JPS604797A - Heat transfer tube equipped with groove on inner surface thereof and manufacture thereof - Google Patents

Heat transfer tube equipped with groove on inner surface thereof and manufacture thereof

Info

Publication number
JPS604797A
JPS604797A JP11215883A JP11215883A JPS604797A JP S604797 A JPS604797 A JP S604797A JP 11215883 A JP11215883 A JP 11215883A JP 11215883 A JP11215883 A JP 11215883A JP S604797 A JPS604797 A JP S604797A
Authority
JP
Japan
Prior art keywords
tube
groove
grooves
plug
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11215883A
Other languages
Japanese (ja)
Inventor
Yoshinobu Tsuzaki
津崎 好信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11215883A priority Critical patent/JPS604797A/en
Publication of JPS604797A publication Critical patent/JPS604797A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/04Assemblies of fins having different features, e.g. with different fin densities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/10Secondary fins, e.g. projections or recesses on main fins

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Metal Extraction Processes (AREA)

Abstract

PURPOSE:To obtain the heat transfer tube of a high performance and reduce the cost thereof by a method wherein the configurations of the grooves on the inner surface of the tube are changed in accordance with the positions of the tube. CONSTITUTION:First group II, consisting of a multitude of grooves 2 which are opened toward the center axis of the tube, and second group III, consisting of a multitude of grooves 3, whose apexes are narrow and the inner parts thereof are wide, are formed alternately and opposingly on the inner surface of the tube. These groove groups II, IIIare obtained by applying extracting and elongating process to an inner surface uniformly grooved metal tube obtained by a grooving process. The depth of the groove 2 of the first groove group II becomes deeper than the conventional groove by the choking and thickness increasing effect of the extracting and elongating process after the grooving process and the surface 26 of the chevron 25 becomes rough compared with the conventional groove whereby the heat transfer property of the pipe is improved. The inner part of the groove 3 of the second groove group III is wider and the apex 30 thereof is narrower than the conventional groove whereby the area of the chevron permitted to contact with a fluid is increased and the heat transfer performance may be improved.

Description

【発明の詳細な説明】 本発明は内面の溝形状が管の部位にょシ変化するような
高性能且つ低価格の内面溝付伝熱管並びに生産性の高い
同伝熱管製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-performance and low-cost internally grooved heat exchanger tube in which the shape of the grooves on the inner surface changes depending on the portion of the tube, and a highly productive method for manufacturing the same.

伝熱管としては一般に内面が平滑ないわゆるベアーチュ
ーブが使用されておシ、このチューブは単なる円管状で
ある為長尺物の高速抽伸が可能であって生産性が非常に
良く、製品価格が比較的安いという利点があった。しか
し内面が平滑であるために伝熱性能が低く、特にフロン
ガスを媒体として熱交換を行なうルームエアコン等の熱
交換器への適用に当ってその伝熱性能の低さが大きな問
題とされ、これを解決するために第1図(イ)(要部断
面模式図)に示すような、管内面全体にらせん状にのび
る多数の同一形状の溝Yが形成されてなる内面溝付伝熱
管Xが提案され、伝熱性能的には一応の評価を得ている
。しかしこの様ないわば内面均一溝型の伝熱管について
は後記する製造プロセスとの関係で製品価格上及び品質
上太き外問題がある。加えて今日の世界的なエネルギー
事情の悪化に端を発する産業界全般の省エネルギー気運
の浸透に伴い、ルームエアコン等の熱交換器においても
小型且つ薄型化が要求されつつあシ、このような要求は
上記製品価格及び品質上の問題を一層深刻にするのみな
らず、伝熱性能の面についてもより一層の改善がめられ
ている。
Generally, so-called bare tubes with smooth inner surfaces are used as heat transfer tubes.Since these tubes are simply circular, long objects can be drawn at high speed, resulting in very high productivity and product prices. It had the advantage of being cheap. However, because the inner surface is smooth, the heat transfer performance is low, and this low heat transfer performance is a major problem, especially when applied to heat exchangers such as room air conditioners that exchange heat using fluorocarbon gas as a medium. In order to solve this problem, an internally grooved heat exchanger tube X is created in which a large number of grooves Y of the same shape are formed spirally over the entire inner surface of the tube, as shown in FIG. It has been proposed and has received some good reviews in terms of heat transfer performance. However, such heat exchanger tubes with uniform internal grooves have serious problems in terms of product price and quality due to the manufacturing process described below. In addition, with the spread of an energy-saving trend in the industry as a whole stemming from today's deteriorating global energy situation, there is a growing demand for smaller and thinner heat exchangers for room air conditioners and other devices. This not only makes the above-mentioned product price and quality problems even more serious, but also requires further improvement in terms of heat transfer performance.

即ち内面均一溝型の伝熱管は一般に第1図(ロ)(要部
断面概略説明図)に示すプロセスに従って製造されてい
る。簡単に説明すれば、ダイスBとフローティングプラ
グCによシまず素管Aを抽伸(縮径減肉)し、次いでフ
ローティングプラグCの素管進行方向側に連接棒りを介
して連設された回動自在の溝付プラグEと回転圧迫手段
Fの間で管内面にらせん状溝を刻設し、該溝付は時の強
圧により管外表面に生じた小さくなだらかな凹凸を更に
後方ダイスGによシスキンパス程度抽伸修正し、外面が
平滑で且つ内面全体に均一ならせん状溝が形成された伝
熱管Xを得ている。しかしこの製造プロセスには様々の
問題が含まれており、要約すれば下記■〜■に示す通シ
である。
That is, heat exchanger tubes with uniform inner grooves are generally manufactured according to the process shown in FIG. To explain briefly, a die B and a floating plug C are used to first draw the raw pipe A (reducing the diameter and thickness), and then connect the floating plug C to the raw pipe traveling direction side via a connecting rod. A spiral groove is carved on the inner surface of the tube between the freely rotatable grooved plug E and the rotary compression means F, and the groove is used to further smooth out the small gentle irregularities generated on the outer surface of the tube due to the strong pressure at the time. A heat exchanger tube X having a smooth outer surface and uniform helical grooves formed on the entire inner surface is obtained by correcting the drawing to a degree similar to the skin pass. However, this manufacturing process involves various problems, and can be summarized as follows.

