JPS6047997B2 - nuclear reactor cooling system - Google Patents

nuclear reactor cooling system

Info

Publication number
JPS6047997B2
JPS6047997B2 JP53091160A JP9116078A JPS6047997B2 JP S6047997 B2 JPS6047997 B2 JP S6047997B2 JP 53091160 A JP53091160 A JP 53091160A JP 9116078 A JP9116078 A JP 9116078A JP S6047997 B2 JPS6047997 B2 JP S6047997B2
Authority
JP
Japan
Prior art keywords
auxiliary
air
coolant
cooling system
circulation pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53091160A
Other languages
Japanese (ja)
Other versions
JPS5518920A (en
Inventor
勝彦 濱田
芳人 惣万
三男 上田
義人 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP53091160A priority Critical patent/JPS6047997B2/en
Publication of JPS5518920A publication Critical patent/JPS5518920A/en
Publication of JPS6047997B2 publication Critical patent/JPS6047997B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 本発明は、原子力プラントに事故が発生したときの炉
心の溶融破損等を防止する冷却装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling system that prevents melting and damage of a reactor core when an accident occurs in a nuclear power plant.

原子力プラントにおいて、正常運転中は、原子炉炉心
を冷却すると共に該炉心に発生した熱を原子炉容器外へ
搬出し、例えばタービン駆動用蒸気を発生するための冷
却材が該炉心を流通し、その流量も正常に調節されてい
る。
In a nuclear power plant, during normal operation, the reactor core is cooled and the heat generated in the reactor core is carried out of the reactor vessel, and for example, a coolant for generating turbine driving steam flows through the reactor core, Its flow rate is also normally regulated.

しかしながら、原子力プラントに事故が発生した場合
、例えば冷却材循環系のポンプを駆動するモータが作動
しなくなると、炉心を冷却するための冷却材流量が確保
できなくなり、重大な事故に発展するおそれがあつた。
However, if an accident occurs at a nuclear power plant, for example, if the motor that drives the pump in the coolant circulation system stops working, the flow rate of coolant to cool the reactor core cannot be secured, which could lead to a serious accident. It was hot.

このため、従来種々の補助冷却装置が案出されてきた
。第1図はその1側の系統図を示す。第1図において、
1は核反応熱を発生する炉心2を収容する原子炉容器、
3は熱交換器、4及び5は、原子炉容器1と熱交換器3
を連絡する入口配管及び出口配管、6は入口配管4の途
中に設けられた循環ポンプ、7は循環ポンプ6を駆動す
る主モータ、8は主モータ7をバックアップする補助モ
ータであつて、これらが炉心2を直接冷却する冷却材(
通常1次冷却材といわれる。)が循環する冷却材循環系
すなわち1次冷却系10を構成している。 前記熱交換
器3には直接若しくは間接に発電機駆動用タービンを駆
動するための冷却材(以下2次冷却材という。
For this reason, various auxiliary cooling devices have been devised in the past. FIG. 1 shows a system diagram on the first side. In Figure 1,
1 is a reactor vessel housing a reactor core 2 that generates nuclear reaction heat;
3 is a heat exchanger, 4 and 5 are the reactor vessel 1 and the heat exchanger 3
6 is a circulation pump provided in the middle of the inlet pipe 4, 7 is a main motor that drives the circulation pump 6, and 8 is an auxiliary motor that backs up the main motor 7. A coolant that directly cools the core 2 (
It is usually called the primary coolant. ) constitutes a coolant circulation system, that is, a primary cooling system 10. The heat exchanger 3 contains a coolant (hereinafter referred to as secondary coolant) for directly or indirectly driving a turbine for driving a generator.

)が流れる2次冷却材循環系(以下2次冷却系という。
)20が連絡している。換言すれば、熱交換器3は、1
次冷却系10の構成要素であり、又2次冷却系20の構
成要素でもある。 熱交換器3には、更に補助冷却系3
0の補助伝熱管31が配置され、補助冷却系30はモー
タ32によつて駆動される補助循環ポンプ33を有し、
ブロワ41、ダンパ42、空気冷却器43、入口ダクト
44及び出口ダクト45を有する空気冷却系40と熱交
換関係にあつて、補助冷却系30を流れる補助冷却材は
、空気冷却系40を流れる空気によつて冷却される。
) flows through the secondary coolant circulation system (hereinafter referred to as the secondary cooling system).
) 20 are in contact. In other words, the heat exchanger 3 is
It is a component of the secondary cooling system 10 and also a component of the secondary cooling system 20. The heat exchanger 3 is further equipped with an auxiliary cooling system 3.
0 auxiliary heat transfer tubes 31 are arranged, the auxiliary cooling system 30 has an auxiliary circulation pump 33 driven by a motor 32,
The auxiliary coolant flowing through the auxiliary cooling system 30 is in a heat exchange relationship with the air cooling system 40 having a blower 41 , a damper 42 , an air cooler 43 , an inlet duct 44 , and an outlet duct 45 . Cooled by

