JPS6048283B2 - Anti-vibration cutting method - Google Patents

Anti-vibration cutting method

Info

Publication number
JPS6048283B2
JPS6048283B2 JP51155494A JP15549476A JPS6048283B2 JP S6048283 B2 JPS6048283 B2 JP S6048283B2 JP 51155494 A JP51155494 A JP 51155494A JP 15549476 A JP15549476 A JP 15549476A JP S6048283 B2 JPS6048283 B2 JP S6048283B2
Authority
JP
Japan
Prior art keywords
tool
cutting
feed
force
chips
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51155494A
Other languages
Japanese (ja)
Other versions
JPS5380080A (en
Inventor
良司 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP51155494A priority Critical patent/JPS6048283B2/en
Publication of JPS5380080A publication Critical patent/JPS5380080A/en
Publication of JPS6048283B2 publication Critical patent/JPS6048283B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Turning (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

【発明の詳細な説明】 本発明は、切削加工に際して振動の発生を抑制する方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for suppressing the generation of vibration during cutting.

通常の切削加工は、切込み、送り、切削速度の各方向に
広がりをもつ3次元的な現象であるが、これを工具切刃
に直交した平面内の2次元的現象と見なして考察するこ
とが便利である。
Normal cutting is a three-dimensional phenomenon that spreads in each direction of depth of cut, feed, and cutting speed, but it can be considered as a two-dimensional phenomenon in a plane perpendicular to the cutting edge of the tool. It's convenient.

第1図はこのような説明図である。FIG. 1 is such an explanatory diagram.

従来普通に用いられている切削工具による加工時には、
第1図に示すように、前回の加工において工具Tの振動
により凹凸が生じた加工物Wの表面を切削することにな
り、その際に上記凹凸等に起因する切削力の変化て工具
Tが振動し、切削面に再び凹凸が発生することになる。
When machining with conventionally commonly used cutting tools,
As shown in Fig. 1, the surface of the workpiece W is to be cut on which unevenness has occurred due to the vibration of the tool T in the previous machining, and at that time, the change in the cutting force due to the unevenness etc. causes the tool T to The vibration will cause unevenness to occur on the cutting surface again.

この場合に、工具TははねKp及びはねKqによつて支
えられていると考えられ、工具に作用する主分力Fp及
び送り分力Fqによって一定の条件の下てそれらのばね
が振動を起すことになる。一方、第2図に示すように、
工具Tのすくい面Trに刃先から接触長さClを残して
口座Tr’を形成し、工具に作用する摩擦力を小さくす
るようにした接触面積拘束工具はすてに知られている。
In this case, the tool T is considered to be supported by the springs Kp and Kq, and these springs vibrate under certain conditions due to the principal force Fp and the feed force Fq acting on the tool. will occur. On the other hand, as shown in Figure 2,
A contact area constraint tool is already known in which a contact length Cl is left on the rake face Tr of the tool T from the cutting edge to form a contact area Tr', thereby reducing the frictional force acting on the tool.

この接触面積拘束工具は、たとえ工具の送りが変化して
も、切屑Cとすくい面Trとの接触面積か常に一定にな
るものである。さらに詳細に説明すると、切屑の連続し
て発生する切削において、第3図に示すように、板状加
工物Wを工具Tによつて切削する場合には、工具のすく
い面Trにおける工具Tと切屑Cの接触はほぼ金属接触
てあつて、その摩擦力fは、f:A、σ によつて与えられる。
In this contact area constrained tool, even if the feed of the tool changes, the contact area between the chip C and the rake surface Tr is always constant. To explain in more detail, when cutting a plate-shaped workpiece W with a tool T, as shown in FIG. 3, in cutting where chips are continuously generated, The contact of the chips C is almost metallic contact, and the frictional force f is given by f:A,σ.

