it is necessary to make the film thickness 0.1 μm or more. Furthermore, although the refractive index varies depending on the synthesis conditions of the interlayer, it has been found that carbon films with a refractive index of 1.8 or less do not have excellent hardness and moisture resistance. The refractive index of the carbon film 12 of the present invention cannot exceed 2.4, but this is because it is 2.4 even when it has a 100% diamond-like structure. Details will be described in Examples below.

に)実施例 実施例1 13.56■(2の高周波によりCH4(メタンガス)
をプラズマ化させ、100°Cに加熱したポリカーボネ
ートCR39基板」二にカーボン膜を蒸着せしめるにあ
たり、高周波発振装置の出力を調節することにより硬度
の異なるカーボン膜を合成せしめ耐傷性テストに供した
。耐傷テストとしては荒さ#200のす/ドペーパーを
5kg/c、rの圧力下でこすりつける方法を採用した
。表1にその結果を示すが、その硬度が1000 ’/
nr1以上のカーボン膜については、傷が認められなか
った。
) Example Example 1 13.56 ■ (CH4 (methane gas) by high frequency of 2)
When depositing a carbon film on a polycarbonate CR39 substrate heated to 100°C by turning it into plasma, carbon films with different hardness were synthesized by adjusting the output of a high-frequency oscillator and subjected to a scratch resistance test. For the scratch resistance test, a method was adopted in which the surface was rubbed with #200 roughness paper under a pressure of 5 kg/c and r. The results are shown in Table 1, and the hardness is 1000'/
No scratches were observed on the carbon films with nr1 or higher.

表1 耐傷性テスト結果 (圧力ニ 10−2torr) 実施例2 2、4GHzのマイクロ波によりエタンガスをプラズマ
化せしめ、ポリメタクリル酸メチル基板上へカーボン膜
を蒸着せしめた。この際蒸着炉室温度は250°Cであ
ったが、基板の温度は基板ボルダ−を水により強制冷却
せしめ80’Cに保持した。この際蒸着時のマイクロ波
出方、真空度、蒸着時間を変化せしめることにより、同
カーボン膜の膜質を変化せしめ、屈折率、吸湿度、硬度
、膜厚の相関について調査した。その結果を表2に示す
。これにより、耐吸湿性を向上せしめる為にはカーボン
膜厚がQ1ftm以」二必要なこと、及び屈折率が1.
8以Fのカーボン膜については、その膜厚が0.1μm
以上あっても吸湿性を有し、硬度も低レベルにあること
が判明した。
Table 1 Scratch Resistance Test Results (Pressure: 10-2 Torr) Example 2 Ethane gas was turned into plasma using microwaves at 2.4 GHz, and a carbon film was deposited on a polymethyl methacrylate substrate. At this time, the temperature in the deposition furnace chamber was 250 DEG C., but the temperature of the substrate was maintained at 80 DEG C. by forcing the substrate boulder to cool with water. At this time, the quality of the carbon film was changed by changing the microwave output direction, vacuum degree, and deposition time during vapor deposition, and the correlation among refractive index, moisture absorption, hardness, and film thickness was investigated. The results are shown in Table 2. As a result, in order to improve moisture absorption resistance, the carbon film thickness must be Q1 ftm or more, and the refractive index must be 1.
For carbon films of 8F or higher, the film thickness is 0.1 μm.
It was found that even with the above conditions, it still had hygroscopicity and its hardness was at a low level.

Claims (3)

【特許請求の範囲】[Claims] (1)プラスチックレンズ表面の1部または全面に、プ
ラズマ分解蒸着法により透明カーボンを被覆したことを
特徴とする被覆型プラスチックレンズ。
(1) A coated plastic lens characterized in that a part or the entire surface of the plastic lens is coated with transparent carbon by plasma decomposition vapor deposition.
(2)透明カーボン膜の膜厚が0.1μmn以上である
こを特徴とする特許請求の範囲第(1)項記載の被覆型
プラスチックレンズ。
(2) A coated plastic lens according to claim (1), wherein the transparent carbon film has a thickness of 0.1 μm or more.
(3)透明カーボン膜の硬度が10 [10kg/、d
以」ユ、屈折率が1.8〜2.4であることを特徴とす
る被覆型プラスチックレンズ。
(3) Hardness of transparent carbon film is 10 [10 kg/, d
A coated plastic lens characterized by having a refractive index of 1.8 to 2.4.
JP58113887A 1983-06-23 1983-06-23 Coated plastic lens Granted JPS604901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58113887A JPS604901A (en) 1983-06-23 1983-06-23 Coated plastic lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58113887A JPS604901A (en) 1983-06-23 1983-06-23 Coated plastic lens