前記した第1図の従来装置において、定常電源が停電し
たときには、炉心2は、制御棒によつてスクラムされる
と共に、循環ポンプ6の駆動源は、非常電源(通常ディ
ーゼルエンジンによつて駆動される発電機)によつて駆
動される補助モータ8に切り換わり、炉心2に発生する
崩壊熱に見合う1次冷却材を1次冷却系10内で循環せ
しめる。
In the conventional device shown in FIG. 1, when the steady power supply fails, the core 2 is scrammed by the control rods, and the driving source for the circulation pump 6 is an emergency power supply (usually driven by a diesel engine). The auxiliary motor 8 is switched to the auxiliary motor 8 driven by the generator (generator), and the primary coolant corresponding to the decay heat generated in the core 2 is circulated within the primary cooling system 10.

同時に、正常運転時停止していた補助循環ポンプ33も
起動され、空気冷却系40の空気冷却器43によつて冷
却される補助冷却材によつて、1次冷却系10の1次冷
却材は冷却され、炉心2の温度は許容範囲に維持される
At the same time, the auxiliary circulation pump 33, which had been stopped during normal operation, is also activated, and the auxiliary coolant cooled by the air cooler 43 of the air cooling system 40 causes the primary coolant in the primary cooling system 10 to The temperature of the core 2 is maintained within an acceptable range.

第2図は前述の作用時の1次冷却材の流量a1補助冷却
材の流量b及び空気の流量cの変化を示している。
FIG. 2 shows changes in the flow rate a of the primary coolant, the flow rate b of the auxiliary coolant, and the flow rate c of air during the above-described operation.

更に前述の非常電源も使用できず、補助モータ8及びモ
ータ32も作動しない場合に備えて、原子炉容器1に対
し熱交換器3を、又熱交換器3に対して空気冷却器43
を夫々相対的高位置に設置し、空気冷却系40の煙突効
果を利用し、補助冷却系30及び1次冷却系10に夫々
補助冷却材及び1次冷却材の自然循環流を生せしめて、
炉心2を冷却している。
Furthermore, in case the above-mentioned emergency power source cannot be used and the auxiliary motor 8 and motor 32 do not operate, a heat exchanger 3 is installed for the reactor vessel 1, and an air cooler 43 is installed for the heat exchanger 3.
are installed at relatively high positions, and by utilizing the chimney effect of the air cooling system 40, a natural circulating flow of the auxiliary coolant and the primary coolant is generated in the auxiliary cooling system 30 and the primary cooling system 10, respectively,
The reactor core 2 is being cooled.

この場合の1次冷却材の流量a″、補助冷却材の流量b
″及ひ空気の流量C″の変化の1例を第3図に示す。
In this case, the flow rate a'' of the primary coolant, the flow rate b of the auxiliary coolant
An example of changes in "and air flow rate C" is shown in FIG.

しかるに、第3図より明らかなように、前述の従来のも
のにおいては、非常電源も同時に喪失した時の過渡期の
初期に1次冷却材の流量、炉心の崩壊熱量、空気の流量
等の平衡が整定せず、1次冷却材の流量が不足して炉心
2を破損せしめる不具合がある。
However, as is clear from Figure 3, in the conventional system described above, the primary coolant flow rate, core decay heat amount, air flow rate, etc. are not balanced at the beginning of the transition period when emergency power is also lost. is not stabilized, and the flow rate of the primary coolant is insufficient, causing damage to the core 2.

本発明は、前述の従来のものの不具合、即ち定常電源と
非常電源が共に得られなくなつたときの.過渡期に起る
1次冷却材の流量不足を解消することを目的とし、別途
貯えておいた圧縮気体を利用して循環ポンプ及び補助循
環ポンプを駆動し、1次冷却材及ひ補助冷却材を流動さ
せ、所要の冷却作用を行わしめるものてある。
The present invention solves the above-mentioned problem of the conventional system, that is, when both steady power and emergency power cannot be obtained. In order to eliminate the shortage of primary coolant flow rate that occurs during the transition period, compressed gas stored separately is used to drive the circulation pump and auxiliary circulation pump, and the primary coolant and auxiliary coolant are There is a device that allows the fluid to flow and performs the required cooling effect.