但し、Aは両者の接触面積てあつて、有効接触長さCl
−eと接触巾(加工物の厚さ)をの積として与えられ、
またσはフローストレスで、切削条件等に関係すること
なく被削材によつて定まり、黄銅て30〜35に91T
r8fL)鉄鋼で70J〜140に91wgiてある。
従つて、上記摩擦力fは有効接触長さCLeに比例する
ことになる。一方、通常の切削時における工具と切屑と
の接触長さCレは、被削材と工具方形て決まるが、近似
的に送りFの数倍程度であることが知られてい5る。
However, A is the contact area between the two, and the effective contact length Cl
- given as the product of e and contact width (thickness of workpiece),
In addition, σ is the flow stress, which is determined by the work material regardless of cutting conditions, etc.
r8fL) Steel is 70J to 140 with 91wgi.
Therefore, the frictional force f is proportional to the effective contact length CLe. On the other hand, the contact length C between the tool and chips during normal cutting is determined by the workpiece and tool rectangle, but it is known that it is approximately several times the feed F5.

しかるに、第2図に示すように、上記接触長さCLoよ
り小さい接触長さClを与える接触面積拘束すくい面T
rを工具に設けた場合には、接触長さが強制的にその値
に保持され、摩擦力fはそれに比例した一定値をとるこ
とになる。さらに、上記接触長さCLを送りFよりも十
分に小さく(CL〈F)すると、切屑Cが凹窪Tr’の
壁面に接触し、第2の接触長さCL2が生じることにな
る。本発明者の実験的研究によれは、す≧CL≧Fの範
囲において有効接触長さが安定的な一定となり、摩擦力
fが一定に保たれる。第4図は切削抵抗の測定結果を示
すもので、同図中に示す工具を用い、切削速度1207
−RLIminで黄銅(7:3)を切削した場合におけ
る主分力Fp及び送り分力Fqの変動を示している。
However, as shown in FIG. 2, the contact area constraint rake face T which gives a contact length Cl smaller than the above contact length CLo
When r is provided in the tool, the contact length is forcibly held at that value, and the frictional force f takes a constant value proportional to it. Furthermore, if the contact length CL is made sufficiently smaller than the feed F (CL<F), the chips C will come into contact with the wall surface of the recess Tr', resulting in a second contact length CL2. According to the experimental research conducted by the present inventors, the effective contact length becomes stable and constant in the range of S≧CL≧F, and the frictional force f is kept constant. Figure 4 shows the measurement results of cutting resistance, using the tool shown in the figure, cutting speed 1207
It shows the fluctuations in the principal force Fp and the feed force Fq when brass (7:3) is cut at -RLImin.

すなわち、第4図のイ,口,ハ,・・・ ・・・への各
点はそれぞれ送り分力Fqの実験値を示している。
That is, the points A, C, C, . . . in FIG. 4 each indicate an experimental value of the feeding force Fq.

イ点では送りFが0.04wrfnであり、この条件に
おける有効接触長さCLeは、0.12Tnm程度であ
る。これは工具のCL値(0.24wrm)よりも小さ
いので、凹窪Tr’の効果は生じない〔この条件におけ
る工具と切屑の接触状況は、第4図中のαに示すようて
ある〕。口点ては、送りは0.064Twtであり、有
効接触長さは送りの増加に対応して増加するが、なおC
Lよりも小さいのて、切屑と工具の接触状況はイの場合
と同様にαに示す状況にある。
At point A, the feed F is 0.04 wrfn, and the effective contact length CLe under this condition is about 0.12 Tnm. Since this is smaller than the CL value (0.24 wrm) of the tool, the effect of the depression Tr' does not occur [the contact situation between the tool and chips under this condition is as shown by α in FIG. 4]. At the tip, the feed is 0.064 Twt, and the effective contact length increases with increasing feed, but still C
Since it is smaller than L, the contact situation between the chips and the tool is as shown in α, similar to case A.

以上のように、送りが小さく、また有効接触長さCLe
(実験によれば、送りFの約3倍)が工具のCLよりも
小さい条件においては、工具と切屑の接触状況は通常の
工具の場合と変らない。
As mentioned above, the feed is small and the effective contact length CLe
Under the condition that (according to experiments, about three times the feed F) is smaller than the CL of the tool, the contact situation between the tool and chips is the same as in the case of a normal tool.