■内面溝付管を得る目的からみれば、M1工程段階、即
ちダイスB及びフローティングプラグCによる素管Aの
縮径減肉化は必ずしも必要のないことであり、との部分
でいたずらに管の引抜き抵抗を惹起せしめている。
■From the point of view of obtaining an internally grooved tube, it is not necessarily necessary to reduce the diameter of the tube A in the M1 process step, that is, by using the die B and the floating plug C. This causes pull-out resistance.

■t+”を付は工程段階と後方の管外面平滑化抽伸工程
段階とが意味も無く所定の間隔をおいて別々に行なわれ
ておシ、生産効率が悪い。
``t+'' indicates that the process step and the drawing process step for smoothing the outer surface of the tube are meaninglessly performed separately at predetermined intervals, resulting in poor production efficiency.

■目的が異なるとはいうものの同一抽伸操作を溝伺は工
程段階の前後で行なうことは単に無駄であるだけでなく
、管の引抜き抵抗を一層増大させる。
(2) Although the purpose is different, performing the same drawing operation before and after the grooving process step is not only wasteful, but also increases the resistance to drawing the pipe.

■上記の様に引抜き時の抵抗が大きいために薄肉管の場
合、いわゆる管切れを防止するだめには引抜き速度を遅
くせざるを得す、反対に厚肉管の場合は引抜き力の大部
分が引抜時の抵抗によって費やされ、いずれにしても単
位時間当シの溝加工長さが減少して生産性が低下すると
共に、深溝の刻設が困難であるために伝熱性能の向上が
期ずできない。
■As mentioned above, in the case of thin-walled pipes, the pulling speed must be slowed down in order to prevent so-called pipe breakage due to the large resistance during pulling out; on the other hand, in the case of thick-walled pipes, most of the pulling force is is wasted due to the resistance during pulling out, and in any case, the groove machining length per unit time decreases, lowering productivity, and the difficulty of carving deep grooves makes it difficult to improve heat transfer performance. I can't wait.

■フローティングプラグCと溝付プラグEは連接棒りで
つながっているが、回転圧迫手段Fをあまシ高速(例え
ば5000〜s o o orpn)で回動させたり、
圧迫力が強すぎると、連接棒りがねじれ変形を起こし、
その結果、回転圧迫手段Fと音イ」7プ2グEの位置関
係がずれたりして、正確な溝形状の刻設が不可能になる
■The floating plug C and the grooved plug E are connected by a connecting rod, but if the rotating compression means F is rotated at a relatively high speed (e.g. 5000~soo orpn),
If the compression force is too strong, the connecting rod will twist and deform.
As a result, the positional relationship between the rotary compression means F and the groove E may become misaligned, making it impossible to carve an accurate groove shape.

■グイスB及びフローティングプラグCによる素管Aの
縮径減肉化段階で生じる抵抗で引抜き速度が減少する分
を、回転圧迫手段Fの超高速回転化(例えば10,00
0rpIりで補うとしても、このような超高速回転では
遠心力が強大となシ、該手段Fにいわゆる軸心振れを起
こし易く、溝付は工程郡全体が非常に振動し易い状態と
なって円滑な溝付けが行表えない。又回転圧迫手段Fは
管外面を摺動しつつ超高速回転するので、摺動部での発
熱が著しくなり、この為管の内外面に潤滑油膜切れによ
る無数のすシ傷が発生し、回転圧迫手段F自体の摩耗量
も増大する。
■The reduction in the pulling speed due to the resistance generated during the diameter reduction stage of the raw pipe A by the guide B and the floating plug C can be compensated for by increasing the rotation speed of the rotary compressing means F to an ultra-high speed (for example, 10,000
Even if it is compensated for by 0 rpm, the centrifugal force is strong in such ultra-high speed rotation, and the means F is likely to cause so-called axial runout, and the grooved process will be in a state where the entire process group is extremely susceptible to vibration. I can't get smooth grooves. In addition, since the rotary compression means F rotates at extremely high speed while sliding on the outer surface of the tube, heat generation at the sliding part becomes significant, resulting in countless scratches on the inner and outer surfaces of the tube due to lack of lubricating oil film, and the rotating The amount of wear on the compression means F itself also increases.

本発明は上記事情に着目してなされたものであって、高
性能且つ低価格の内面溝付伝熱管を提供すること並びに
その内面溝付伝熱管を効率良く低コストで製造する方法
を提供することを目的とするものである。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a high-performance and low-cost internally grooved heat exchanger tube, and to provide a method for efficiently manufacturing the internally grooved heat exchanger tube at low cost. The purpose is to