以下図示の実施例に基づいて本発明を説明する。The present invention will be explained below based on the illustrated embodiments.

第4図は、本発明の実施例の系統図を示したもので、同
図において第1図のものと同一又は対応するものには、
同一の番号を付してある。
FIG. 4 shows a system diagram of an embodiment of the present invention. In the diagram, parts that are the same as or correspond to those in FIG.
They are given the same number.

即ち後述以外の構成は、第1図の従来のものと同七であ
る。
That is, the configuration other than those described below is the same as the conventional one shown in FIG.

補助モータ8の回転子軸及びモータ32に連結した補助
モータ35の回転子軸に夫々回転軸が連結して空気ター
ビン11および36が設けられ、空気圧縮機51に連通
した圧縮気体貯蔵容器すなわち空気ボンベ52は、開閉
弁53を介して空気タービン11,36に夫々連絡して
いる。
Air turbines 11 and 36 are provided with rotating shafts connected to the rotor shaft of the auxiliary motor 8 and the rotor shaft of the auxiliary motor 35 connected to the motor 32, respectively, and a compressed gas storage container, i.e., air, connected to an air compressor 51. The cylinder 52 communicates with the air turbines 11 and 36 via on-off valves 53, respectively.

空気夕・−ビツ11,36の排出口は、共に入口ダクト
44に連通している。前記した実施例において、原子炉
の正常運転時は、補助循環ポンプ33、空気タービン1
1,36は停止している(開閉弁53は閉じている。
The discharge ports of the air filters 11 and 36 both communicate with the inlet duct 44. In the embodiment described above, during normal operation of the nuclear reactor, the auxiliary circulation pump 33 and the air turbine 1
1 and 36 are stopped (the on-off valve 53 is closed).

)空気圧縮機51は、正常運転中例えば定常電源に連絡
したモータにより運転され、空気ボンベ52中に圧縮空
気が貯えられる。空気圧縮機52の運転は、定常電源に
よるモータ以外の適宜な駆動装置によつて行なつてよい
ことは勿論である。
) During normal operation, the air compressor 51 is operated, for example, by a motor connected to a constant power source, and compressed air is stored in the air cylinder 52. Of course, the air compressor 52 may be operated by an appropriate drive device other than a motor powered by a steady power source.

定常電源のみが喪失したときの作用は、第1図の従来の
ものの作用と同じである。
The effect when only the steady power source is lost is the same as that of the conventional one shown in FIG.

定常電源と共に非常電源も喪失したときは、開閉弁53
が開かれ、空気ボンベ52中に貯えられていた圧縮空気
は、空気タービン11,36に導かれ、ここでほS゛断
熱膨張しながら空気タービン11,36を駆動し、循環
ポンプ6及び補助循環ポンプ33を駆動し、1次冷却系
10の1次冷却材及び補助冷却系30の補助冷却材を流
動せしめて各冷却材の所要流量を暫時確保する。
When the emergency power source is lost along with the steady power source, the on-off valve 53
is opened, and the compressed air stored in the air cylinder 52 is guided to the air turbines 11 and 36, where it drives the air turbines 11 and 36 while expanding almost adiabatically. The pump 33 is driven to cause the primary coolant in the primary cooling system 10 and the auxiliary coolant in the auxiliary cooling system 30 to flow, thereby temporarily securing the required flow rates of each coolant.

空気タービン11,36において断熱膨張をして低温低
圧、大容積となつた空気(排気)は、入口ダクト44に
入り、空気冷却器43で補助冷却系30を流れる補助冷
却材を冷却材し、低温になつた補助冷却材は、熱交換器
3において1次冷却系10を流れる1次冷却材を冷却し
、循環ポンプ6によつて炉心2に送入された低温の1次
冷却材は、スクラム後崩壊熱を発生し続ける炉心2を適
度に冷却する。
The air (exhaust air) that has undergone adiabatic expansion in the air turbines 11 and 36 and has become low temperature, low pressure, and large volume enters the inlet duct 44 and cools the auxiliary coolant flowing through the auxiliary cooling system 30 in the air cooler 43. The low-temperature auxiliary coolant cools the primary coolant flowing through the primary cooling system 10 in the heat exchanger 3, and the low-temperature primary coolant sent to the reactor core 2 by the circulation pump 6 is To appropriately cool a reactor core 2 that continues to generate decay heat after a scram.