Publications (2)

Publication Number Publication Date
JPS604901A true JPS604901A (en) 1985-01-11
JPH0352601B2 JPH0352601B2 (en) 1991-08-12

Family

ID=14623613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58113887A Granted JPS604901A (en) 1983-06-23 1983-06-23 Coated plastic lens

Country Status (1)

Country Link
JP (1) JPS604901A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5171607A (en) * 1990-01-29 1992-12-15 Bausch & Lomb Incorporated Method of depositing diamond-like carbon film onto a substrate having a low melting temperature
WO1994026811A1 (en) * 1993-05-12 1994-11-24 British Technology Group Limited (Gb) Producing a layer on a substrate
US5756602A (en) * 1995-01-24 1998-05-26 Mitsubishi Chemical Corporation Method for controlling reaction temperature
KR20020072970A (en) * 2001-03-14 2002-09-19 클린월드하이테크(주) A Moisturizing Coating Process and System of Far-Infrared Rays Radiation
JP2005173326A (en) * 2003-12-12 2005-06-30 Fuji Photo Film Co Ltd Plastic optical component

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687002A (en) * 1979-11-20 1981-07-15 Nat Res Dev Infrared reflector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687002A (en) * 1979-11-20 1981-07-15 Nat Res Dev Infrared reflector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5171607A (en) * 1990-01-29 1992-12-15 Bausch & Lomb Incorporated Method of depositing diamond-like carbon film onto a substrate having a low melting temperature
WO1994026811A1 (en) * 1993-05-12 1994-11-24 British Technology Group Limited (Gb) Producing a layer on a substrate
US5756602A (en) * 1995-01-24 1998-05-26 Mitsubishi Chemical Corporation Method for controlling reaction temperature
KR20020072970A (en) * 2001-03-14 2002-09-19 클린월드하이테크(주) A Moisturizing Coating Process and System of Far-Infrared Rays Radiation
JP2005173326A (en) * 2003-12-12 2005-06-30 Fuji Photo Film Co Ltd Plastic optical component

Also Published As

Publication number Publication date
JPH0352601B2 (en) 1991-08-12

Similar Documents

Publication Publication Date Title
Schulz Review of modern techniques to generate antireflective properties on thermoplastic polymers
US11977205B2 (en) Curved surface films and methods of manufacturing the same
EP1274660B1 (en) Method for applying an antireflection coating to inorganic optically transparent substrates
JPH06501894A (en) Abrasion resistant polymer based products
JPH0410844B2 (en)
CN103443662A (en) Optical member and method for producing same
JPS604901A (en) Coated plastic lens
CN111366995A (en) Resin lens with high-hardness film layer structure and preparation method thereof
CN206039071U (en) Fogging surface dull polish polarizing lenses
JPH10206604A (en) Reflection preventive film
Hodgkinson et al. Vacuum deposited biaxial thin films with all principal axes inclined to the substrate
WO2023096747A1 (en) Anti-reflective optical coatings and methods of forming the same
JP3433845B2 (en) Anti-reflection film with excellent scratch resistance and durability
JPH0580202A (en) Antireflection film for plastic optical parts, production thereof and plastic optical parts with antireflection film
Baldwin MgF sub 2 optical films: ion-beam-assisted deposition of magnesium fluoride in a conventional electron beam evaporator and the resulting film properties
CN217739531U (en) Optical film with high hardness, strong adhesive force and abrasion resistance function
Duparré Effect of film thickness and interface roughness correlation on the light scattering from amorphous and from columnar structured optical films
JPH07117602B2 (en) Method for manufacturing colored plastic lens
WO2023149216A1 (en) Headmount display member and optical lens using same
JPH04217203A (en) Multiple-layer anti-reflection film for optical parts made of synthetic resin and manufacture thereof
JPH02257101A (en) Plastic optical element
JP2693500B2 (en) Anti-reflective coating
Zorc Optimum multilayer design selection in relation to production errors
JPH10195636A (en) Antireflection material excellent in durability
JPS5818604A (en) Synthetic resin lens