しかして第1の目的を達成し得た本発明の内面溝付伝熱
管とは、管軸方向に沿ってらせん状に連なる溝を内面に
有する伝熱管であって、その溝が、管中心軸に向って開
放状の第1溝群と、溝頂部が狭くて溝内部が広い構造の
第2溝群とからなると共に各溝群は管周方向及び管軸方
向に交互に現われしかもそれらが溝形状を相互に且つ連
続的に変化させながら連なってなる点に要旨を有し、又
第2の目的を達成し得た本発明の内面溝付伝熱管の製造
方法とは、管の外周面を外側から圧迫可能に配設された
転圧手段と、該転圧手段に対応する管内側位置にあって
且つ溝付は用凹凸を外周面に有してなる溝付はプラグと
、該溝付はプラグの普通行側に該プラグとは回動自在に
連接されると共に、管肉を内側から圧迫するアプローチ
部と管内面を規制するベアリング部とを有するフローテ
ィングプラグと、該フローティングプラグに対応する管
外側位置にあって管肉を外側から圧迫するアプローチ部
と管外面を規制するベアリング部とを有するダイス装置
を用いて金属管内面を連続的に加工する方法であって、
前記フローティングプラグとして、該プラグの外面軸方
向に沿って、ヘッド部、アプローチ部及びベアリング部
にかけて連続する切欠を外周に少なくとも2つ有してな
るものを採用し、被加工管を前記溝付プラグと前記一対
の転圧手段の間をしごきつつ通過させた後、このしごか
れた管を前記フローティングプラグと前記ダイス装置の
間を通過させつつ引抜くことにより、管軸方向に沿って
らせん状に連なる内面溝が、管中心軸に向って開放状の
第1溝群と、溝頂部が狭くて溝内部が広い構造の第2溝
群とからなると共に各港「Cは管周方向及び管軸方向に
交互に表われしかもそれらが溝形状を相互に且つ連続的
に変化させながら連なってなる金属管に加工する点に要
旨を有するものである。
The internally grooved heat exchanger tube of the present invention, which has achieved the first object, is a heat exchanger tube that has grooves spirally connected along the tube axis direction on the inner surface, and the grooves are connected to the center axis of the tube. It consists of a first groove group that is open towards the tube, and a second groove group that has a narrow groove top and a wide groove inside, and each groove group appears alternately in the pipe circumferential direction and the pipe axial direction, and they The method for manufacturing an internally grooved heat exchanger tube of the present invention has the gist that the tubes are formed in a row while mutually and continuously changing the shape, and has also achieved the second object. a rolling pressure means disposed so as to be compressible from the outside; a grooved plug located at a position inside the tube corresponding to the rolling pressure means and having grooves and projections on the outer circumferential surface; corresponds to a floating plug which is rotatably connected to the plug on the normal row side of the plug and has an approach part that compresses the pipe flesh from the inside and a bearing part that regulates the inner surface of the pipe, and a floating plug that corresponds to the floating plug. A method for continuously processing the inner surface of a metal tube using a die device having an approach section located on the outer side of the tube and compressing the tube flesh from the outside and a bearing section that regulates the outer surface of the tube, the method comprising:
The floating plug has at least two continuous notches on the outer periphery along the axial direction of the outer surface of the plug, extending through the head portion, the approach portion, and the bearing portion, and the pipe to be processed is attached to the grooved plug. and the pair of compaction means, and then the strained tube is pulled out while passing between the floating plug and the die device, thereby creating a spiral shape along the tube axis direction. The internal grooves connected to each other consist of a first group of grooves that are open toward the center axis of the pipe, and a second group of grooves that are narrow at the top of the groove and wide inside the groove. The gist is that the grooves appear alternately in the axial direction and are formed into a continuous metal tube while mutually and continuously changing the shape of the grooves.

以下実施例図面を参照しつつ本発明の構成及び作用効果
を説明する。
The configuration and effects of the present invention will be explained below with reference to the drawings.

第2図(イ)は本発明伝熱管の要部断面模式図を示ず。FIG. 2(a) does not show a schematic cross-sectional view of the main parts of the heat exchanger tube of the present invention.

図示の如く管中心軸に向って開放状の多数の溝2からな
る第1溝群■と溝頂部が狭くて溝内部が広い多数のF)
3からな乏第2溝群■が管内面に交互に且つ対向して形
成されている。これらの溝n’f II 、 IT[は
後述する様に溝付は加工によって得られだ内面均一溝付
金属管〔第1図(イ)参照〕に更に特色ある抽伸加工を
施すことによって形成される□ ものである。第2図(ロ)は同図(イ)における第11
溝群Hの一部拡大図、同図(ハ)は同図(イ)における
第2溝群Inの一部拡大図である。第2図(ロ)におい
て高さH2を有する溝2のピッチはP2であシ、又管中
心情に向かうに従って即ち溝の央部22から中央部21
.入口部20へと進むにつれて溝巾が太きく力る(19
造を有している。従ってこれらの溝2に対峙する山25
は管中心軸に向かうに従って即ち先端に行くほど細くな
っているが、とれらの溝2と山25の形状は従来伝熱管
〔第1図ピ)参照〕に比べて著しく異なっている。即ち
後記する様に溝伺加工後に抽伸工程時の絞り増肉作用を
受けて溝深さく山高さでもある)H2が従来伝熱管につ
いての溝深さく山高さ)Ho 〔第1図(イ)参照〕よ
り増大しておシ、又山25の表面26が従来伝熱管にお
ける山の表面よ)も荒くなっている。従って第4溝群■
によって占められる部分は、伝熱性向上を図る上で非常
に有利な内表面構造になっていると言える。
As shown in the figure, the first groove group (■) consists of a large number of grooves 2 that are open toward the center axis of the tube, and the large number of grooves (F) that are narrow at the top of the groove and wide inside the groove.
Three sub-second groove groups (2) are formed on the inner surface of the tube alternately and facing each other. As described later, these grooves n'f II and IT [are formed by applying a special drawing process to a metal tube with uniformly grooved inner surface (see Fig. 1 (a)). ru□ It is something. Figure 2 (B) is the 11th section in Figure 2 (A).
A partially enlarged view of the groove group H, and (c) is a partially enlarged view of the second groove group In in the same figure (a). In FIG. 2(b), the pitch of the groove 2 having a height H2 is P2, and as it goes toward the center of the tube, that is, from the center part 22 of the groove to the center part 21.
.. The groove width becomes thicker as it advances toward the entrance part 20 (19
It has a structure. Therefore, the mountains 25 facing these grooves 2
The tube becomes thinner toward the center axis of the tube, that is, toward the tip, but the shapes of the grooves 2 and peaks 25 are significantly different from those of the conventional heat transfer tube (see FIG. 1, p). In other words, as will be described later, after groove processing, the groove depth and peak height are also increased due to the thinning action during the drawing process) H2 is the groove depth and peak height of the conventional heat transfer tube) Ho [See Figure 1 (A) ] The surface 26 of the ridge 25 has also become rougher (as compared to the surface of the ridge in a conventional heat exchanger tube). Therefore, the fourth groove group■
It can be said that the portion occupied by the inner surface has an extremely advantageous inner surface structure for improving heat conductivity.