前記圧縮空気は、循環ポンプ6及び補助循環ポンプ33
の慣性運転中に空気タービン11,36に達してこれを
駆動する。
The compressed air is supplied to the circulation pump 6 and the auxiliary circulation pump 33.
During the inertia operation of the air turbines 11, 36, the air turbines 11, 36 are reached and driven.

過渡期経過後は、原子炉容器1と熱交換器3の高差、熱
交換器3と空気冷却器43の高差によつて誘起される各
冷却材の自然循環流によつて終局的に炉心2が過渡に冷
却される。
After the transition period has passed, the natural circulation flow of each coolant induced by the height difference between the reactor vessel 1 and the heat exchanger 3 and the height difference between the heat exchanger 3 and the air cooler 43 will eventually The reactor core 2 is transiently cooled.

前述の作用時における1次冷却材の流量a″″、補助冷
却材の流量b″″、空気冷却系40の空気の流量C″″
及び空気タービン11,36の空気流量dの変化の状態
を第5図に示す。
During the above-mentioned operation, the flow rate a'' of the primary coolant, the flow rate b'' of the auxiliary coolant, and the flow rate C'' of the air in the air cooling system 40.
FIG. 5 shows the state of change in the air flow rate d of the air turbines 11 and 36.

前述の構成及ひ作用を有する本実施例によれは、定常電
源と共に非常電源も喪失したときに、別途貯えておかれ
た圧縮空気を駆動流体とする空気タービン11,36に
よつて循環ポンプ6及び補助循環ポンプ33が極めて適
切に運転され続けるので1次冷却材の流量及び補助冷却
材の流量が夫々適切に維持されて炉心2を適確に冷却で
きるのみならず、空気タービン11,36の冷温排気が
空気冷却系40に導入されて、補助冷却材を効率よく冷
却するので、単に煙突効果による従来のものに比し迅速
かつ効率よく、空気冷却系40の作動を立ち上がらして
終局的に炉心2を間断なく冷却てきるという極めてすぐ
れた効果を奏する。
According to this embodiment having the above-described configuration and operation, when the emergency power source as well as the steady power source is lost, the circulation pump 6 is activated by the air turbines 11 and 36, which use separately stored compressed air as the driving fluid. Since the auxiliary circulation pump 33 continues to operate very appropriately, the flow rate of the primary coolant and the auxiliary coolant are respectively maintained appropriately, and not only can the reactor core 2 be appropriately cooled, but also the air turbines 11 and 36 can be cooled properly. Since the cold and hot exhaust gas is introduced into the air cooling system 40 and efficiently cools the auxiliary coolant, the operation of the air cooling system 40 can be started up more quickly and efficiently than in the conventional case simply due to the chimney effect. This provides an extremely excellent effect of cooling the core 2 without interruption.

更に、前記実施例においては、循環ポンプ6及び補助循
環ポンプ33を駆動するために圧縮空気駆動空気タービ
ンを利用し、常に開閉弁53を開けはよく、ディーゼル
機関やガスタービンのような燃焼機関を用いた通常の非
常駆動機関に比し、極めて起動信頼性が高いので、厳し
い安全性、信頼性を要求される原子炉にとつて極めて有
効で、その事故を未然に防止することができる。前記実
施例においては空気タービンを使用したが、N2ガスや
CO2ガスを駆動流体とする気体タービンを使用しても
同様の作用効果を呈することは、勿論、空気タービンを
含む気体タービンによつて直接機械的に循環ポンプ等を
駆動せす、発電機を介して行なつてもよいことは勿論で
ある。
Furthermore, in the embodiment described above, a compressed air-driven air turbine is used to drive the circulation pump 6 and the auxiliary circulation pump 33, and the on-off valve 53 is kept open at all times, and a combustion engine such as a diesel engine or a gas turbine is operated. Since it has extremely high startup reliability compared to the normal emergency drive engine used, it is extremely effective for nuclear reactors that require strict safety and reliability, and can prevent accidents. Although an air turbine was used in the above embodiment, it goes without saying that similar effects can be obtained even if a gas turbine using N2 gas or CO2 gas as the driving fluid is used. Of course, it is also possible to mechanically drive a circulation pump or the like or to use a generator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来装置の系統図、第2図及び第3図は、従
来装置の作用説明図、第4図は本発明の実施例を示す系
統図、第5図は、本発明の実施例の作用説明図である。
FIG. 1 is a system diagram of a conventional device, FIGS. 2 and 3 are action explanatory diagrams of the conventional device, FIG. 4 is a system diagram showing an embodiment of the present invention, and FIG. 5 is a system diagram of an embodiment of the present invention. It is an explanatory diagram of an example of an operation.