したがつて、送りの増加に対応して、有効接触長さも増
加し、これにともなつて送り分力Fqもまた増大するか
ら、工作機械、加工物の振動特性等によつてはひひり振
動が発生することがある。つまり、す<CLの加工条件
においては、通常の工具の本質的に変るところはない。
次に、ハ点は送りFが丁=CLとなる点であ.る。
Therefore, in response to an increase in feed, the effective contact length also increases, and the feed component force Fq also increases accordingly. may occur. In other words, under the machining conditions of S<CL, there is essentially no difference from a normal tool.
Next, point C is the point where the feed F becomes D = CL. Ru.

送りFがハ,二,ホ,への各点に対応して増加すると、
通常の工具では点線ハ→トに仮想的に示すように、切削
抵抗Fqが増加する。したがつてびひり振動が発生する
ことがある。これに対し、本発明において用いる工具で
は、ィ実験値ハ,二,ホ,への各点が示すように、送り
分力Fqはほぼ一定である。
When the feed F increases corresponding to each point from C, 2, E,
In a normal tool, the cutting force Fq increases as shown hypothetically by the dotted line C→G. Therefore, twitching vibrations may occur. On the other hand, in the tool used in the present invention, the feed component force Fq is approximately constant, as shown by the experimental values c, 2, and ho.

これは、第4図中のβに示すように、切削工具のすくい
面に設けた凹窪Tr’のため、工具と切屑の有効接触長
さCLが拘束され、ほぼ、CL’.CLeの関係を保つ
からである。このため、切屑とすくい面との摩擦力fは
前述の説明のように一定値となる。この摩擦力fに基づ
いて発生する切削抵抗の送り分力Fqも、またほぼ一定
となるものである。しかし、上記の関係は、送りが非常
に大きくなると、必ずしも成立しなくなる。
This is because, as shown by β in FIG. 4, the effective contact length CL between the tool and chips is restricted due to the recess Tr' provided on the rake face of the cutting tool, and the effective contact length CL is approximately CL'. This is because the relationship of CLe is maintained. Therefore, the frictional force f between the chips and the rake face is a constant value as explained above. The feed component force Fq of the cutting resistance generated based on this frictional force f is also approximately constant. However, the above relationship does not necessarily hold true if the feed becomes very large.

それは、送りFが工具CLをこえて大きくなる場合には
、切屑のわん曲の程度が変化し、切屑がすくい面のTr
部フ分のみならず、凹窪Tr’の部分においても接触し
、すくい面を摩擦するようになるからである。この部分
で発生する余分の摩擦力が加算されるため、送りFがC
Lをこえる場合は、へ→チの一点鎖線によつて示される
ように、切削抵抗Fqは;また増大することになる。以
上の説明を要約すると、本発明て用いる工具では、第4
図から明らかなように、送り分Fqは送りFを変化させ
てもす≧CL≧Fの範囲においては殆ど変動がなく、こ
の範囲においては振動のノ原因となる力が発生しないこ
とがわかる。
This is because when the feed F increases beyond the tool CL, the degree of curvature of the chip changes, and the chip Tr on the rake face changes.
This is because not only the partial portion but also the concave portion Tr' comes into contact, causing friction on the rake face. Because the extra frictional force generated in this part is added, the feed F is reduced to C.
If it exceeds L, the cutting force Fq will increase again, as shown by the dashed line from he to chi. To summarize the above explanation, in the tool used in the present invention, the fourth
As is clear from the figure, the feed amount Fq hardly changes even if the feed F is changed in the range of CL≧F, and it can be seen that no force that causes vibration is generated in this range.