又第2溝群■については第2図(ハ)に示す様に、溝3
と山35からなシ、溝3は内部31が広く頂部30が狭
い構造になっている。H3は溝深さく山高さ)であシ、
P3は溝3のピッチである。そして山35の先端はほぼ
フラツト7Th表面36となっていると共にその右i!
ill又は左側のいずれか一方の端部が溝頂部30に向
って突出したくちばし部38を構成している。この様な
第2溝群■は、丁度第2図(ロ)における山25の頂部
が所定の工具で右方向へ圧迫された状態にあり、(従っ
てH2)H8゜P2 ”F Ps )その為山35の先
端部表面36は平滑である一方、山35の凹部表面37
は圧縮曲げ作用が影響して荒くなっている。この様な構
造的特徴を有する第2溝群■は、従来伝熱管の場合に比
べ伝熱性能が著しく改善される。即ち上述の如く溝3は
内部31が広く頂部30が狭くなっているので、溝内の
流体と接し得る山の表面積(熱交換に有効な表面積)が
顕著に増加する。従って沸騰核の生成が速やかになシ、
しかも生成した沸騰核が成長しつつ溝3内の流体を攪拌
して対流伝熱を促進させると共に、溝頂部30から管内
(溝外)へ出て管内流体を攪拌する。又とのとき反対に
管内の流体が溝3内に流入するので、溝3内の流体と管
内の流体の混合−が非常に効果的に行なわれる。
Regarding the second groove group ■, as shown in Figure 2 (c), groove 3
The groove 3 has a structure in which the inside 31 is wide and the top 30 is narrow. H3 is groove depth and mountain height).
P3 is the pitch of groove 3. The tip of the mountain 35 is almost a flat 7Th surface 36, and the right i!
Either the ill or left side end constitutes a beak portion 38 that protrudes toward the groove top portion 30. In such a second groove group (2), the top of the mountain 25 in Fig. 2 (b) is in a state where it is pressed rightward by a predetermined tool (therefore, H2)H8゜P2 ``F Ps) The tip surface 36 of the ridge 35 is smooth, while the concave surface 37 of the ridge 35 is smooth.
is rough due to the effect of compression bending. The second groove group (2) having such structural features has significantly improved heat transfer performance compared to the conventional heat transfer tube. That is, as mentioned above, since the groove 3 is wide at the inside 31 and narrow at the top 30, the surface area of the crest (surface area effective for heat exchange) that can come into contact with the fluid in the groove increases significantly. Therefore, boiling nuclei are generated quickly,
Moreover, the generated boiling nuclei grow and agitate the fluid in the groove 3 to promote convective heat transfer, and also come out from the groove top 30 into the tube (outside the groove) to agitate the fluid in the tube. On the other hand, since the fluid in the tube flows into the groove 3 in the opposite case, the fluid in the groove 3 and the fluid in the tube are mixed very effectively.

更に各溝群■、■は管周方向においてだけでなく、管軸
方向においても交互に表われ、しかもそれらが溝形状を
相互に且つ連続的に少しずつ形を変えて連なっている。
Further, the groove groups (1) and (2) appear alternately not only in the tube circumferential direction but also in the tube axial direction, and they are continuous with each other while changing the groove shape little by little.

即ち1本の溝2について言えば、溝2が管軸方向にらせ
ん状に進むにつれて、その溝形状が管部位によって2→
3→2→3(管の1周分に相当)という具合に相互的且
つ連続的な変化をくシ返す様な構造となっている。従っ
て、例えば溝形状が2→3に変化するときには管内流体
の一部が溝3内に強制的に注入され、溝形状が3→2に
変化するときには溝3内の流体の一部が管内即ち構外へ
強制的に排出されることになり、いわばポンプとしての
効果を発揮する。従って本発明伝熱管X′〔第2図(イ
)参照〕は伝熱性向上を図る上で非常に有利な内表面構
造となっておシ、特に管内面沸騰型伝熱管に適用した場
合の伝熱性能の向上が顕著である。
In other words, regarding one groove 2, as the groove 2 progresses spirally in the tube axis direction, the groove shape changes from 2→
It has a structure that repeats mutual and continuous changes in the order of 3 → 2 → 3 (corresponding to one circumference of the tube). Therefore, for example, when the groove shape changes from 2 to 3, part of the fluid in the pipe is forcibly injected into the groove 3, and when the groove shape changes from 3 to 2, a part of the fluid in the groove 3 is forced into the pipe, that is, when the groove shape changes from 3 to 2. It will be forcibly discharged outside the premises, and will act as a pump. Therefore, the heat exchanger tube X' of the present invention [see FIG. 2 (a)] has an extremely advantageous inner surface structure for improving heat transfer performance, and is particularly suitable for heat transfer when applied to an internal boiling type heat exchanger tube. The improvement in thermal performance is remarkable.

次に上述の本発明伝熱管の製造方法例について説明する
。第3図(イ)は本発明方法の概略説明図である。本発
明方法の実施に当って特に重要な構成は特有のフローテ
ィングプラグの採用にあり、まずこの点から説明する。
Next, an example of a method for manufacturing the heat exchanger tube of the present invention described above will be explained. FIG. 3(A) is a schematic explanatory diagram of the method of the present invention. A particularly important feature in carrying out the method of the present invention is the use of a unique floating plug, which will be explained first.