Claims (1)

【特許請求の範囲】[Claims] 1 原子炉と同原子炉に対して相対的高位置に配設され
た熱交換器と循環ポンプとを具備した冷却材循環系、前
記熱交換器を介して前記冷却材循環系と熱交換関係を有
し補助循環ポンプを含む補助冷却材循環系、同補助冷却
材循環系と熱交換関係を有する空気冷却系、前記循環ポ
ンプと補助循環ポンプの夫々の駆動系に連絡した気体タ
ービン及び同気体タービンに選択的に連通する圧縮気体
貯蔵容器を有してなることを特徴とする原子炉の冷却装
置。
1. A nuclear reactor, a coolant circulation system equipped with a heat exchanger and a circulation pump arranged at a relatively high position with respect to the reactor, and a heat exchange relationship with the coolant circulation system via the heat exchanger. an auxiliary coolant circulation system including an auxiliary circulation pump, an air cooling system having a heat exchange relationship with the auxiliary coolant circulation system, a gas turbine connected to each drive system of the circulation pump and the auxiliary circulation pump, and the gas turbine. A cooling device for a nuclear reactor, comprising a compressed gas storage vessel selectively communicating with a turbine.
JP53091160A 1978-07-26 1978-07-26 nuclear reactor cooling system Expired JPS6047997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53091160A JPS6047997B2 (en) 1978-07-26 1978-07-26 nuclear reactor cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53091160A JPS6047997B2 (en) 1978-07-26 1978-07-26 nuclear reactor cooling system

Publications (2)

Publication Number Publication Date
JPS5518920A JPS5518920A (en) 1980-02-09
JPS6047997B2 true JPS6047997B2 (en) 1985-10-24

Family

ID=14018735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53091160A Expired JPS6047997B2 (en) 1978-07-26 1978-07-26 nuclear reactor cooling system

Country Status (1)

Country Link
JP (1) JPS6047997B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2570981B2 (en) * 1993-09-17 1997-01-16 日本電気株式会社 Band compression processor, band expansion processor, and voice communication device
JP2013195396A (en) * 2012-03-22 2013-09-30 Mitsubishi Heavy Ind Ltd Cooling device

Also Published As

Publication number Publication date
JPS5518920A (en) 1980-02-09

Similar Documents

Publication Publication Date Title
CA2442719C (en) A method of conditioning a power generation circuit of a nuclear reactor power plant
US3218807A (en) Transfer of the working medium in the working medium exchange between a closed-cyclegas turbine plant and a reservoir
JP2880925B2 (en) Hydrogen combustion gas turbine plant
JP2012194194A (en) Nuclear reactor
US5697207A (en) Combined gas turbine inlet chiller, nox control device and power augmentation system and methods of operation
JPS6020714B2 (en) Auxiliary cooling system for nuclear reactor
JPH11159306A (en) Recovery type steam cooling gas turbine
RU106307U1 (en) NATURAL GAS DISTRIBUTION SYSTEM PRESSURE CONTROL STATION (OPTIONS)
US4144723A (en) Power plant secondary coolant circuit
US6125623A (en) Heat exchanger for operating with a combustion turbine in either a simple cycle or a combined cycle
US4502277A (en) Turbine power plant system
US3503207A (en) Closed cycle co2 gas turbine power plant with partial condensation of the working substance prior to expansion thereof
JPS6047997B2 (en) nuclear reactor cooling system
JPS5844397A (en) Atomic power plant
GB1362902A (en) Cooling of a generating plant
KR102546449B1 (en) Nuclear power load response generation system using thermal energy storage system
GB1300948A (en) Improvements in or relating to power plants
JP2003286864A (en) Fuel gas feeding system of gas turbine and operating method for the system
GB773248A (en) Improvements in and relating to systems for cooling of air for example for aircraft pressurised spaces
GB1229943A (en)
JPS5865917A (en) Power generating device of exhaust heat recovery in diesel engine
JPH02301606A (en) Cogeneration system
RU97121547A (en) METHOD FOR OPERATING POWER INSTALLATION AND INSTALLATION FOR ITS IMPLEMENTATION
DE3403595A1 (en) Engine heat loss recovery unit
JPH0491325A (en) High temperature gas furnace type heat-electricity compound generating system