しカルながら、上記接触面積拘束工具の場合にも主分力
Fpの変動があるために十分な振動の抑制を行うことが
できない。そこで、本発明は、切屑の連続して発生する
切削において、工具の先端に切屑との接触長さCLを一
定に保つ接触面積拘束すくい面を備え、上記接触長さC
Lと送りFが、す≧CL≧Fとなる範囲内において、そ
の工具におけるシャンクを、加工物から受ける主分力の
方向において主分力を圧縮力として受ける方向に固定し
て切削を行うことを特徴とするものである。
However, even in the case of the contact area constrained tool, vibration cannot be suppressed sufficiently because the principal force Fp fluctuates. Therefore, in cutting where chips are continuously generated, the present invention provides a rake surface that restricts the contact area to keep the contact length CL with the chips constant at the tip of the tool, and the contact length C
Within the range where L and feed F satisfy S≧CL≧F, cutting is performed by fixing the shank of the tool in the direction of the principal force received from the workpiece as a compressive force. It is characterized by:

本発明の方法は、簡単な構成によつて上記主分力の変動
に伴う振動をもなくすようにしたものであつて、それに
より前記切削面に生ずる凹凸をなくすばかりてなく、振
動に伴つて発生する他の諸問題を解決しようとするもの
である。
The method of the present invention uses a simple structure to eliminate vibrations caused by fluctuations in the principal component force, and thereby not only eliminates the unevenness that occurs on the cutting surface, but also eliminates the vibrations caused by the vibrations. It attempts to solve other problems that arise.

第5図を参照して本発明をさらに詳細に説明するに、本
発明において振動の防止のために用いる工具Tは、その
先端に切屑Cとの接触長さを常に一定に保つための接触
面積拘束すくい面Trを備え、この工具Tにおけるシャ
ンクSを、その軸線が加工物Wの接線方向に向くように
、すなわち加工物Wから受ける主分力Fpの方向におい
てその主分力Fpを圧縮力として受けるように固定して
切削を行うものである。
To explain the present invention in more detail with reference to FIG. 5, the tool T used for vibration prevention in the present invention has a contact area at its tip to keep the length of contact with chips C always constant. The shank S of this tool T is provided with a restraining rake face Tr, and its axis is directed in the tangential direction of the workpiece W, that is, in the direction of the principal force Fp received from the workpiece W. It is used for cutting by fixing it so that it is received as if it were to be cut.

上記接触面積拘束すくい面Trにおける切屑との接触長
さCLと送りFを、す≧CL≧Fとなる範囲に保持する
ことは勿論である。このような方法によつて加工物の切
削を行うと、主分力Fpに対する工具の支持が極めて強
大となるために、その主分力方向の工具の振動を十分に
抑制することがてき、また第4図かられかるように、上
記すくい面Trにおける切屑Cとの接触による摩擦力が
常に一定となるために、工具に作用する送り分力Fqに
変動がなく、したがつてその方向の工具の振動をも有効
に抑制することがてきる。
It goes without saying that the contact length CL with the chips on the contact area restricted rake surface Tr and the feed F are maintained within the range of S≧CL≧F. When a workpiece is cut using this method, the support of the tool against the principal force Fp is extremely strong, so the vibration of the tool in the direction of the principal force can be sufficiently suppressed. As can be seen from Fig. 4, since the frictional force caused by the contact with the chip C on the rake face Tr is always constant, the feed component force Fq acting on the tool does not fluctuate, and therefore the tool in that direction It is also possible to effectively suppress vibrations.

第5図ては、固定した工具に対して加工物を回転させる
場合、具体的には突切り作業の場合について示したが、
本発明は第6図に示すように加工物と工具が直線的に相
対移動する場合についても適用できることは勿論であり
、この場合にも、上述した第5図と全く同様の作用によ
つて、工具の振動を抑制することができる。
Fig. 5 shows the case where the workpiece is rotated with respect to a fixed tool, specifically the case of cutting off work.
Of course, the present invention can also be applied to the case where the workpiece and the tool move linearly relative to each other as shown in FIG. Vibration of the tool can be suppressed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の切削工具における工具の振動についての
説明図、第2図は接触面積拘束工具についての説明図、
第3図は工具と切屑の摩擦力について説明するための切
削状態の斜視図、第4図は切削抵抗についての実験結果
を示すグラフ、第5図及び第6図は本発明の切削方法に
ついての説明図である。
Fig. 1 is an explanatory diagram of tool vibration in a conventional cutting tool, Fig. 2 is an explanatory diagram of a contact area constrained tool,
FIG. 3 is a perspective view of the cutting state to explain the frictional force between the tool and chips, FIG. 4 is a graph showing experimental results regarding cutting resistance, and FIGS. 5 and 6 are graphs showing the cutting method of the present invention. It is an explanatory diagram.