即ち第3図(ロ)は同図(イ)中のフローティングプラ
グ9を抜出して上半分を破断して示したものであシ、又
同図(ハ)、に)は同図(ロ)におけるA−A線矢視断
面、B−B線矢視断面を夫々拡大して示している。第3
図(ロ)においてフローティングプラグ9はヘッド部1
6、アプローチ部15及びベアリング部14から構成さ
れておシ、更にヘッド部の切欠部12、アプローチ部の
切欠部11及びベアリング部の切欠部10が一連となつ
でフローディングプラグ9の縮径側端部位置形成されて
いる。又ヘッド部16の軸心部には後記のWI伺フグラ
グ8支軸8aを摺動可能に連接するだめの連接穴17が
外部と連通して形成されている。更に上記一連の切欠部
12,11.10は第3図(ハ)、に)に示す様に周方
向に2つ形成されており、この場合の好ましい寸法関係
については特段の制限を受けないものの、特に好ましい
能様に従って説明すれば、次の通シである。即ちヘッド
部16及びベアリング部15の外周長さを夫々L1゜L
2とする一方、ヘッド部16の切欠部12及び非切欠部
(符号は省略)の外周長さを夫々Wl。
That is, Fig. 3 (b) shows the floating plug 9 in Fig. 3 (a) pulled out and the upper half cut away, and Fig. 3 (c) and 3) show the floating plug 9 in Fig. 3 (b). A cross section taken along the line A-A and a cross section taken along the line B-B are shown enlarged. Third
In figure (b), the floating plug 9 is the head part 1.
6. It is composed of an approach part 15 and a bearing part 14, and the notch part 12 of the head part, the notch part 11 of the approach part, and the notch part 10 of the bearing part are connected in series to form the diameter-reduced side of the floating plug 9. End position is formed. Further, a connecting hole 17 is formed in the axial center of the head portion 16 so as to communicate with the outside to slidably connect a supporting shaft 8a of a WI flag 8 to be described later. Furthermore, the series of notches 12, 11, and 10 mentioned above are formed in two in the circumferential direction as shown in FIG. The following is a particularly preferred Noh style. That is, the outer circumferential lengths of the head portion 16 and the bearing portion 15 are respectively L1°L.
2, and the outer circumferential lengths of the cutout portion 12 and the non-cutout portion (numerals omitted) of the head portion 16 are respectively Wl.

Whとし、更にベアリング部14の切欠部11及び非切
欠部(符号は省略)の外周長さを夫々Wb。
Let Wh be Wb, and the outer circumferential lengths of the notched portion 11 and the non-notched portion (numerals omitted) of the bearing portion 14 are respectively Wb.

Wgとしたときの寸法関係は次式(1)〜(3)に示す
様に4″1”f成されている。
When Wg is used, the dimensional relationship is 4"1"f as shown in the following equations (1) to (3).

WL/L、=B/L2 ・・・・・・・・・・・・・・
・・・・・・・(2)”/(WA+Wh)= Wb/(
wb +Wg) ・−’(3)上記(1)〜(3)式の
寸法関係は要するに2つの一連の勧欠部10.l’l、
12及び10’ 、 11’ 、 12’が対を成す関
係にあることを示すものであり、この様な関係又はこれ
に近い関係にあるフローティングプラグ9を採用するこ
とによって前述の如き本発明伝熱管X/[第2図(イ)
参照〕を効率良く低コストで製造することが可能となる
。反対に2つ以上の一連の切欠部が上記(1)〜(3)
式に示す寸法関係から大きく外れる場合には、製造後の
伝熱管の形状が歪んだり、溝の形状や配列が不揃いとな
り易いので製品品質上の面から望ましくない。
WL/L, =B/L2 ・・・・・・・・・・・・・・・
・・・・・・・・・(2)”/(WA+Wh)=Wb/(
wb +Wg) -' (3) The dimensional relationships in the above equations (1) to (3) are basically two series of recessed portions 10. l'l,
12, 10', 11', and 12' are in a pair relationship, and by adopting the floating plug 9 having such a relationship or a relationship close to this, the heat exchanger tube of the present invention as described above can be achieved. X/[Figure 2 (a)
) can be manufactured efficiently and at low cost. On the contrary, a series of two or more notches corresponds to (1) to (3) above.
If the dimensional relationship significantly deviates from the relationship shown in the formula, the shape of the heat exchanger tube after manufacture tends to be distorted, and the shape and arrangement of the grooves tend to be irregular, which is undesirable from the viewpoint of product quality.

本発明方法は上述の70−ティングプラグ9を利用して
実施されるが、以下その過程について具体的に説明する
。第3図(イ)において110は素管5の外周面上を回
転しつつ押圧する転圧手段、8は外表面に溝付は用凹凸
80を有する溝付はプラグであって、管肉5aを介して
転圧手段110に挾持されている。更に溝付はプラグ8
の支軸8aがベアリング手段82を介して連接穴17に
遊嵌連接され、溝付はプラグ8が70−テイングブラグ
9に対して回動可能に配設される。又4はダイス装置を
示し、フローティングプラグ9に対応する管外側位置に
あって、その要部は管外面を規制するベアリング部41
と管肉6aを外側から圧迫するアプローチ部42とから
成っている。
The method of the present invention is carried out using the above-mentioned 70-ring plug 9, and the process will be specifically explained below. In FIG. 3(A), reference numeral 110 denotes a compacting means for rotating and pressing the outer circumferential surface of the raw pipe 5, and 8 is a grooved plug having grooves and projections 80 on the outer surface of the tube wall 5a. It is clamped by the rolling means 110 via. Furthermore, the grooved version is plug 8.
The support shaft 8a is loosely connected to the connecting hole 17 via the bearing means 82, and the grooved plug 8 is arranged so as to be rotatable with respect to the bearing plug 9. Reference numeral 4 indicates a die device, which is located on the outside of the tube corresponding to the floating plug 9, and its main part is a bearing section 41 that regulates the outside surface of the tube.
and an approach portion 42 that presses the tube wall 6a from the outside.

上記の(鱈成において素管5を溝付はプラグ8と一対の
転圧手段110との間を通過させると、素管5はその内
面に多数のらせん状の溝〔第1図(イ)参照〕が均一に
刻設される。こうして内面に均一らせん溝の形成された
管6は、ひき続きフローティングプラグ9のアプローチ
部15とダイス装置4のアプローチ部42との間及びフ
ローティングプラグ9のベアリング部14とダイス族は
のベアリング部41との間を通過することにより、管6
の内面は下記する様な特異な変形を受ける。即ちフロー
ティングプラグ9のアプローチ部15のうち非切欠部を
通過する管6の管肉6aは、ダイス装置4のアプローチ
部42の圧迫を受けて減径すると共に予め刻設された山
の頂部を押しつぶす一方、フローティングプラグ9のア
プローチ部15のうち切欠部11を通過する管6の管肉
6aはそのしわ寄せによって増加すると共に山は一層絞
シ出され、最終的に山〔第2図(ロ)参照〕が形成され
る。とうして絞り加工が行なわれだ管6は更にフローテ
ィングプラグ9のベアリング部14とダイス装置4のベ
アリング部41との間を通過することによシ、上記管6
の管内面形状と管半径は、ベアリング部14における切
欠部10及び非切欠部に応じた作用によジ、第2図に示
した溝形状2゜3及び管半径R2、R,の如く規制され
、特徴的な本発明伝熱管〔第2図(イ)〜(ハ)〕が製
造される。
When the raw pipe 5 is passed between the grooved plug 8 and the pair of rolling means 110 in the above-mentioned process, the raw pipe 5 has many spiral grooves on its inner surface [Fig. 1 (A)]. The tube 6 with the uniform helical groove formed on its inner surface continues to be inserted between the approach portion 15 of the floating plug 9 and the approach portion 42 of the die device 4 and between the bearing of the floating plug 9. By passing between the portion 14 and the bearing portion 41 of the die group, the tube 6
The inner surface of the tube undergoes a peculiar deformation as described below. That is, the pipe wall 6a of the pipe 6 that passes through the non-notched portion of the approach portion 15 of the floating plug 9 is compressed by the approach portion 42 of the die device 4 and reduces in diameter, and at the same time crushes the top of the pre-carved mountain. On the other hand, the pipe wall 6a of the pipe 6 passing through the notch 11 in the approach part 15 of the floating plug 9 increases due to the wrinkling, and the peaks are further squeezed out, and finally the peaks [see Fig. 2 (b)] ] is formed. The drawn tube 6 is then further passed between the bearing portion 14 of the floating plug 9 and the bearing portion 41 of the die device 4, thereby forming the tube 6.
The inner surface shape and radius of the pipe are regulated as shown in the groove shape 2°3 and the pipe radius R2, R, shown in FIG. , the characteristic heat exchanger tube of the present invention [FIGS. 2(A) to 2(C)] is manufactured.

従ってこの製造プロセスにおいては管内面溝成形が、従
来の3工程を廃止して2工程で行なわれており、しかも
従来法では抽伸工程で管の内外全面に亘ってフローティ
ングプラグ及びダイスが接触していたのに対し、本発明
方法ではフローティングプラグの切欠部が管内面に全く
接触しないので、管の引抜方向に対する抵抗力が激減す
る。その結果、従来方法に比べてよシ薄肉管であっても
更に高速生産が可能となシ、又速度を同じくするときけ
厚肉管に対する深溝刻設が可能となるので、生産性が高
まシ、製品コストの低減が図れると共に伝熱性能の良い
伝熱管が得られる。更に本発明方法では転圧手段を高速
で回転させることはないので、従来の様に転圧手段と溝
付プラグの位置関係がずれることはなく、従って正確な
溝形状の刻設が可能となシ、又転圧手段と管の摺動面に
おける発熱も非常に少ないので、潤滑油膜切れKよるす
)侮の発生はほとんどみられない。従って高品質の別品
が得られる。
Therefore, in this manufacturing process, forming grooves on the inner surface of the tube is performed in two steps instead of the conventional three steps.Moreover, in the conventional method, the floating plug and die are in contact with each other over the entire inner and outer surfaces of the tube during the drawing step. On the other hand, in the method of the present invention, the notch part of the floating plug does not come into contact with the inner surface of the tube at all, so the resistance force in the direction of pulling out the tube is drastically reduced. As a result, it is possible to produce even thinner-walled pipes at a higher speed than with conventional methods, and it is also possible to cut deep grooves on thick-walled pipes at the same speed, increasing productivity. , it is possible to reduce the product cost and obtain a heat transfer tube with good heat transfer performance. Furthermore, in the method of the present invention, since the rolling means is not rotated at high speed, the positional relationship between the rolling means and the grooved plug does not deviate as in the conventional method, and therefore it is possible to carve an accurate groove shape. Furthermore, since there is very little heat generation on the sliding surfaces of the rolling means and the pipe, there is almost no occurrence of damage due to lack of lubricant film. Therefore, high quality separate products can be obtained.

尚上述の実施例は単に一代表例を示すものであって本発
明を限定する性質のものではなく、前述の趣旨に沿って
伝熱管内面溝の形状、寸法をはじめ転圧手段、溝付プラ
グ、フローティングプラグ、ダイス装置等について適当
に設計を変更することは全て本発明の技術的範囲に含ま
れる。
The above-mentioned embodiment merely shows a typical example and does not limit the present invention, and in line with the above-mentioned purpose, the shape and dimensions of the inner groove of the heat exchanger tube, the compaction means, the grooved plug, etc. , floating plugs, die devices, etc., are all within the technical scope of the present invention.