Claims (1)

【特許請求の範囲】 1 切屑の連続して発生する切削において、工具の先端
に切屑との接触長さCLを一定に保つ接触面積拘束すく
い面を備え、上記接触長さCLと送りFが、3F≧CL
≧F となる範囲内において、その工具におけるシャンクを、
加工物から受ける主分力の方向において主分力を圧縮力
として受ける方向に固定して切削を行うことを特徴とす
る振動防止切削方法。
[Claims] 1. In cutting where chips are continuously generated, the tip of the tool is provided with a contact area constraining rake face that keeps the contact length CL with the chips constant, and the contact length CL and the feed F are 3F≧CL
Within the range of ≧F, the shank of the tool is
A vibration-preventing cutting method characterized in that cutting is performed by fixing the principal force in the direction in which the principal force is received as a compressive force in the direction of the principal force received from the workpiece.
JP51155494A 1976-12-23 1976-12-23 Anti-vibration cutting method Expired JPS6048283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51155494A JPS6048283B2 (en) 1976-12-23 1976-12-23 Anti-vibration cutting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51155494A JPS6048283B2 (en) 1976-12-23 1976-12-23 Anti-vibration cutting method

Publications (2)

Publication Number Publication Date
JPS5380080A JPS5380080A (en) 1978-07-15
JPS6048283B2 true JPS6048283B2 (en) 1985-10-26

Family

ID=15607266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51155494A Expired JPS6048283B2 (en) 1976-12-23 1976-12-23 Anti-vibration cutting method

Country Status (1)

Country Link
JP (1) JPS6048283B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015213992A (en) * 2014-05-09 2015-12-03 株式会社豊田中央研究所 Cutting tool and cutting method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3357613B1 (en) * 2017-02-03 2023-02-01 Sandvik Intellectual Property AB Assembly of a blade portion for a metal cutting grooving tool and insert
EP3357612B1 (en) 2017-02-03 2022-11-02 Sandvik Intellectual Property AB Method of machining a groove

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042915U (en) * 1990-04-24 1992-01-10

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042915U (en) * 1990-04-24 1992-01-10

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015213992A (en) * 2014-05-09 2015-12-03 株式会社豊田中央研究所 Cutting tool and cutting method

Also Published As

Publication number Publication date
JPS5380080A (en) 1978-07-15

Similar Documents

Publication Publication Date Title
US7810417B2 (en) Method for estimating self-vibration of milling tool in the operating process
US3292237A (en) Vibration damping means for tools
JP3662044B2 (en) Reamer
US20200368829A1 (en) Cutting insert and cutting tool equipped therewith
PL186561B1 (en) Cutting insertion tip for machining operations
JPS6048283B2 (en) Anti-vibration cutting method
WO1990003247A1 (en) Cutting insert with chip control
JP2006055987A (en) Deep-grooving cutting insert tool
JP3250909B2 (en) End mill
JPS60135104A (en) Throwaway tip
JP4854360B2 (en) Cutting insert and cutting tool equipped with the same
JP2513911B2 (en) Insert tip for boring tool
JP2697997B2 (en) Cutting tools
JP2000107923A (en) Throw away type side cutter
JP2004202648A (en) Cutting tool
RU2238839C1 (en) Device for ultrasonic finishing of parts
JPH0570807U (en) Cutting tools
JP3036382B2 (en) Tool mounting structure
JPH08252715A (en) Planer cutting tool
JPH0570808U (en) Boring bar mounting structure
JP4695365B2 (en) Part-Time Job
JPH077809U (en) Rolling tool
JPS624402Y2 (en)
JP3307694B2 (en) End mill
JPH0636885Y2 (en) Throwaway blade for finishing planes