本発明は以上の様に構成したので、高性能且つ高品質の
内面溝付伝熱管が低コストで得られる様になり、ルーム
エアコンをはじめとする各種熱交換器のうち高級機種の
ものがよシコンパクトに且つ安価に得られることとなっ
た。
Since the present invention is constructed as described above, a high-performance and high-quality internally grooved heat exchanger tube can be obtained at low cost, and high-grade models of various heat exchangers such as room air conditioners can be used. This means that it can be obtained compactly and at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)は従来の全面均一溝型の伝熱管を示す要部
断面模式図、第1図(ロ)は従来の製造方法を示す要部
断面概略説明図、第2図ピ)は本発明伝熱管を例示する
要部断面模式図、第2図(ロ)は同図@)に□おける溝
群■の拡大図、第2図(ハ)は同図(イ)における溝群
IIIの拡大図、第3図(イ)は本発明製造方法の概略
説明図、第3図(ロ)は同図ピ)におけるフローティン
グプラグの抜出説明図、第3図(ハ)、に)は夫々同図
(ロ)のA−A線矢a断面拡大図、B−B練矢視断面拡
大図である。 2.3・・・溝 4・・・ダイス装置 5・・・素管 8・・・溝付はプラグ 9・・・フローティングプラグ 10−12・・・切欠部 14・・・フローティングプラグのベアリング部15・
・・ のアプローチ部 16・・・ l のヘッド部 25.35・・・山 41・・・ダイス装置のベアリング部 42・・・ダイス装置のアプローチ部 iio・・・転圧手段 Ir、til・・・溝群 X・・・従来伝熱管 X′・・・本発明伝熱管 出願人 株式会社神戸製鋼所
Figure 1 (A) is a schematic cross-sectional view of the main part showing a conventional heat exchanger tube with uniform grooves throughout the entire surface, Figure 1 (B) is a schematic cross-sectional view of the main part showing the conventional manufacturing method, and Figure 2 (P) is a schematic cross-sectional view of the main part showing the conventional manufacturing method. A schematic cross-sectional view of the main part illustrating the heat exchanger tube of the present invention, FIG. 2(B) is an enlarged view of the groove group ■ in □ in the same figure @), and FIG. 2(C) is an enlarged view of the groove group III in the same figure (A). 3(A) is a schematic explanatory diagram of the manufacturing method of the present invention, FIG. 3(B) is an explanatory diagram of the removal of the floating plug in FIG. They are an enlarged cross-sectional view taken along line A-A and arrow a in the same figure (b) and an enlarged cross-sectional view taken along line B-B. 2.3... Groove 4... Dice device 5... Base tube 8... Grooved plug 9... Floating plug 10-12... Notch part 14... Bearing part of floating plug 15・
Approach part 16 of... l Head part 25, 35... Mountain 41... Bearing part 42 of the die device... Approach part iio of the die device... Rolling means Ir, til...・Groove group X: Conventional heat exchanger tube

Claims (2)

【特許請求の範囲】[Claims] (1)管軸方向に沿ってらせん状に連なる溝を内面に有
する伝熱管であって、その溝が、管中心軸に向って開放
状の第1溝群と、溝頂部が狭くて溝内部が広い構造の第
2溝群とからなると共に各溝群は管周方向及び管軸方向
に交互に現われしかもそれらが溝形状を相互に且つ連続
的に変化させながら連なっていることを特徴とする内面
溝付伝熱管。
(1) A heat exchanger tube that has grooves on its inner surface that extend in a spiral manner along the tube axis, and the grooves include a first group of grooves that are open toward the center axis of the tube, and a groove that is narrow at the top and inside the groove. and a second groove group having a wide structure, and each groove group appears alternately in the pipe circumferential direction and the pipe axial direction, and is characterized in that they are continuous while mutually and continuously changing the groove shape. Heat exchanger tube with internal groove.
(2)管の外周面を外側から圧迫可能に配設された転圧
手段と、該転圧手段に対応する管内側位置にあって且つ
溝付は用凹凸を外周面に有してなる溝伺はプラグと、該
溝付はプラグの普通行側に該プラグとは回動自在に連接
されると共に、管肉を内側から圧迫するアプローチ部と
管内面を規制するベアリング部とを有するフローティン
グと、該フローティングプラグに対応する管外側位置に
あって管肉を外側から圧迫するアプローチ部と管外面を
規制するベアリング部とを有するダイス装置を用いて金
属管内面を連続的に加工する方法であつ、て、前記フロ
ーティングプラグとして、該プラグの外面軸方向に沿っ
て、ヘッド部、アプローチ部及びベアリング部にかけて
連続する切欠を少なくとも2つ有してなるものを採用し
、被加工管を前記溝付プラグと前記転圧手段の間をしご
きつつ通過させた後、このしごかれた管を前記フローテ
ィングプラグと前記ダイス装置の間を通過させつつ引抜
くことにより、管軸方向に沼ってらせん状に連なる内面
溝が、管中心軸に向って開放状の第1溝群と、溝頂部が
狭くて溝内部が広いイ昔造の第2溝群とからなると共に
各溝群は管周方向及び管軸方向に交互に表われしかもそ
れらが溝形状を相互に且つ連続的に変化させながら連な
ってなる金属管に加工することを特徴とする内面溝付伝
熱管の製造方法。
(2) A rolling means arranged to be able to compress the outer circumferential surface of the pipe from the outside, and a groove located at a position inside the tube corresponding to the rolling means and having grooves on the outer circumferential surface. The grooved part is rotatably connected to the plug on the normal side of the plug, and the floating part has an approach part that presses the pipe flesh from the inside and a bearing part that regulates the inner surface of the pipe. , a method for continuously processing the inner surface of a metal tube using a die device having an approach section that is located at a position outside the tube corresponding to the floating plug and that presses the tube flesh from the outside, and a bearing section that regulates the outer surface of the tube. The floating plug has at least two continuous notches extending along the axial direction of the outer surface of the plug over the head portion, the approach portion, and the bearing portion, and the pipe to be processed is fitted with the groove. After passing the squeezed tube between the plug and the compacting means, the squeezed tube is pulled out while passing between the floating plug and the die device, thereby forming a spiral shape in the tube axis direction. The internal grooves connected to each other are composed of a first groove group that is open toward the center axis of the tube, and a second groove group that has a narrow groove top and a wide inside groove. A method for manufacturing an internally grooved heat exchanger tube, characterized by processing the metal tube into a metal tube in which the grooves appear alternately in the tube axis direction and are connected while mutually and continuously changing the shape of the grooves.
JP11215883A 1983-06-21 1983-06-21 Heat transfer tube equipped with groove on inner surface thereof and manufacture thereof Pending JPS604797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11215883A JPS604797A (en) 1983-06-21 1983-06-21 Heat transfer tube equipped with groove on inner surface thereof and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11215883A JPS604797A (en) 1983-06-21 1983-06-21 Heat transfer tube equipped with groove on inner surface thereof and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS604797A true JPS604797A (en) 1985-01-11

Family

ID=14579686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11215883A Pending JPS604797A (en) 1983-06-21 1983-06-21 Heat transfer tube equipped with groove on inner surface thereof and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS604797A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61140321A (en) * 1984-12-14 1986-06-27 Hitachi Cable Ltd Manufacture of pipe with worked inner surface
JPS61209723A (en) * 1985-03-13 1986-09-18 Kobe Steel Ltd Manufacture of heat exchanger tube
WO2014086543A1 (en) * 2012-12-07 2014-06-12 Luvata Espoo Oy A grooved tube
WO2015007645A1 (en) * 2013-07-18 2015-01-22 Luvata Espoo Oy A tube for heat transfer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50133963A (en) * 1974-04-13 1975-10-23
JPS5289854A (en) * 1976-01-23 1977-07-28 Ishikawajima Harima Heavy Ind Co Ltd Forming method for wall face of heat conduction tube
JPS53132704A (en) * 1977-04-22 1978-11-18 Hitachi Chemical Co Ltd Method of manufacturing conductivee pipe products
JPS5439353A (en) * 1977-09-02 1979-03-26 Hitachi Cable Ltd Method of producting metal pipe with groove or projection on inner surface
JPS58112157A (en) * 1981-12-24 1983-07-04 Seikosha Co Ltd One-chip microcomputer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50133963A (en) * 1974-04-13 1975-10-23
JPS5289854A (en) * 1976-01-23 1977-07-28 Ishikawajima Harima Heavy Ind Co Ltd Forming method for wall face of heat conduction tube
JPS53132704A (en) * 1977-04-22 1978-11-18 Hitachi Chemical Co Ltd Method of manufacturing conductivee pipe products
JPS5439353A (en) * 1977-09-02 1979-03-26 Hitachi Cable Ltd Method of producting metal pipe with groove or projection on inner surface
JPS58112157A (en) * 1981-12-24 1983-07-04 Seikosha Co Ltd One-chip microcomputer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61140321A (en) * 1984-12-14 1986-06-27 Hitachi Cable Ltd Manufacture of pipe with worked inner surface
JPS61209723A (en) * 1985-03-13 1986-09-18 Kobe Steel Ltd Manufacture of heat exchanger tube
WO2014086543A1 (en) * 2012-12-07 2014-06-12 Luvata Espoo Oy A grooved tube
WO2015007645A1 (en) * 2013-07-18 2015-01-22 Luvata Espoo Oy A tube for heat transfer
US9891009B2 (en) 2013-07-18 2018-02-13 Luvata Alltop (Zhongshan) Ltd. Tube for heat transfer

Similar Documents

Publication Publication Date Title
JPS62237295A (en) Specially formed heat transfer pipe and manufacture thereof
JPS604797A (en) Heat transfer tube equipped with groove on inner surface thereof and manufacture thereof
CA1094787A (en) Method of forming helically finned pipes and an apparatus for forming the same
JPS603916A (en) Manufacture of heat transmitting tube provided with grooved inner surface
JP3345225B2 (en) Manufacturing method of deformed pipe
JPS61175485A (en) Heat transfer tube and manufacture thereof
JPH11319934A (en) Manufacture of and device for interior grooved tube
JPS61125592A (en) Heat transfer tube and manufacturing device therefor
JPS61209723A (en) Manufacture of heat exchanger tube
JP3239833B2 (en) Manufacturing method of deformed pipe
JP3786789B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
JPS60166108A (en) Manufacture of metallic tube with shaped inner face
JPH10166036A (en) Manufacture of tube having groove on internal surface, and its device
JPS5886923A (en) Continuous manufacture of inside surface grooved pipe
JPS62255794A (en) Heat transfer pipe with fin and manufacture thereof
JPS6152948A (en) Manufacture of tube having inside groove
JPS63115612A (en) Manufacture of tube with internal groove
JPH1110268A (en) Production of outer face grooved tube
JP5739634B2 (en) Internal grooved pipe manufacturing apparatus and internal grooved pipe
JPS61266121A (en) Working device for pipe with internal groove
JP2773872B2 (en) Heat transfer tube for boiling and condensation
JPS6188918A (en) Equipment for producing heat exchange tube
JPS62255795A (en) Profile heat transfer pipe and manufacturing device thereof
JP2812786B2 (en) Manufacturing method of small diameter inner grooved pipe
JPS6222246Y2 (en)